Protection, Utilization and Collaboration in
Shared Cache Through Rationing

Raj Parihar Jacob Brock' Chen Ding! Michael C. Huang
{parihar@ece. jbrock@cs. cding@cs. michael.huang@ }rochester.edu

Dept. of Electrical & Computer Engineering Dept. of Computer Science

The University of Rochester
Computer Science Department
Rochester, NY 14627

Technical Report TR-995

November 2013

Abstract

Shared cache is generally optimized to maximize the overall throughput, fairness, or both.
Increasingly in shared environments, especially compute clouds, users are unrelated to one
another. In such circumstances, an overall gain in throughput does not justify an individual
loss. This paper explores conservative sharing, which protects the cache occupancy for
individual programs, but still enables full cache sharing whenever there is unused space.

Specifically, we present a new hardware based mechanism called cache rationing. Each
core/program is assigned a portion of the shared cache as its ration. The hardware support
protects the ration so it cannot be taken away by peer programs while in use. However, a
program can exceed its allocated ration only if another program has unused blocks in its
ration. This paper shows that rationing provides both full protection and full utilization of
the cache. In addition, the same hardware support can enable energy-efficient caching and
hardware-software collaborative caching.

The University of Rochester Computer Science Department supported this work.

1 Introduction

As multi-core processors become commonplace and cloud computing gains acceptance, more
applications are run sharing the same cache hierarchy. Managing cache sharing is crucial
not just for achieving good performance, but also for ensuring stable performance in a
dynamic environment; and not just for parallel programs but also for sequential programs
co-run with each other.

The basic task of cache management is to allocate cache blocks to co-running applica-
tions. There are two extremes in this allocation: cache partitioning, and free-for-all cache
sharing. Taking an analogy with resource allocation in economics, Hsu et al. called them
communist and capitalist policies (Hsu et al., 2006).

Neither strategy is perfect; Much previous work has devised more effective strategies
of sharing (Section 5). The goal has been to optimize throughput, fairness, QoS, or some
combination of the three. The mechanism is adaptive sharing — giving some programs
more cache and other programs less. These solutions are optimistic since the allocation is
based on the prediction of the favorable aggregate performance.

One problem with optimistic sharing is that it is intrusive; that is, it re-allocates space
based on the collective needs of all programs, even if certain individual programs are hurt.
In this paper we explore the approach of conservative sharing, in which cache re-allocation
is only done if no program is hurt by it.

Increasingly in shared environments, especially compute clouds, users are unrelated.
A collective gain does not justify an individual loss. Conservative sharing is to ensure the
resource allocation for non-cooperative users yet still enable resource sharing when possible.

We present a hardware technique called cache rationing. Each program is allocated a
ration which can be shared, but only under a strict condition. In particular, a program can
share the cache ration of a peer program only if that peer program does not need its full
ration. If a program needs all of its ration, no other program can take its space away, and if
it does not, it shares the surplus space. In this way, rationing provides full protection and
full utilization.

Hardware support is needed to solve two problems. The first is accounting, i.e., keeping
track of how much cache space is used by each CPU core. The second is usage tracking,
i.e., whether a program needs all its ration. To solve the second problem, we use a solution
similar to OS memory allocation. In particular, an access bit to indicate whether a cache
line has been actively used in recent past.

Traditionally, cache is managed by usage. All real machines approximate LRU. For
protection, we must allocate cache based on who accesses the data rather than when the
accesses happen. By using the per-cache-line access bit, we will show that cache rationing
can combine entitlement and usage-based cache allocation, and hence obtain the benefit of
partitioning and sharing while avoiding their disadvantages.

The rationing support also allows hardware-software collaborative caching (Wang et al.,
2002). In particular, we add a single bit to indicate a special memory load and store. A
special operation marks the cached data as “evict-me” by clearing the access bit upon the

special access. We will show that the interface allows collaborative caching and can further
improve the performance of rationed cache.

Continuing with the free-market analogy of Hsu et al., let’s consider an economic con-
cept called the Pareto optimality, for example in income distribution. A resource allocation
is optimal if one cannot make any one individual better off without making at least one indi-
vidual worse off. Cache rationing is to effect Pareto optimality for cache allocation. Sharing
of an unused ration is a Pareto improvement, since it helps a program without making any-
body else worse off. Hardware-software collaboration is also a Pareto improvement, since
one program can optimize the use of its ration without affecting others.

The rest of the paper is organized as following: Section 2 presents the details of our pro-
posed cache rationing mechanism along with the storage overhead needed to implement the
proposed solution. Section 4 presents the experimental setup and discusses the performance
results. Section 5 overviews related work and finally Section 6 summarizes the paper.

2 Cache Rationing

A ration for a CPU core or program is the guaranteed effective size of space in the shared
cache that is allocated to the core/program. The ration can be specified by software, e.g.,
through privileged instructions. We define two new objectives in cache sharing and then
show how cache rationing is designed to meet these objectives.

2.1 Objectives of Rationed Cache

Traditionally, in science and engineering computing we strive to maximize performance. In
a shared facility, e.g., a university computing center, we also strive to ensure fairness. In
such cases, the hardware is fully owned by the user or the organization who is running the
applications.

Cloud computing operates on a retail model; cloud processors are rented on the open
market. A user temporarily takes ownership of part of a machine. For example Amazon
Elastic Compute Cloud (EC2) lets a user rent a virtual computer. The size of the com-
puter is elastic and measured by how fast it is. The speed is measured by elastic compute
units (ECU). Amazon defines the ECU by the average performance of a standard CPU
configuration.’!

In the cloud context, the fairness and efficiency are different than in the workstation and
computing center. We next define two new objectives and compare them with throughput
and fairness.

! According to Amazon, “We use several benchmarks and tests to manage the consistency and predictabil-
ity of the performance of an EC2 Compute Unit. One EC2 Compute Unit provides the equivalent CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. This is also the equivalent to an early-2006
1.7 GHz Xeon processor referenced in our original documentation.” (source: EC2 wiki page)

Resource Protection vs. Fairness The rented computing power is measured by the
dedicated use of hardware, including the size of cache. When sharing a processor among
multiple users, the goal is not to evenly divide the shared cache but to guarantee that
a rented core has cache at or above the specified size. We call this guarantee resource
protection.

Resource protection is not the same as fairness. In fairness, a group of tasks have an
equal partition of the cache (resource fairness), or an unequal partition so they have a
similar performance loss (performance fairness). In resource protection, we reserve a cache
partition at least the size of the ration, regardless of the demand by peer programs.

Rationing guards against unexpected performance loss. Based on total demand, a user
may reduce the ration given to a program. There is a performance loss due to reduced
ration, as happens when more programs are added to share the same machine. But unlike
traditional cache sharing, cache rationing bounds the worst-case resource allocation and the
worst-case loss. It provides a “safety net” for performance.

Utilization vs. Throughput A program may not use all of its ration. It depends on
the cache demand of the program, and the size of ration it is given. When there is unused
ration, we want to utilize it if there is a co-run program that can benefit from having more
cache space. We call the amount of cache used by a program its cache utilization.

Maximal utilization is different from maximal throughput. To maximize overall perfor-
mance, we allocate each chunk of cache space to the program that can gain the most by
having the additional space. To maximize utilization, we detect unused rations and make
them and only them available for sharing. For throughput we need global optimization,
while for utilization we need just local detection.

Quality of Service Cache rationing helps to support quality of service (QoS), if the
quality is defined by a hardware configuration. For QoS, we need dedicated allocation of
resources including CPU and memory and I/O bandwidth. Rationing provides guaranteed
cache allocation.

Cache rationing may be used to obtain the traditional goals of throughput or fairness,
which would require additional analysis and optimization to convert performance require-
ments into resource requirements. The same goes for the QoS optimization, i.e., minimal
resource use for a bounded loss. This paper focuses on the hardware support for cache
rationing.

2.2 Ration Counter

To implement rationing, we add two sets of additional storage: a ration counter for each
core or application, and a ration owner for each cache block.

A ration counter stores two integer values: the number of cache blocks rationed for the
counter owner, and the number of resident cache blocks that were loaded into the cache by
the counter owner. In the following, we show rationing among CPU cores. With the OS
support, the same rationing can be done for tasks or task groups.

Access bits, Status bits & Tag array Data array Ration counters
blk 0 blk1 === "" blk w-1 T A

oar rmir J---gr J| ERRREE | |
\ J J)
Y Y
w ways p counters
(1 per way) (1 per core)

Figure 1: The space diagram of cache showing ration counters (one per set per core) and
access bits (one per cache block).

Each cache block stores its “ration owner”, which is a reference to one of the ration
counters. For example, in 4-core sharing, the owner record needs 2 bits per cache block to
indicate which core owns the block as part of its ration. It also needs a way to indicate if
a valid block is unowned. Omne solution is to have a default ration counter that tracks all
unowned blocks.

Rationing can be done in two scopes. The first is across the whole cache. Each core
has a total allocation. The second is within each cache set. Each core has an allocation
in every set. Whole-cache allocation allows more flexible partitioning since a ration can be
any integer between 1 and the cache size. It needs just one set of ration counters. However,
it has weaker protection against interference since local hotspots can happen. Cache-set
allocation provides fine-grained protection but requires a set of ration counters in every
cache set. We will compare these two flavors of rationing in evaluation section.

blk is fetched by p at a miss

fetch(blk, p)
blk.owner’s_counter = p.ration_counter
blk.owner’s_counter ++

blk is evicted

evict(blk)
access(blk, p)
blk.owner’s_counter --

blk is accessed by p
access(blk, p)
if blk.owner’s_counter != p.ration_counter
blk.owner’s_counter --
blk.owner’s_counter = p.ration_counter
blk.owner’s_counter ++

Figure 1 shows the space diagram of a cache set. The ration counters are shown in the
shaded (blue) color on the right side.

The maintenance of the ration count requires knowledge of the identity of the CPU core
responsible for each memory access. The maintenance logic is shown in the pseudo code as
follows. There are three cases: a cache load (upon a miss), an eviction, and a normal access
(a hit).

At a cache load, we set the owner record to point to the ration counter of the loader and
increment it. At an eviction, we follow the owner record to decrement the ration counter.

There are two cases when the ration usage becomes inconsistent. The first is when there
is per-core rationing but a task migrates. The second is running multi-threaded code with
data sharing. In both cases, a block is loaded by one core but evicted by another core. The
problem may be solved in two ways.

The first is counter association. If we assign a ration counter per task, then migration
does not cause inconsistency. If we assign the same ration counter for all threads of a
program, then the problem is solved for data sharing. We can design more elaborate schemes
where the ration counters are dynamically coalesced and split.

The second solution is ownership update. At a cache (hit) access, we check whether
there is a mismatch and update the owner record accordingly. The preceding pseudo code
shows the second solution.

2.3 Access Bit

The second hardware extension is the access bit for detecting an unused ration. Each
block has an access bit, as shown in Figure 1. It is set whenever the block is referenced.
Periodically, the access bits are reset. The time between consecutive resets is called the
reset interval. A rationed cache block is deemed unused if either it is not owned or the
access bit is zero.

2.4 Rationing Control

We augment the cache management logic to implement rationing. The description is based
on set-associative LRU cache. Adaptations in other types, e.g., pseudo LRU, can also be
made. The description here focuses on how to use the ration counter and access bit.

LRU is a stack algorithm and can be modeled by a stack storing the most recently
accessed block at the top and down to the least recently accessed block at the bottom.

For each ration, we keep track of the least recently used block (LRU block) whose access
bit is one. For each cache hit, the stack is adjusted as in a traditional cache. In addition,
the rationed cache records the LRU block for each ration (whose access bit is 1).

The following algorithm shows the replacement logic at a miss. For simplicity, we assume
two programs, pl and p2, share the cache. Without loss of generality, let the miss be caused
by pl.

The problem is finding the victim at a miss. The preceding algorithm first checks
whether there is a cache block that is invalid or valid but unused (access bit is 0). If there
is none, it checks if pl is at or over its ration. If both checks are false, then p2 is over its
ration.

In a two-core system, checking if a program is over its ration is easy. In the general case,
the else clause needs to find in a set of cores one that is over ration. This can be done by
an associative search and picking the counter with highest overuse of its ration.

pl needs to load blk at a miss
miss(blk, pl)
if repl exist s.t. !repl.valid or !repl.accessed
replace repl
elsif pl.at_or_over_ration?
replace LRU block of pil
else # p2 over ration
replace LRU block of p2

2.5 Example Illustration and Comparison

Rationing has two goals: cache resource protection, and cache resource utilization. We show
an example of each case in Figure 2. Assume we have two cores, each accessing a separate
set of data, and an evenly rationed cache with two blocks for each core.

The figure shows the access trace for each core on the left hand side. It also shows the
content of access bits (one for each block, 4 total) and ration counters (one for each core, 2
total). Not shown is the owner pointer pointing to one of the two ration counters. In the
interleaved execution, if two requests come at the same time, we arbitrarily assume that
the cache sees the request from core 1 first.

The first example (Figure 2(a)) shows resource protection. In this case, core 1 uses 2
blocks, which it can hold entirely within its ration. However, in free-for-all sharing, i.e., the
capitalist policy, data from core 2 can evict data used by core 1. In contrast, the partitioned
cache (communist) and the rationed cache do not permit core 2 to intrude on the ration of
core 1.

Due to the lack of protection, the capitalist policy causes the most misses. In the
figure, we shade the misses (excluding compulsory ones). Partitioning and rationing per-
form equally well by providing resource protection. However, the mechanisms are different.
Rationing permits sharing, as the next example shows.

The second example (Figure 2(b)) shows cache utilization. If core 1 uses just 1 block,
and core 2 uses 3, the fixed partitioning would under-utilize the partitioned space for core
1. The capitalist sharing and the cache rationing, in contrast, can fully utilize the 4 cache
blocks for the 4 program blocks.

The two examples demonstrate that cache rationing can combine the advantages of
cache partitioning and sharing while avoiding their problems.

3 Interaction with Other Optimizations

Our proposed rationing based design lends itself to integration with other designs. In this
section, we discuss some of the designs and the ease of integration with rationing technique.

Communist I Capitalist I Rationing
00) : P | Data array Access bits Ration cntr |
so| e Tal Tfal U [Irla L JOafofol (4 1] |§
2R ! o
xo LIy I la], o oy Il Iy Doy Ja] AT (2020 | g
O~ I | 1 i
zog Tl dx Je b Jjle b Iy Ja ljle b Iy [x JLAlalalJ[2]2] |3
(9] | 1 1 8
<o NIy Ja e][e b 1 [a x e Iy][0T [22] | &
<D-G)\ : 1 | 6.
7 &y DG o], (o e 1500, By e o) (Tl (2021 |3

(a) Rationing performs as well as partitioning and better than sharing because rationing protects core 1
against the interference by core 2.

Communist I Capitalist I Rationing
00 | | Data array Access bits Ration cntr | ¢y
Q9o I Q
sl x I Jal Jilalx L T Jrlafx]] J0ifafofo[1]1] |3
. ! S
< o~ e e] B e I e e I Gl 2] | &
O~—_| 1 1 1 cC
o [T l_Je [bJile Jbla[x]ile b lafx [l [1]3] |=
o 1 1 N
* RES| -|C|:|a||><||c||b|:|a||X||C||b||1||1|1||1||1||3| =
o|2 S
: Ev\‘iXH =} (5 1= J0x e]! (b Jx e O 3] |2

(b) Rationing performs as well as sharing and better than partitioning because rationing utilizes the unused
ration of core 1.

Figure 2: Resource protection (a) and utilization (b) in evenly rationed cache, in comparison
with communist (hard partitioning) and capitalist (free-for-all sharing) policies.

3.1 Hardware-Software Collaborative Caching

A number of processors provide special load/store instructions that a program can use
to influence hardware cache management. These include the placement hint on Intel Ita-
nium (Beyls and D’Hollander, 2005), bypassing access on IBM Power series (Sinharoy et al.,
2005), the evict-me bit (Wang et al., 2002), and non-temporal instructions on IBM and Intel
processors (Rus et al., 2011; Yang et al., 2011; Brock et al., 2013). Wang et al. called a
combined software-hardware solution collaborative caching (Wang et al., 2002). Here we
call a special memory instruction a cache hint.

There are two common uses of cache hints. The first is to mark accesses whose data will
have no chance of reuse before eviction. This can be done using compiler analysis (Wang
et al., 2002; Beyls and D’Hollander, 2005) or reuse-distance profiling (Beyls and D’Hollander,
2005). Taking the hints, the hardware would choose not to cache those data and hence save
the space for data that may be reused. A second solution was developed recently to use the
OPT stack distance (i.e., the OPT stack position) instead of the reuse distance (LRU stack
distance) as an indicator of whether a block should be marked for eviction (Brock et al.,

Thread 1 | abcabcabec
Hint Bit | o1 0101010
Access Bit | 101010101
Misses | MMM M M M
______________ |__________________
Thread 2 | x yzxyzzxyz
Hint Bit | o1 0101010
Access Bit | 101010101
Misses | MMM M M M
|
Post-Access | abcabcabc
Cache Content | x v z x vy 2 x Vv 2
| aaccbbaa
| XX 2 2ZyyXZX

Figure 3: An example of cache rationing with a hardware-software collaboration hint bit.
If the hint bit is set, the access bit is zeroed so that the accessed blocks will not be kept in
the cache. The contents of the cache are shown after each pair of accesses, and blocks with
their access bit zeroed are underlined.

2013). The benefit of this approach is that it can select a part of the working set to cache
if the whole working set is too large.

Regardless of what the software does, it needs the hardware instruction in order to
mark a data block and tell the hardware to replace it before replacing other blocks. Such
an instruction can be readily supported by cache rationing.

We add a hint bit to load/store instructions. At the access, the processing is exactly as
we have defined before. The only effect happens when setting the access bit. In the default
logic, the access bit is set after the access. With the new interface, the access bit is set only
if the hint bit is not. In other words, the software can tell the rationing hardware not to
set the access bit if it knows that the block will have no more cache reuse, or if its eviction
would free cache space for other blocks. The block then becomes unused ration and will be
favored for immediate eviction (before every block whose access bit is 1).

As an example, consider two cores sharing a four-block cache. Let the access traces be
“xyzxyz...” for one core and “abcabc...” for the other. With equal rationing, neither core
has enough cache to obtain any reuse. However, with cache hints, the software can free up
cache space by zeroing some access bits (where the hint bit is set). In Figure 3, every other
access has its hint bit set, so the access bit is zeroed. In this case, the non-compulsory
miss ratio is reduced from 1 to 1/2. In (Gu et al., 2008), it is shown that a hint-based
solution can achieve optimal caching, and its application for single threads is demonstrated
in (Brock et al., 2013).

Cache ways Ration counters

2 a b o o])
c 3 4 d o]l o After
L__reset
Lp I a |Lr |5 | Lo o] _]
1 a 2 b 2] 1]) _
o c 3 4 d oo During
= L__ execution
S I
[a | JLp |5 | Lo 2]]
L1 |[a |[2 |[b 2] 1])
[c |[3 |[4 |[d | (o] o] At reset
—
5 | Lo] 2]]

Power down/ sleep mode

Core1:12345 ...
Core2:abcd...pqr...

Figure 4: Energy efficient rationing: after all the ration counters and access-bits are reset,
a still zero-valued ration counter at next reset point can be used to either evict the lines
belonging to respective core or send them to a power-saving mode to reduce leakage.

3.2 Energy Efficient Rationing

Kaxiras et al. have showed that cache accesses exhibit generational behavior (Kaxiras et al.,
2001). When we access a cache line then typically the first access is a miss, followed by a
series of hits. When the line is dead, it relies on LRU to evict it even thought it can be
evicted right away. The study shows that about 80% of the time a cache line is dead but
waiting for eviction. Many hardware designs (Flautner et al., 2002; Kaxiras et al., 2001;
Khan et al., 2010) have been proposed that are built to predict the last reuse of a cache
line and then either evict the line immediately or shut off the ways to save leakage power.

We can leverage the cache rationing support for dead block eviction to save energy.
To enable energy efficient cache rationing, we use the ration counter for two purposes. As
shown in the Figure 4, when resetting the access bits, all the ration counters are also reset.
During the execution, an access increments the respective ration counter. At the next reset
point, if a ration counter is still zero then it indicates that no access was made to this
particular set by this core. This information can be used to evict all the lines that belong to
the core with zero ration counter value. With our preliminary analysis we have found that
it is safe to use the access pattern of previous reset interval to predict the access behavior
of the next reset interval with good accuracy.

Partition .
Access bits,

PIPP Fl2.2) Rationing Ration counters
(o] o[o] o]
Ix Iy [z lal [xJylz]al “mro
Read a 1 o
(1] o] 0]
G Elz] Elxyiz] CE
Read A
Ix [y [Afa] [Afa |x]y]
Read b
wIXIIyIIbIIAI (b A Jla |[x |
£ Read B
'_
X B b B b A |a
GO IETe]) (BIb AT a]
[x][y IEl8] [a]BJb[A] —[ZIz]
Write A
X a Ala |B|b LAl 1]
GO ma] (AT (B 5]
X A b [A]a B] Lililtlil
GO mmA] (b JATals)
\ (AT A0 1]
Gy mmE] [Elb[Ala]

Regst: rr ww
Core1: ab ab cd cd
Core2: AB ABCDCD

Figure 5: Comparison of cache rationing with baseline PIPP policy. PIPP-equal (PIPP
with equal partitioning) for symmetric co-run incurs more misses and allows dead line to
stay and increases more contention on the second half of the set. shaded blocks in red are
the ones that incur conflict misses.

3.3 Comparison with Promotion/Insertion Pseudo Partitioning (PIPP)

In this section, we compare and differentiate our technique with several other designs. The
recently proposed PIPP design (Xie and Loh, 2009) tries to achieve partitioning with the
help of intelligent insertion and promotion policies. Because PIPP does not explicitly and
pro-actively partition the cache, it is pseudo-partitioning as the name suggests. The baseline
PIPP design works as following: For n cores, it assumes that there exists a set of target
partitions P = {pl,p2,...,pn} such that > pi = w, where w is the set associativity of the
cache. Simple baseline PIPP implements three policies. On insertion, core; simply installs
all new incoming lines at priority position pi. On a cache hit, the promotion policy for PIPP
promotes the cache line by a single priority position. Finally, the victim selection always
chooses the line from the lowest-priority position — similar to conventional LRU. PIPP does
not strictly enforce the target partitioning and does not guarantee resource protection, but
the combination of targeted insertion and incremental promotion creates results similar to
an explicit partition.

In a symmetric co-run where multiple copies of same application are sharing the cache,
PIPP can effectively reduce the cache capacity and may allow certain dead blocks to occupy

10

the first half of a cache set forever while the other half of the cache experiences more conflict
misses. This case is shown in the Figure 5; The rationing based policy evicts the dead blocks
more effectively then PIPP. Most of the cache partitioning proposals (Qureshi and Patt,
2006; Xie and Loh, 2009; Jaleel et al., 2008) do not guarantee resource protection and the
overall speedup may come at the cost of slowing down the less aggressive thread/program.
In contrast, our rationing based cache policy does not slow down less aggressive programs
and ensures resource protection.

4 FEvaluation and Analysis

4.1 Experimental Setup

We perform our experiments using an in-house simulator that models true execution-driven,
cycle-accurate simulation. We also model support for multi-program workloads on chip
multiprocessors with extensive coherence transitions including faithful modeling of transient
states.

Microarchitecture and configuration The simulator models major microarchitectural
components such as issue queues, register renaming, ROB, and LSQ. Features like load-hit
speculation (and scheduling replay), load-store replays, keeping a store miss in the SQ while
retiring it from ROB are all faithfully modeled. Our baseline core is a generic out-of-order
microarchitecture loosely modeled after POWERDS (Sinharoy et al., 2005). Other details of
the configurations are shown in the Table 1.

Applications and inputs We use applications from SPEC CPU 2000 and 2006 bench-
mark suites compiled for Alpha using a cross-compiler that is based on gecc-4.2.1. We use
ref inputs and simulate at least 200 million instructions per core after skipping over the ini-
tialization portion as indicated in (Sherwood et al., 2002). If an application completes 200
million instruction it continues to run until the last one completes 200 million instructions.

Core and Cache Configurations
Fetch/Decode/Issue/Commit 8/4/6/6
ROB 128
Functional units INT 2 + 1 mul + 1 div
FP 2 + 1 mul + 1 div
Fetch Q/ Issue Q / Reg. (int,fp) | (32, 32) / (32, 32) / (80, 80)

LSQ(LQ,SQ) 64 (32,32) 2 search ports

Branch predictor Gshare — 8K entries, 13 bit history
Br. mispred. penalty at least 7 cycles

L1 data cache (private) 32KB, 2-way, 64B line, 2 cycles

L1 inst cache (private) 32KB, 2-way, 64B, 2 cycles

L2 cache (shared) 512KB per core, 8-way, 64B, 15 cycles
Memory access latency 150 cycles

Table 1: Microarchitectural configurations.

11

SPEC CPU2000 applications

INT | 1-gzip 2-vpr 3-gcc 4-mcf 5-crafty 6-parser
7-eon 8-perlbmk 9-gap 10-vortex 11-bzip2 12-twolf
FP 13-wupwise 14-swim 15-mgrid 16-applu 17-mesa
18-galgel 19-art 20-equake 21-facerec 22-ammp
23-lucas 24-fma3dd 25-sixtrack 26-apsi

SPEC CPU2006 applications
INT | 1-perlbech 2-bzip2 3-gcc 4-mcf 5-gobmk
6-hmmer 7-sjeng 8-libquantum 9-h264ref
10-omnetpp 1l-astar 12-xalancbmk
FP 13-bwaves 14-milc 15-zeusmp 16-namd
17-dealll 18-soplex 19-lbm 20-sphinx3

Table 2: SPEC 2000 and 2006 applications used in experiments and their index used in the
result figures.

This ensures that other co-running applications continue to interfere for the whole execu-
tion of any specific application. For performance comparison, we account only 200 million
instructions. In our experiments, many applications often go well beyond one billion in-
structions. Due to space constraints we cannot label the application names in the figures in
Section 4.4 so we use numbers to denote the applications. Corresponding applications are
shown in Table 2.

Co-run Test Suites For k programs, there are k™ choices for m-program co-runs. We
cannot test them exhaustively so we choose the symmetric tests plus a few groups that
require protection (co-runs with equake and mcf) and offer opportunities of utilization
(co-runs with eon). In particular, we present results for five pair-run test suites:

e SPEC 2000/2006, symmetric: each programs co-run with itself.
e SPEC 2000 with eon/equake/mcf: either eon or equake or mcf co-runs with each of
SPEC 2000 programs including itself.

We also create 2 four-program co-run test suites:

e SPEC 2000, symmetric: each of the 26 programs co-runs with three clones of itself.

e SPEC 2000 with 2 equake: for each of SPEC 2000 programs, we run two clones of the
program and two equake.

Comparisons We compare rationing with partitioning (communist), sharing (capitalist)
and a flavor of pseudo-partitioning (PIPP). For PIPP policy we assign the partition equally
in a 2 program co-run and call it PIPP-equal. This is a reasonable design choice for sym-
metric co-run because the two copies of program are identical. For asymmetric co-run,
PIPP will require additional profiling to estimate the right partition that is typically based
on working set and other information. Because for rationing we use equal rations even for

12

Co-run damage (Unhealthy co-run): 2-core system
Communist Capitalist Rationing PIPP-equal

Apps Damaged Average Damaged Average Damaged Average Damaged Average

pairs slowdown pairs slowdown pairs slowdown pairs slowdown
spec2k - symmetric 1 1.03% 15 3.34% 1 1.01% 16 3.47%
spec2k - with eon 0 0.0 % 9 5.65 % 0 0.0% 6 4.23%
spec2k - with equake 1 1.05% 17 9.76% 3 1.16% 15 9.21%
spec2k - with mcf 0 0.0 % 24 10.54 % 2 1.77% 21 8.64%
spec2k6 - symmetric 0 0.0% 7 4.09% 0 0.0% — —

4-core system
spec2k - symmetric 1 1.07% 13 4.52% 1 1.14% — —
spec2k - w/ 2 equake 3 ‘ 1.33% H 20 ‘ 9.67% ‘ 2 ‘ 4.82% H - ‘ -
Damage-free gain (Healthy co-run): 2-core system
Communist Capitalist Rationing PIPP-equal

Apps Healthy Average Healthy Average Healthy Average Healthy Average

pairs speedup pairs speedup pairs speedup pairs speedup
spec2k - symmetric 0 0.0% 1 2.51% 2 1.67% 0 0%
spec2k - with eon 0 0.0% 7 9.38% 14 14.46% 9 9.44%
spec2k - with equake 0 0.0% 5 4.64% 5 6.73% 3 3.56%
spec2k - with mcf 0 0.0% % 1 3% 1 26.12% 0 0.0%
spec2k6 - symmetric 1 2.19% 0 0.0% 1 2.25% — —

4-core system

spec2k - symmetric 1 1.17% 2 18.75% 2 23.73% - -
spec2k - w/ 2 equake 1 1.47% 4 6.59% 6 7.57% — —

Table 3: Overall protection and utilization for all test suites.

asymmetric co-runs, we use equal partition for PIPP as well. Our primary goal is equal
resource allocation so it is intuitive to allocate equal partition and ration for PIPP and
rationing policies respectively. As we will see later, the correct “initial” partition is not
critical for the success of rationing whereas for PIPP it is quite crucial to allocate the right
partition to begin with.

There are many, often more elaborate techniques. We pick these three policies to com-
pare with our rationing policy because they are simple and representative. On average,
PIPP has been shown to perform better than other proposals (e.g., UCP and TADIP (Xie
and Loh, 2009)). Also the communist and capitalist suit our purposes in that they are the
extreme cases of protection and utilization. No policy can offer more absolute protection
than communist, and capitalist policy uses global LRU and is one of the best and robust
caching policies. If rationing can have similar protection as partitioning and utilization as
sharing, then there is little room for further improvement. Furthermore, past techniques
target throughput and fairness, which is different from protection and utilization. It is diffi-
cult to determine which past work is most competitive for our combined purpose. Instead,
we compare with the best possible method for each single purpose, as represented by the
combined strength of these two extreme policies along with the PIPP technique.

4.2 Chip Space Overhead

Let p be the number of cores sharing the cache, s be the number of sets in the cache, w be
the number of ways in each set, and b be the cache block size in bytes. The total number
of bits required for the data array can be computed from the following expression:

bits(data_array) = sxw b * 8 (1)
Assuming a 40-bit physical address, the tag storage in a physically indexed cache would

be
bits(tag_array) = s * w * (40 — logas — logab + 2) (2)

13

2-bit (last factor in expression (2)) storage is required to maintain the valid and dirty bits
for each block assuming a writeback cache.

To implement our proposed cache rationing technique on top of the baseline cache
architecture, we require 1-bit of storage for the access-bit per cache block and p ration
counters per set. Each counter needs to count only up to the associativity of the cache.
The total storage overhead of the rationed cache is

bits(ration_array) = s x (w + p * logaw) (3)

After computing the storage overhead (from expression (3)) for various configurations
of caches and numbers of cores, three key observations about the storage overhead of our
cache rationing policy are as following:

e Storage overhead is almost constant for any cache size if the associativity and number
of cores sharing the cache are fixed. For 2 cores sharing an 8-way associative cache of
any size, the storage overhead is 0.26% of the total cache storage.

e Storage overhead increases slightly with the number of cores for a given cache. For a
16-way, 1 MB cache, storage overhead for 2 cores is 0.23% and increases slightly to
0.88% for 16 cores.

e Storage overhead decreases slightly with the associativity for a fixed number of cores
and fixed size cache. 1 MB cache shared among 2 cores has an overhead of 0.28%
when it is 2-way associative. The same cache with 16-way associativity has 0.23%
overhead.

The last property of rationing overhead is particularly attractive because last level shared
caches tend to be highly associative. A highly associative cache amortizes the storage over-
head of rationing.

4.3 Measure of Protection and Utilization

We identify a set of performance markers to quantify the level of resource protection and
utilization, the two goals defined in Section 2.1. We will use them later to evaluate rationing
and other cache-sharing techniques.

The following defines the solo-run performance. In this paper, performance is quantified
by instructions per cycle (IPC).

e Baseline: The baseline is the performance when running solo on a single-core with
the size of cache equal to the ration. It is the performance without sharing and the
desired lower bound with sharing.

o Maximum gain: Maximum gain is the performance of an application running solo
using 100% of the shared cache.

Next we define the performance in a co-run group.

14

e Unhealthy co-run: A co-run group is unhealthy if one or more of its members loses
performance by a threshold. In this sense, we consider slowdown to be “damage”. In
the evaluation, we set the damage threshold to be 1%. The damage of an unhealthy
co-run is the worst slowdown among its group members.

For co-run groups that are not unhealthy, we further divide them into two groups.

e Healthy co-run: A co-run group is healthy if it is not unhealthy and if one or more
members see a significant benefit from cache sharing. We set the benefit threshold
to be 1% over the baseline. The benefit of a healthy co-run is the highest gain by a
group member.

e Neutral co-run: If a co-run is neither healthy nor unhealthy, it is neutral, meaning
that running in a group does not have a significant impact one way or the other.

Finally we have the metrics for protection and utilization. Given a test suite, which is a set
of co-run groups, we evaluate a cache-sharing technique as follows:

e Level of protection: A low number of unhealthy co-runs and low average damage
inflicted in these co-runs indicates a high level of protection.

o Level of utilization: Indicated by the number of healthy co-runs and the average
benefit enjoyed in these co-runs.

4.4 Overall Performance and Analysis

We first summarize the overall protection and utilization results in Table 3 before analyzing
individual performance gains and slowdowns.

Symmetric co-run suites Figure 6 shows the performance for the four symmetrical co-
run suites. As shown (and numbered) in Table 2, the left-hand side applications are integer
applications, and the right-hand size are floating point applications.

Exactly same access patterns in identical programs tends to cause contention for the
same part of the cache. We first discuss these results and then elaborate with the changes
caused by adding per-program address offsets (to avoid conflicts).

Due to the strong interference, the capitalist policy sees 15 damaged pairs out of 26 for
2-core co-run system, and 13 damaged quartets out of 26 for 4-core co-run system, shown
individually in Figure 6 and summarized in Table 3. Similarly, PIPP also damages 16 pairs
out of 26 for 2-core system.

Rationing protects most pairs from damage. It has 1 damaged pairs out of 26, and 1
damaged quartets out of 26. The protection of communist is similar, which has 1 each in
2-core and 4-core system. The reason for damage in the communist cache is the number
of memory ports. In both the (solo) baseline and the partitioned co-run, the number of
memory ports is the same, which is 2. In a few cases, the contention causes slight damage.

15

1.05 T

SPEC 2000: Symmetric co-run
(2 cores, 1 MB L2 cache)

1.00

0.95

IPC Norm. to solo run w/ 512KB cache

0.90
123 communist 2° 123.. capitalist 26 123 Rationing 123 pipp-equal %
(a) SPEC 2000: 2-core symmetric co-run sharing 1MB L2 cache.

2 1.10 :
S SPEC 2000: Symmetric co-run 1.3 1.45
= (4 cores, 2 MB'L2 cache)
2 1.05 —
c
>
IS
§ 100} .
o
2
g 0.95 —
o
c
O
o 0.90

123..

Capitalist 26 123.. Rationing .. 26

(b) SPEC 2000: 4-core symmetric co-run sharing 2MB L2 cache.

Figure 6: Symmetric co-runs. Co-run applications are clustered by color. Capitalist sharing
and PIPP-equal see frequent damages in pair runs. Rationing performs as well as communist
in resource protection but has a slightly better utilization.

The protection by rationing is almost as absolute as by partitioning. The average damage
by rationing is similar, 1.01% vs 1.03%, and 1.14% vs 1.07%. In comparison, the average
damages by capitalist sharing for the two test suites are 3.34%, 4.52%, respectively.

For lack of space, Figure 6(b) shows only the individual results for the capitalist and
rationed caches. Here the performance is normalized to the communist cache performance.
Here we see 3, and 2 cases of benefits, including a large gain. In 4-program co-runs, sharing
and rationing improve the pair of apsi sharply by 1.35x and 1.45x. This is because its
working set is around 550 KB, close to a quarter of the cache size and extremely sensitive
to any slight increase in space (from sharing of unused ration).

Symmetric programs have the same access pattern. The V-way cache (Qureshi et al.,
2005) is a hardware solution to relieve the contention (in a solo run) by assigning data blocks
away from the contended area. Since our problem is specific, we use a simple solution. The
idea is to add a clone-specific offset to the set calculation. We use a prime number series
and call them offsets, one for each of the p cores. The new calculation is:

set = (set + offset[pid]) % num_sets

After the above modification, we see significant improvements in three application pairs
for rationed cache. apsi improves by 80%, perlbmk improves by 4.3% and ammp improves

16

1.744

141

SPEC 2000: with eon
(2 cores, 1 MB L2 cache)

1.2

1.0

IPC Norm. to solo run w/ 512KB cache

0.8

... 26 123..

123..

3 Communist Capitalist Rationing - 26 123.. PIPP-equal 26

Figure 7: Co-run with eon which has a small working set. The first bar in each pair
represents eon. To maximize utilization, capitalist sharing can lead to interference even for
its very small working set. Rationing utilizes the unused portion but protects the remaining
portion that is being used.

by 2.8%. However art and lucas slightly degrade (1%). The capitalist policy sees a similar
improvement for apsi, 3% for perlbmk and a slight slowdown (-0.7%) for ammp.

Co-run with eon eon’s working set is smaller than 128KB. Co-run programs can benefit
from unused cache if the cache is rationed or shared. Figure 7 shows the performance for
the eon pair-run test suite. On average, the capitalist policy speeds up the peer by 9.38%
but slows down eon by 5.65%. In comparison, rationing does not slow down eon yet it
achieves 14.46% speedup for other applications.

The damage to eon shows that sharing can lead to interference even for programs with
very small working sets. By removing the damage, rationing shows the benefit of utilizing
the unused portion of a ration while protecting the remaining portion that is being used.

Co-run with equake equake has significant streaming accesses and causes significant
interference in shared cache. The capitalist policy slows down the victim and speeds up the
aggressor. Rationing protects the victim yet gives more space to the aggressor when it does
not cause damage.

In this experiment, shown in Figure 8, we run two copies of equake with two copies
of another application. Rationing loses protection for a few quartets but shows better
utilization than partitioning. Compared to sharing, rationing improves fewer applications
but with far fewer damages.

Sharing with highly disruptive peer (mcf) When an application shares cache with
a highly disruptive peer such as mcf, the best policy is to confine the disruptive application
using hard protection. From Figure 9 it seems that rationing improves over capitalist but
still is not as good as hard partitioning. The inability to fully protect happens only for mcf
among the total of 46 programs tested.

17

1.3
2.32

SPEC 2000: with equake

11 (2 cores, 1 MB L2 cache)

1.0 -

0.9 —

IPC Norm. to solo run w/ 512KB cache

0.7

1 ... 26 123.. ... 26 123.. ... 26

23 .. Communist Capitalist 123 pipp-equal 28

(a) SPEC 2000 with equake: 2-core co-run with equake sharing 1MB L2 cache.

Rationing

1.3 T 213 T 1.5 N
12 SPEC 2000: with 2 equake and 2 apps

“ (4 cores, 2 MB L2 cache) N
11F B

©c o B
© © o
T T T

IPC norm. to communist policy

o
3
I

123.. ... 26 123..

.. 26

Capitalist Rationing

(b) SPEC 2000 with equake: 4-core co-run with equake sharing 2MB L2 cache.

Figure 8: (a). Pair-run with equake. The first bar in each pair is equake. (b). 2 identical
applications co-run with 2 equake programs. The first and third bars are equake, whereas
the second and forth bars represent two clones of a SPEC 2000 program.

Resetting interval sensitivity We tested a range of resetting intervals for the access
bit. If it is too frequent, sharing dominates protection. If it is reset at every instruction,
rationing becomes capitalist. If it is too infrequent, protection dominates sharing. If we
never reset, rationing becomes a type of partitioning.

Figure 10 shows reset intervals from 1 instruction to infinite (never reset). For each
case, the performance is measured by the number of healthy and unhealthy pairs (out of
26). The change in these numbers confirms the reasoning above. The general trend shows
that keeping the reset interval around 50K to 200K instructions is a good choice.

Cache Rationing in SPEC 2006 SPEC 2006 applications have significant larger foot-
prints and working set sizes compared to SPEC 2000 applications. We simulated around 20
applications (rest we could not compile for Alpha) and ran 20 symmetric co-run. For other
combinations the results and findings are very similar to SPEC 2000, so we only present
the highly contentious symmetric co-runs. Three policies for the SPEC 2006 applications
are compared in Figure 11.

18

13

1.52
1.2 b
SPEC 2000: with mcf
11L (2 cores, 1 MB L2 cache) i
10

09

0.8

0.7

IPC norm. to solo run w/ 512KB cache

123..

123..communist 26

Capitalist 26 123.. Rationing 26 123.. plpP-equal 26

Figure 9: Co-run with extremely high cache pressure (mcf). Rationing improves over
capitalist but still not as good as hard partitioning.

20 C T T T . T . T T T T T i
I At least one, >1% loss SPEC 2000: with equake
» [At least one, >1% gain, w/ no loss| | (2 cores, 1 MB L2 cache)
£ 15} : ' 1
o
c
=}
T 10 i
o
o
©
5 T
0

1 1K 10K 50K 100K 200K 1M 10M INF
Access bit reset interval (in # of insts)

Figure 10: Sensitivity of equake pair-run tests to the reset interval of the access bit.

Space-time measurement Space-time working set has been used to accurately measure
memory utilization (Denning and Slutz, 1978). Here we use it to measure the cache utiliza-
tion. A co-run peer that takes a larger share of cache has a greater space-time product. The
space-time product, when divided by the execution time, gives the average cache occupancy.

Figure 12 shows the relative space-time footprint of applications when they share the
cache with equake. Most of the applications that see a dramatic speedup tend to have a
much larger space-time. On the other hand, applications with smaller space-time footprint
suffer because the cache space is hogged by the aggressive application. Rationing does
not allow the aggressive applications to increase their space-time beyond a certain limit
and achieves space-time footprint very similar to the communist policy. In contrast in the
capitalist policy, the space-time is not equally distributed.

4.5 Additional Optimizations

Cache rationing supports other optimizations with little additional costs. We briefly discuss
some of them in this section.

19

()

S Ll . . "
5’ SPEC 2006: Symmetric co—run

< (2 cores, 1 MB L2 cache)

S

Y101 -
s

C

2

o

3 09}]
e

£

o

[

0 0.8

g 123... communist - 20 123. capitalist 20 123 Rationing 20

Figure 11: Symmetric co-run of SPEC 2006 applications.

100 T
SPEC 2000: with equake
(2 cores, 1 MB L2 cache)
75 | —
50 -

25

Relative space-time footprint (%)

123.. Communist ... 26 123.. Capitalist .. 26 123.. Rationing

Figure 12: Space-time footprints in various cache management policies.

Coarse-grain rationing So far we have considered rationing with a ration counter main-
tained for each core and each cache set. Per-set rationing enables fine-grained protection
but incurs a higher storage overhead. A simpler and more efficient alternative is to maintain
a single ration counter for each core. The counter consolidates all the usage of a particular
core. The protection is coarse grained. It can victimize a less aggressive application in the
sets in which its data occupies all cache ways. The overall storage overhead now is 0.019%
(1 access-bit per 64 bytes and per-core 14-bit ration counters for IMB L2 cache).

Figure 13 shows the performance of two rationing techniques for symmetric co-run. For
the combination of applications the results are similar and for brevity we are showing only
symmetric co-runs. As we can see the impact of relaxing the per-set precision is not that
bad and we are still able to achieve resource protection in nearly all cases.

Hardware-software Collaborative Caching We make a hypothetical study and as-
sume that software has complete knowledge about its locality, in particular, the forward
reuse distance distribution for every memory instruction. If a memory reference tends to
make accesses whose reuse distance is greater than the cache size, we mark it with the

20

11— — .

SPEC 2000: Symmetric co—-run
(2 cores, 1 MB L2 cache)

0.9

0.8

IPC norm. to solo run w/ 512KB cache

123 ...Per-set Ration Counter .- 26 12 3...Global Ration Counter ... 26

Figure 13: Comparison of fine-grain per-set rationing and coarse-grain global rationing.

T
I -quake
B jucas

Speedup norm. to communist policy

Capitalist Rationing only Collaborative Rationing

Figure 14: equake and lucas co-run. Collaborative rationing obtains the full protection
while the hardware-only rationing does not.

evict-me bit, so the rationed cache would clear the access bit for the accessed data and
cause them to be victimized.

In preliminary testing, we found that a program pair benefits significantly from the
software hint. Figure 14 compares the equake-lucas co-run performance under capitalist,
rationing, and collaborative rationing (with software hints). lucas has a large working set
of around 2MB. Much of it has zero reuse in the 1MB cache. This means that even if lucas
brings the data into the cache we should place it at the bottom of the LRU stack. When
lucas is paired with equake, because of the aggressive nature of lucas, equake suffers badly
under the capitalist policy. lucas speeds up by 16% whereas equake slows down by 23%.
Rationing reduces the slow down of equake to around 10%. Collaborative rationing further
improves by marking some lucas references with the software hint. Then the slowdown of
equake becomes negligible (0.4%) and lucas still improves by 5%.

21

5 Related Work

Cache Partitioning There have been a plethora of work to efficiently partition the cache
among multiple threads and programs (Qureshi and Patt, 2006; Moreto et al., 2008; Suo
et al., 2008; Lin and Balasubramonian, 2011; Suh et al., 2004; Chang and Sohi, 2007; Kim
et al., 2004; Stone et al., 1992; Sanchez and Kozyrakis, 2011; Kandemir et al., 2011). There
are two ways to partition the cache. The first is to divide the ways in each cache set (Bal-
asubramonian et al., 2000). The second is cache data placement through OS supported
page coloring (Lin et al., 2008). Page coloring requires software support, while set-based
partitioning may be controlled in either software or hardware. In both cases, fixed cache
partitioning cannot guarantee full utilization, since a program may not fully utilize its
partition.

The problem of fixed partitioning can be ameliorated through dynamic partitioning.
One solution is to label each task with a quota, and the OS partitions the cache space
based on the demand of all running programs (Rafique et al., 2006). If there is only one
program running, it will have the entire cache regardless of the actual quota it declares.
When a task comes or leaves, or its quota is changed, the OS will dynamically adjust the
cache partitions.

Even in dynamic partitioning, the actual demand of a task may not match the space it
is assigned to. A program can be given a large space (by declaring a large quota) but use
only a fraction. Incomplete utilization would still ensue.

Cache ration is a type of dynamic allocation like quota partitioning. Unlike fixed par-
titioning, the ration is “soft” in that the unused ration of one program could be given to
other programs. The support happens in hardware. It is more responsive and may change
at each cache access. In comparison, quota is managed by the OS and does not change
without OS intervention.

Cache Management Many techniques have been proposed to improve caching effective-
ness by choosing victims more carefully, for example by detecting streaming accesses. In
particular, many studies focus on shared caches under multi-programming workloads. For
instance, restricting memory-intensive threads (Liu and Yeung, 2009) or giving more space
to programs that can best use the additional space to reduce misses (Qureshi and Patt,
2006). Other factors such as memory-level parallelism can also be factored in so that the
heuristics can directly target performance gain (Moreto et al., 2008; Suo et al., 2008; Lin and
Balasubramonian, 2011). Such management can also take on a temporal dimension (Suh
et al., 2004; Chang and Sohi, 2007) or trying to improve fairness (Kim et al., 2004). Adap-
tive insertion policies have also been studied to share the cache more effectively among
multiple threads/applications (Qureshi et al., 2007; Jaleel et al., 2008). Few proposals try
to manage cache by set-pinning (Srikantaiah et al., 2008). In the contexts of CMP there
has been few proposals (Du et al., 2010; Sundararajan et al., 2012; Sharifi et al., 2012;
Duong et al., 2012).

There has been effective techniques for improving QoS in CMP environments with large
last level cache (Iyer, 2004; Guo et al., 2007; Iyer et al., 2007).

22

The aforementioned techniques are adaptive but all use heuristics. Because of the na-
ture of heuristics, e.g., predicting low-locality data, they may be wrong and hence counter
productive in some cases. The occasional loss is permitted as long as the overall through-
put or eventual fairness is improving. For throughput, performance loss in minority tasks
is permitted if it is compensated by a higher gain by others. For fairness, a task can lose
performance temporarily even frequently if the loss is canceled by sufficient gains in other
periods of execution. These solutions emphasize dynamic feedback and control.

Cache rationing has a different goal, which is to ensure resource protection in all cases
at all times. It does not try to discern between high- and low-locality data. Instead, its
hardware support is to protect against interference by all peer cache accesses. Rationing is
dynamic in the detection of an unused cache block. For this purpose, it adds an access bit
and revises the replacement logic based on the access bit. The goal is not overall throughput
but the so-called Pareto optimality where we cannot make one program better off without
making another program worse off.

Collaborative Caching Previous hints included placement, bypassing, or evict-me and
were designed for solo-use or capitalist shared cache (Beyls and D’Hollander, 2005; Wang
et al., 2002; Sinharoy et al., 2005). They may be used in partitioned cache, partitioned
either by cache or page coloring. However, the possibility has not been studied or evaluated.
Moreover, partitioning and collaboration use separate mechanisms. In rationed cache, we
show an integrated design — the access bit provides both the rationing mechanism and the
hint mechanism. We believe that this is the first design to combine the two mechanisms.
The integration expands the scope of software-hardware collaboration to include not just
ration utilization of individual programs but also better ration protection between programs,
as shown in the evaluation section by the equake-lucas pair run (Figure 14).

6 Summary

This paper has presented rationing for shared-cache management. The new cache hardware
protects the cache ration of each program and at the same time finds unused ration to share
among the co-run programs. A core is allowed to use another core’s ration only if/when
the ration is not being used. The paper shows that the new support can be added on
top of existing cache architecture with minimal additional hardware and scales well with
the cache size, number of cores and the cache associativity. When an application does not
use all its ration, rationing achieves good utilization similar to free-for-all shared cache.
When a program exerts strong interference, rationing provides good protection similar to
partitioned cache. In addition, rationing provides an integrated design for cache sharing
and software-hardware collaboration.

23

References

Balasubramonian, R., D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. 2000. Mem-
ory hierarchy reconfiguration for energy and performance in general-purpose processor
architectures. In Proceedings of the 33rd International Symposium on Microarchitecture.
Monterey, California.

Beyls, K. and E.H. D’Hollander. 2005. Generating cache hints for improved program effi-
ciency. Journal of Systems Architecture, 51(4):223-250.

Brock, Jacob, Xiaoming Gu, Bin Bao, and Chen Ding. 2013. Pacman: Program-assisted
cache management. In Proceedings of ISMM.

Chang, Jichuan and Gurindar S. Sohi. 2007. Cooperative cache partitioning for chip mul-
tiprocessors. In Proceedings of 1CS, pages 242-252.

Denning, Peter J. and Donald R. Slutz. 1978. Generalized working sets for segment reference
strings. Communications of ACM, 21(9):750-759.

Du, Jianjun, Yixing Zhang, Zhongfu Wu, and Xinwen Wang. 2010. Management policies
analysis for multi-core shared caches. ADMA’10, pages 514-521.

Duong, Nam, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and Alexander V.
Veidenbaum. 2012. Improving cache management policies using dynamic reuse distances.
In Proceedings of MICRO, pages 389—400.

Flautner, Krisztian, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor Mudge. 2002.
Drowsy caches: simple techniques for reducing leakage power. In Proceedings of ISCA,
pages 148-157.

Gu, Xiaoming, Tongxin Bai, Yaoqing Gao, Chengliang Zhang, Roch Archambault, and
Chen Ding. 2008. P-OPT: Program-directed optimal cache management. In Proceedings
of the LCPC Workshop, pages 217-231.

Guo, Fei, Hari Kannan, Li Zhao, Ramesh Illikkal, Ravi Iyer, Don Newell, Yan Solihin, and
Christos Kozyrakis. 2007. From chaos to qos: case studies in cmp resource management.
SIGARCH Comput. Archit. News, 35(1):21-30.

Hsu, Lisa R., Steven K. Reinhardt, Ravishankar R. Iyer, and Srihari Makineni. 2006. Com-
munist, utilitarian, and capitalist cache policies on CMPs: caches as a shared resource.
In PACT, pages 13-22.

Iyer, Ravi, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell, Yan Solihin,
Lisa Hsu, and Steve Reinhardt. 2007. Qos policies and architecture for cache/memory in
cmp platforms. In Proceedings of ACM SIGMETRICS Intl. Conf. on Measurement and
Modeling of Computer Systems, pages 25-36.

Iyer, R.R. 2004. Cqos: a framework for enabling qos in shared caches of cmp platforms. In
Proceedings of International Conference on Supercompupting, pages 257—266.

24

Jaleel, Aamer, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot, Simon Steely Jr.,
and Joel Emer. 2008. Adaptive insertion policies for managing shared caches. In Pro-
ceedings of PACT, pages 208-219.

Kandemir, Mahmut, Taylan Yemliha, and Emre Kultursay. 2011. A helper thread based
dynamic cache partitioning scheme for multithreaded applications. pages 954-959.

Kaxiras, Stefanos, Zhigang Hu, and Margaret Martonosi. 2001. Cache decay: Exploiting
generational behavior to reduce cache leakage power. In Proceedings of ISCA, pages
240-251.

Khan, Samira Manabi, Yingying Tian, and Daniel A. Jimenez. 2010. Sampling dead block
prediction for last-level caches. In Proceedings of MICRO, pages 175-186.

Kim, Seongbeom, Dhruba Chandra, and Yan Solihin. 2004. Fair cache sharing and parti-
tioning in a chip multiprocessor architecture. In Proceedings of PACT, pages 111-122.

Lin, Jiang, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sadayap-
pan. 2008. Gaining insights into multicore cache partitioning: Bridging the gap between
simulation and real systems. In Proceedings of HPCA, pages 367-378.

Lin, Xing and Rajeev Balasubramonian. 2011. Refining the utility metric for utility-based
cache partitioning. In Workshop on Duplicating, Deconstructing, and Debunking.

Liu, Wanli and Donald Yeung. 2009. Using aggressor thread information to improve shared
cache management for CMPs. In Proceedings of PACT, pages 372-383.

Moreto, Miquel, Francisco J. Cazorla, Alex Ramirez, and Mateo Valero. 2008. MLP-aware
dynamic cache partitioning. In Proceedings of HiPEAC, pages 337-352. Springer-Verlag,
Berlin, Heidelberg.

Qureshi, Moinuddin K., Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel S. Emer.
2007. Adaptive insertion policies for high performance caching. In Proceedings of ISCA,
pages 381-391.

Qureshi, Moinuddin K. and Yale N. Patt. 2006. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches. In Proceed-
ings of MICRO, pages 423-432.

Qureshi, Moinuddin K., David Thompson, and Yale N. Patt. 2005. The v-way cache:
Demand based associativity via global replacement. In Proceedings of ISCA, pages 544—
555.

Rafique, N., W. Lim, and M. Thottethodi. 2006. Architectural support for operating system-
driven cmp cache management. In Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques.

Rus, Silvius, Raksit Ashok, and David Xinliang Li. 2011. Automated locality optimization
based on the reuse distance of string operations. In Proceedings of CGO, pages 181-190.

25

Sanchez, Daniel and Christos Kozyrakis. 2011. Vantage: Scalable and efficient fine-grain
cache partitioning. In Proceedings of ISCA, pages 57—68.

Sharifi, Akbar, Shekhar Srikantaiah, Mahmut Kandemir, and Mary Jane Irwin. 2012. Cour-
teous cache sharing: Being nice to others in capacity management. In Proceedings of the
49th Annual Design Automation Conference, pages 678—687.

Sherwood, T., E. Perelman, G. Hamerly, and B. Calder. 2002. Automatically characterizing
large scale program behavior. In Proceedings of ASPLOS. San Jose, CA.

Sinharoy, B., R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. 2005. Powerb
system microarchitecture. IBM J. Res. Dev., 49:505-521.

Srikantaiah, Shekhar, Mahmut Kandemir, and Mary Jane Irwin. 2008. Adaptive set pinning;:
Managing shared caches in chip multiprocessors. In Proceedings of ASPLOS, pages 135—
144.

Stone, Harold S., John Turek, and Joel L. Wolf. 1992. Optimal partitioning of cache memory.
IEEE Transactions on Computers, 41(9):1054-1068.

Suh, G. E., L. Rudolph, and S. Devadas. 2004. Dynamic partitioning of shared cache
memory. J. Supercomput., 28(1):7-26.

Sundararajan, Karthik T., Timothy M. Jones, and Nigel P. Topham. 2012. Energy-efficient
cache partitioning for future cmps. In Proceedings of PACT, pages 465—466.

Suo, Guang, Xuejun Yang, Guanghui Liu, Junjie Wu, Kun Zeng, Baida Zhang, and Yisong
Lin. 2008. Ipc-based cache partitioning: An ipc-oriented dynamic shared cache partition-
ing mechanism. In Proceedings of ICHIT, pages 399-406.

Wang, Z., K. S. McKinley, A. L.Rosenberg, and C. C. Weems. 2002. Using the compiler to
improve cache replacement decisions. In Proceedings of PACT. Charlottesville, Virginia.

Xie, Yuejian and Gabriel H. Loh. 2009. Pipp: Promotion/insertion pseudo-partitioning of
multi-core shared caches. In Proceedings of ISCA, pages 174-183.

Yang, Xi, Stephen M. Blackburn, Daniel Frampton, Jennifer B. Sartor, and Kathryn S.
McKinley. 2011. Why nothing matters: the impact of zeroing. In Proceedings of OOPSLA,
pages 307-324.

26

