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Abstract. We present QUARC, a framework for the optimized compila-
tion of domain-specific extensions to C++. Driven by needs for program-
mer productivity and portable performance for lattice QCD, the frame-
work focuses on stencil-like computations on arrays with an arbitrary
number of dimensions. QUARC uses a template meta-programming front
end to define a high-level array language. Unlike approaches that gener-
ate scalarized loop nests in the front end, the instantiation of QUARC
templates retains high-level abstraction suitable for optimization at the
object (array) level. The back end compiler (CLANG/LLVM) is extended
to implement array transformations such as transposition, reshaping, and
partitioning for parallelism and for memory locality prior to scalariza-
tion. We present the design and implementation.
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1 Introduction

QUARC is an embedded C++14 domain-specific compilation framework for op-
timizing expressive high-level C++ template code. It addresses performance and
productivity challenges in lattice quantum chromodynamics (LQCD) in explo-
ration of new physics and new algorithms. QUARC provides a compact, high-
level notation with support for aggressive optimization and performance porta-
bility across architectures and machine implementations. QUARC provides no-
tation and mechanisms to solve partial differential equations over complex vector
fields discretized on structured lattices . While the design choices for QUARC are
driven by the needs of LQCD, we plan to generalize QUARC to other domains.

It is increasingly difficult to extract high levels of portable performance from
today’s high-end systems. A single node of a current-generation HPC system
has features such as deeply nested cache hierarchies, multi-core parallelism, and
short-vector SIMD units. Domain-specific and architecture-specific knowledge
and labor are required to design efficient concrete data layouts and code. The
resulting hand-optimized codes bear little resemblance to the original abstract
concepts and they are difficult to debug and to maintain.
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These issues spring from weaknesses in architecture-neutral abstract paral-
lel programming frameworks. Libraries such as Intel TBB [7] and Kokkos [2]
address some of the challenges. Increasingly, languages such as C/C++ are the
choice for HPC programming, but they lack support for abstract arrays as first-
class objects. Various libraries and domain specific-languages (DSLs) [20], [6]
extend the expressiveness of C++ using template meta-programming techniques
like expression templates (ETs). These suffer performance problems because the
concrete implementation of the array expressions, particularly scalarization of
loops, occurs at the time of template instantiation. This makes it difficult or
impossible for the compiler to retain enough context to infer the programmer’s
intent or to infer properties such as lack of aliasing or side effects. Subsequent
compiler-driven analysis and optimization are thwarted.

1.1 The LQCD Problem Domain

QCD is the theory of the strong force, one of the four fundamental forces in
nature. LQCD discretizes space and time on a four-dimensional lattice. Each
lattice site is represented by at least one 12-dimensional complex vector (spinors)
and eight (3×3) SU(3) matrices (gauge links). The lattice usually is represented
using a nest of array and structure types using as much as 2 kilobytes per site.
In production, the lattice sizes can be as large as 1283 × 256.

LQCD programs typically involve stencil computations. Often, a stencils is
applied once per iteration of an implicit solver. Every stencil computation in-
volves multiple short matrix-vector products, like the one shown in Listing 1.2,
that can touch up to 3K bytes per lattice site, leading to poor memory locality
and a low computational intensity. These characteristics contraindicat stencil op-
timization strategies like time-tiling LQCD thus requires strategies for optimiza-
tion that have proven hard to automate. Recent performance studies [9] have
highlighted this increasing software gap by comparing hand optimized LQCD
kernels to QDP++ [20], an existing C++ ETs-based LQCD DSL. Reported
numbers show an 8× performance difference on Intel’s Xeon Phi accelerators
and a 2.6× gap on regular Intel Xeon processors.

1.2 The QUARC Approach

QUARC optimizes kernels like that shown in Listing 1.1. It supports dynamic
arrays of arbitrary rank as first-class objects. The intermediate representation
preserves array semantics, allowing QUARC to use existing analysis and opti-
mization passes in LLVM, as well as to add domain-specific transformations.
The main innovations are:

– It provides a loop-less declarative syntax that makes arrays first-class ob-
jects, and provides a framework for defining array operators.

– To define stencils, QUARC uses a generalized shift (gshift) operation pro-
viding a multi-dimensional view of the array accesses to the compiler. En-
abling exact dependence and reuse-distances analyses, and avoiding issues
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//===----- Basic lattice QCD data types ----===//

typedef std::complex <double > c;

// 3-D complex vector

typedef std::array <c, 3> su3Vec;

// 3x3 complex matrix

typedef std::array <su3Vec , 3> su3Mat;

// Packed array of 8 SU3Matrices

typedef std::array <su3Mat , 8> wG;

// 12-D complex vector

typedef std::array <su3Vec , 4> wS;

// 4-D lattice of 12-D complex vectors

typedef quarc::mdarray <wS , 4, PERIODIC > wSLattice;

// 4-D lattice of packed 3x3 complex matrices

typedef quarc::mdarray <wG , 4, PERIODIC > wGLattice;

int main () {

wSLattice s_in (16 ,16 ,16 ,16), s_out (16 ,16 ,16 ,16);

wGLattice g(16 ,16 ,16 ,16);

// ... intializations

//===------ An abridged QCD stencil ----===//

// operator* : su3_mult_op mkernel (Listing 1.2)

// operator+ : complex vector addition

// gshift : described in Section 2.2

// adj() : complex adjunct

s_out = g.get <0>() * s_in.gshift <1,0,0,0>()

+ g.get <1>() * s_in.gshift <0,1,0,0>()

+ g.get <2>() * s_in.gshift <0,0,1,0>()

+ g.get <3>() * s_in.gshift <0,0,0,1>()

+ adj(g.get <4>()) * s_in.gshift <-1,0,0,0>()

+ adj(g.get <5>()) * s_in.gshift <0,-1,0,0>()

+ adj(g.get <6>()) * s_in.gshift <0,0,-1,0>()

+ adj(g.get <7>()) * s_in.gshift <0,0,0,-1>();

return 0;

}

Listing 1.1. A lattice QCD stencil written in QUARC syntax

such as delinearization [13]. The gshift operator cleanly separates stencil-
related accesses from those occurring inside the pointwise operations.

– QUARC defers loop generation ( late scalarization) of array expressions to
the compiler. Late scalarization facilitates optimizations such as common
subexpression elimination or expression fusion to array expressions. This
opens the possibility of generating domain- and architecture-specific loop
constructs after incorporating other optimizations.

– It provides uniform support for data transformations including tiling for
shared-memory parallelism, partitioning for distributed parallelism, improv-
ing memory locality, and aligning data for vectorization. QUARC includes
classical array transformations like reshape, transpose and catenate [14], [15].
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template <typename T1, typename T2>

auto su3_mult_op(T1 m,T2 v){

T2 r;

for(int i=0;i<3;i++) {

r[i][0]=0.0;r[i][1]=0.0;

for(int j=0;j<3;j++) {

r[i][0] += m[i][j][0] * v[j][0];

r[i][0] -= m[i][j][1] * v[j][1];

r[i][1] += m[i][j][0] * v[j][1];

r[i][1] += m[i][j][1] * v[j][0];

}

}

return r;

}

Listing 1.2. Mkernel defining a pointwise SU3 matrix-vector product

These enable the modification of array properties such as rank (number of
dimensions) and shape (extent of each dimension). Combining such trans-
formations with dependence- and reuse-distance analyses makes it possible
to derive data layout transformations such as structure of arrays (SoA) to
arrays of structure of arrays (ASoA) required for vectorizing LQCD kernels
on short-vector SIMD machines.

2 An Array Programming Approach to Parallelism

Compilers for data-parallel programming languages like HPF [16] have focused
on loop-centric transformations that alter the execution schedule of loop itera-
tions to remove true dependence, improve cache-locality, and introduce paral-
lelism. Without a data-centric view of the array expressions data-layout trans-
formations become very challenging.

As a domain-specific compilation framework, QUARC can exploit inherent
guarantees that allow us to take a radically different approach. QUARC state-
ments are guaranteed to be data-independent, with all arrays having the same
rank and shape (refer Sections 3.3, 3.4). This allows QUARC to be fully data-
centric and to make loop generation a final step in the optimization process.
In addition to traditional loop-tiling optimizations, QUARC can do data-layout
transformations to support short-vector SIMD units.

2.1 QUARC Array Transformations

Array operations have been defined formally [14], [15] for APL [8] and similar
array-programming frameworks. Such operations can alter the structural prop-
erties of arrays, and offer the necessary semantics for defining data-reordering
within arrays. Mainstream procedural languages, like C/C++, have offered very
limited support for such array operations.
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Notations for defining array properties. We use Λ to denote an n-
dimensional LQCD lattice defined using QUARC arrays. Upper-case Roman
characters used in a postfix notation denote array properties. Lower-case Greek
letters denote array operations. Operations are written using C-like function call
notation.

The dimensionality of the arrays is denoted by N and the extent of each
dimension by Bi. The shape vector, made up of the dimensional extents, is
represented as S and an index coefficient vector holding the cumulative sizes for
each dimension is referred to as Ic. We initialize S and Ic as

Sinitial = {Bi|N < i <= 0}, (1)

Ic initial = {
0∏

i=N−2
Bi,

0∏
i=N−3

Bi, . . . , 1}. (2)

A set of abstract array operations are used to model the data transformations.
Selecting an element from a list is done using the (ι) operator. Reshaping array
dimensions is done via the (ρ) operator. Reshaping is defined as

Snew = (ρ(ΛS,Rf )), (3)

where Rf denotes a vector containing the reshape factors for all of the di-
mensions. Reshaping introduces padding only if ιRf i, for a given dimension does
not divide the original Bi evenly. The new extents are

Bi new =
ι(ΛS, i)

ι(Rf , i)
=


Bi, if ι(Rf , i) == 1

{ι(Rf , i), d
ι(ΛS, i)

ι(Rf , i)
e} otherwise

,where 0 < ι(Rf , i) < Bi. (4)

Transpose (Φ) generalizes two-dimensional matrix transpose to transpose an
array about any diagonal, and catenation (κ) is used to merge or to linearize
two adjacent dimensions into one. For both operatoions the required dimensions
are specified as a two-tuple argument.

QUARC representation of array expressions. We introduce additional
terminology for explaining the QUARC program structure. A QUARC kernel
(Qk) is a single array statement inside a QUARC program. Conceptually, it is
an abstract countable loop over all values of the index set of the arrays referenced
in the statement. Mini-kernel (mkernel) is a pointwise array operator or second-
order array function. The iteration domain of a Qk is enoted as AIs. It the set of
all the execution instances that need to be completed when processing the Qk.
In QUARC, the AIs geometrically represents an n-orthotope or hyperrectangle,
with origin as the lower bound and upper bounds equal to the corresponding Bi.
Each point in AIs is termed an iteration point and is identified by an n-tuple
coordinate. Finally, the index space or the data domian is represented as Ds. It
is the set of all array elements accessed by the Qk. Although arrays are stored
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in a one-dimensional linearized address space, Ds is an n-dimensional space. We
only consider monolithic addressing (Section 3.2) of QUARC arrays, therefore
AIs and Ds are always equivalent for every Qk.

2.2 An Array-Transformation Mechanism

The present array-transformations in QUARC are driven by a reuse-distance
based algorithm to derive SIMD friendly data-layouts for LQCD stencils. Reuse-
distance is defined as the measure of non-unique data referenced between two
successive uses of a given array reference. Various well-known canonical cache-
blocking optimizations are based on reuse-distance, such as those provided by
Wolf and Lam [24]. Henretty et al. [5] introduced a novel data-layout transforma-
tion for short-vector SIMD also using reuse-distance analysis to identify SIMD
vector-stream alignment conflicts (SACs). Their algorithm uses the SAC metric
to define Φρ transforms on the innermost dimension of multi-dimensional arrays
to enhance vectorizability.

The QUARC array-transformation algorithm expands on Henretty et al.’s
algorithm. We incorporate κ along with Φρ and apply the transformation to
any dimension of the array. The technique derives the gather-scatter data-layout
transformation and the required data mappings. Extending the transformation
to outer dimensions can lead to an exhaustive search for the best layout. To
reduce the search space, we use a LQCD-specific transformation. Most LQCD
configurations use three equal-sized spatial dimensions and a time dimension
twice the extent of the others. Thus, QUARC usually can ensure that the longest
dimension is always innermost before starting layout transformations.

Step 1: Analyze outer accesses. The first step evaluates the accesses
at the outermost nesting level and identifies SACs. We then apply κΦρ to the
innermost dimension, and proceed outwards until SACs are removed. Algorithm
1 provides an outline of the QUARC array-transformation algorithm using the
kernel in Listing 1.1 as the input. The transformations are applied to both S
and Ic. The final state of S provides the new shape with an innermost vector
dimension, and the final state of the Ic gives the mapping to the old index space.

Step 2: Analyze mkernels. Along with analysis on the outer array accesses
the mkernels are also analyzed for vectorizibility. For example, the mkernel in
Listing 1.2 has no vectorizable loops, but has interleaved data accesses.

Step 3: Finalizing data-layout. In the final step the analyses from the
earlier steps are combined to derive the data-layout for the complete Qk. For
Listings 1.1 and 1.2 after creating a vector dimension from the outermost di-
mensions the inner nested dimensions are permuted out.

2.3 Parallel Code Generation

The output of the array-transformation phase of the QUARC analysis is a map-
ping from Ds to the new data space, D′s. These spaces can be of different dimen-
sionality, as the transforms can change the rank of the arrays. D′s gets broken
into multiple split index sets to handle different boundary regions, and each set
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Algorithm 1: QUARC array transformation outline

Input : Λσ, where ΛN = 4
Input : Dimensional Reuse Distance Vector
Input : Linearized Reuse Distance Vector
Input : Vector Length (Vl)
Output: Index set transformation map

1 permute dimensions to ensure B0 ≥ B1 ≥ B2 ≥ B3

2 if More than one dimension has a SAC then
3 abort ; // Λ too small to benefit from layout transforms

4 else
5 if B0 > Vl then
6 Rf =< 1, 1, 1, Vl >;
7 S1 = ρ(ΛS,Rf ) ; // < B3, B2, B1, Vl,

B0
Vl

>

8 S2 = Φ(S1, (1, 0)) ; // < B3, B2, B1,
B0
Vl
, Vl >

9 else

10 factorize Vl to (Vl
2

, 2);

11 Rf =< 1, 1, Vl
2
, 2 >;

12 S1 = ρ(ΛS,Rf ) ; // < B3, B2,
Vl
2 ,

B1
Vl
2

, 2,
B0
2 >

13 S2 = Φ(S1, (1, 0)) ; // < B3, B2,
B1
Vl
2

,
Vl
2 ,

B0
2 , 2 >

14 S3 = Φ(S2, (2, 1)) ; // < B3, B2,
B1
Vl
2

,
B0
2 , 2,

Vl
2 >

15 S4 = κ(S3, 1, 0)) ; // < B3, B2,
B1
Vl
2

,
B0
2 , Vl >

16 end

17 end
18 create a mapping function from Ds to D′

s

is materialized into actual loop nests. For the set operations and the loop genera-
tion, we use the integer set operations and a polyhedral code generator from the
Integer Set Library (isl) [22]. (See Section 5.3.) After transforming the arrays,
we annotate different dimensions with the parallelization strategy to be used.
Typically, the innermost dimension is designated as a vector dimension, and the
outermost is parallelized using threads or MPI. We propagate this metadata into
the isl -generated loops using existing LLVM infrastructure.

3 QUARC Language Design

QUARC uses C++14 template meta-programming to implement a DSL inter-
face that generates annotations recognized by the compiler. Figure 1 presents
an abridged BNF grammar for the QUARC DSL. By definition, QUARC pro-
grams are valid C++14 code compilable by any C++14 compiler. The language
semantics are close to the C++ ETs idiom [21]. The ETs idiom uses overloaded
operators and proxy expression objects to build array expressions without inter-
mediate containers. ETs have been used widely, in various scientific computing
DSLs and BLAS libraries DSLs [20], [6], [17] to embed array semantics in C++.
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〈quarc kernel〉 ::= 〈mdarray terminal〉 = {
| 〈bin expr〉 | 〈gshift expr〉 | 〈unary expr〉 |

〈terminal expr〉 } {...}
〈gshift expr〉 ::= 〈mdarray terminal〉 , 〈integers〉{...}
〈bin expr〉 ::= { 〈terminal expr〉 | 〈binary expr〉 | 〈shift expr〉 |

〈unary expr〉 } {2}, 〈bin op〉
〈unary expr〉 ::= 〈terminal expr〉 | 〈bin expr〉 |

| 〈shift expr〉 | 〈unary expr〉, 〈unary op〉
〈terminal expr〉 ::= 〈mdarray terminal〉 | 〈scalar terminal〉
〈bin op〉 ::= 〈is arithmetic〉{2}, 〈bin mkernel〉
〈unary op〉 ::= 〈is arithmetic〉, 〈unary mkernel〉
〈bin mkernel〉 ::= 〈is arithmetic〉 〈id〉

| ( 〈is arithmetic〉 〈id〉, 〈is arithmetic〉 〈id〉 )
〈unary mkernel〉 ::= 〈is arithmetic〉 〈id〉 ( 〈is arithmetic〉 〈id〉 )
〈mdarray terminal〉 ::= 〈mdarray〉
〈scalar terminal〉 ::= 〈is arithmetic〉
〈mdarray〉 ::= 〈is arithmetic, rank, boundary fn, shape〉

Fig. 1. QUARC array syntax pseudo-BNF

QUARC differs from conventional ETs. First, with the aforementioned system
of annotations, we embed extended type information in the syntax to extend
the type system abstractly and to make QUARC arrays first-class objects. The
annotations are transparent to the end user and need no manual intervention
while programming in the QUARC DSL. Second, the late-scalarization technique
pushes loop generation from the template-instantiation phase into the compiler
back end. These design choices enable the QUARC optimizer (QOPT) to derive
non-trivial low-level optimizations. In the next section, we describe the QUARC
DSL syntax and API semantics.

3.1 QUARC Arrays

QUARC’s mdarray data type is an abstract composite type that is represented
using a four-tuple : <type, rank, boundary-function, shape>. The type

specifies the C++ data type of the array elements. The current implementation
limits the types to those matching the C++14 type trait is arithmetic. The
rank property is the number of dimensions of the array. Boundary-function
is a user-definable index function to handle boundary conditions, and shape

defines the extent of each dimension. Of these properties, element-type, rank
and boundary-function are compile-time constants, specified as template argu-
ments. The shape property is specified using C++14’s variadic template feature.
A combination of static and run-time checks is used for full type inference.

3.2 Array Addressing Modes

QUARC provides two addressing modes for the mdarray instances. Monolithic
addressing operates on entire arrays and is used in array expressions. Elemental
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addressing is similar to C++ subscript operation. In this paper, we focus on
the monolithic addressing mode. Monolithic addressing of the eschews explicit
subscripts. Allowing only an n-tuple address offsets or “shifts”, where n is the
rank of the array. By default the shifts are all generated as “0s”. Non-zero shifts
are specified using the gshift operator.

There are two significant benefits of this approach. By design, the program-
mer uses whole-array subscripts, and the address linearization happens after
performing optimizations. Thus, we do not have to deal with the delineariza-
tion problem of recovering a multi-dimensional view of the array accesses [13].
All references except the boundary values use the same index function, differ-
ing only in the constant term. Such references are termed uniformly generated
references [24]. Moreover, every subscript implicitly describes an affine function,
with a single index variable (SIV). This practice makes it possible to compute
exact dependence distance vectors as well as reuse-distances. Together, these
features support optimizations that otherwise have been hard to implement in
C++ ETs-based array programs.

3.3 Array Operators

QUARC array operators are higher-order functions that take a callback function
(mkernel) in a template argument to do the actual elemental array operations.
The design cleanly differentiates the stencil operations, defined using gshifts,
from the mkernels. Allowing us to derive data-layouts after analyzing both op-
erations. The mkernels are required to be “pure” or “side-effect free”, such that
every QUARC expression induces a completely statically determinable control
flow. The language semantics allow mkernels to operate on different types. For
example, as shown in Listing 1.1 in QUARC it is possible to define arrays of
matrices and arrays of vectors, and then to create a multiplication operator to
operate on them, producing another array of vectors.

3.4 Array Statements

QUARC array-statement semantics are similar to those of other high-level lan-
guages supporting array objects, such as Fortran 90 and HPF. The right-hand
side (RHS) is evaluated completely without side effects and only then is the re-
sult written into the left-hand side (LHS). We disallow the use of the same array
on both sides. In the future, we intend to remove this restriction by using data-
dependence analysis to identify the intersecting hyperplane in the index space
between the left- and right-hand sides, and to introduce a temporary minimal-
size variable. All arrays in an expression are assumed to be non-aliasing. We
enforce the restriction that they have the same rank and shape.

4 The QOPT Architecture

QOPT, QUARC’s underlying optimization framework, is built on top of the
LLVM compiler infrastructure. It uses isl for set operations and loop genera-
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LLVM-IR
(no loops)

Qk-BET
isl repre-
sentation

LLVM-IR
(loops)

Pre-
pro-
cessing

Qk-BET transformations

Array transformations

Iteration
set oper-
ations

Loop
Gener-
ation

Fig. 2. The QOPT architecture

tion. The optimization workflow is a five-step process, as depicted in Figure 2.
First, a preprocessing step detects all Qks in a procedure. After, preprocess-
ing an abstract binary expression tree (Qk-BET) representation is generated for
each Qk. The possibility of early transformations is explored using the Qk-BET
representation, and involves potentially combining the trees of multiple Qks.

After early transformations on the Qk-BET, QOPT evaluates the applicabil-
ity of array transformations for memory locality and SIMD-friendly data-layouts.
The array transformations may lead to data layout changes. If so, an abstract
map from the old to the new layout is generated to build the required gather-
scatter code during the code-generation phase.

Following the array transformations, QOPT converts the Qk-BETs into mul-
tiple iteration sets using isl. The iteration sets separate the iterations that re-
quire boundary-value computations from iterations that process only inner (non-
boundary) elements of the arrays. The iteration sets and the corresponding loop-
bounds are determined by the shape of the arrays and by the shifts specified in
the array accesses. In the final step, QOPT scalarizes the iteration sets into
actual loops in the LLVM IR language.

5 Array Expressions to Optimized Code

5.1 Preprocessing

The preprocessor recognizes QUARC annotations and applies program transfor-
mations that reduce code complexity while maintaining the semantic structure
for further analysis and transformation passes. For example, it inlines all func-
tions generated by QUARC templates other than the mkernel calls. This step
significantly prunes the call graph, yet retains the separation of high-order stencil
operators and the pointwise mkernel operations.

The preprocessor also annotates the LLVM IR to enable the construction of
the Qk-BETs. Listing 1.3 shows an abridged state of the IR after preprocess-
ing a binary array expression that has a single gshift access. Each quarcc -

build * expr call represents the creation of the proxy expression objects. The
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/* Original code : a1 = a2.gshift <1,0>() + a2; */

%1 = call __quarcc_build_gshift_expr__ (%a2)

%2 = call __quarcc_build_bin_expr__ (%1, %a2)

call __quarcc_kernel_dispatch__ (%a1, %2)

Listing 1.3. State of IR after preprocessing

quarcc kernel dispatch is the call to the actual Qk function. In the code-
generation phase, the proxy objects are removed completely, while the Qk call
is transformed into inline loop nests.

5.2 Qk Expression Tree Generation and Early Optimizations

The Qk-BET is the intermediate representation that QOPT uses for all analysis
and transformations. Generation of the Qk-BET is also a two-step process. In the
first step, QOPT analyzes the quarcc kernel dispatch function to build an
abstract expression tree that does not contain the actual array references used
in a particular instance of the Qk. The quarcc kernel dispatch takes two
parameters: the LHS subexpression that is always a single mdarray reference,
and the RHS subexpression. To build the tree, QOPT recursively uses def-use
chain analysis of the RHS subexpression parameter. Specifically, it looks for two
specially annotated functions: mkernel and access. These two are the nodes of
the tree, with the accesses forming the leaves and the mkernels forming the
internal nodes. The access function, as described in Section 3.2, contains only the
shift values. These are then extracted using LLVM’s ScalarEvolution analysis.

After building the expression tree, QOPT materializes the actual Qk-BET
by building a second tree, a data structure that we call the “expression-builder-
tree”. The expression-builder-tree is constructed using successive def-use analy-
ses of the arguments passed to the quarcc build * expr calls, immediately
preceding the quarcc kernel dispatch. The leaves of the expression-builder-
tree store the actual array references to be used in the Qk. QOPT builds a
complete binary expression tree for every Qk by matching these two trees.

Qk-BET Merging QOPT looks for opportunities to fuse adjacent Qks to
enhance memory locality in the body of a potentially fused loop nest. It limits
fusion to adjacent Qks that share at least one array reference. Because all arrays
in a Qk have the same shape, the fused loop iteration space is the same as the
original abstract iteration space of each Qk. This strategy was used to simplify
code generation in the current implementation.

We currently restrict fusion to kernels that are completely data-independent.
QOPT does not try to fuse two kernels where the LHS of one kernel is accessed
using a non-zero shift on the RHS of the other kernel. The fusion of the Qks is
done using the Qk-BET representation, thus merging the expression trees into
a single tree. Scalarization then builds a single loop body for the fused tree.



12 QUARC: An Array Programming Approach to HPC

/* Original a1 = a2.gshift <1,0>() + a2; */

// No boundary operations needed

for (int c0 = 0; c0 < D0 - 1; c0 += 1)

for (int c1 = 0; c1 < D1; c1 += 1)

a1[c0][c1] = a2[c0+1][c1] + a2[c0][c1];

// Requires boundary function(PERIODIC) call

if (D0 >= 1)

for (int c1 = 0; c1 < D1; c1 += 1)

a1[D0][c1] = a2[PERIODIC(D0+1)][c1] + a2[c0][c1];

Listing 1.4. Code generated after late scalarization

5.3 Late Scalarization

Late scalarization is the phase in which QOPT concretizes the abstract Qk-
BET representation. To help explain the process, we formally define an out-of-
bound set (OBs) as the the subset of Ds for which a shifted array access in the
Qk leads to an out-of-bound access. Every dimension can have two OBs, each
corresponding to the lower and upper bounds of that dimension. Thus, there can
be a maximum of 2n OBss for a given Qk. Geometrically, the out-of-bound sets
represent faces or boundaries of the n-orthotope.

To compute the OBs for a given Qk, QOPT first calculates the maximal
positive and negative shifts for every dimension. The OBs for a given dimension,
i, are computed by subtracting the maximal negative shift from the lower bound,
then subtracting the positive shifts from the Bi. Thus, no OBs are generated if
the maximal shift in a given direction is 0.

Index-Set Splitting Once QOPT generates theOBs it proceeds to splitDs into
disjoint subsets to separate all of the iterations for which a boundary function
call is required. To build these split sets, QOPT successively finds all possible
combinations of adjacent facets of the n-orthotope. For every combination, the
OBs corresponding to each facet in the combination is intersected with Ds, and
all other OBs not in that particular combination are subtracted from Ds.

In the worst case, where each dimension has a non-zero shift in both direc-
tions, the process is equivalent to computing each lower dimensional facet or k -
orthotope of the original n-orthotope, where k = (0..n]. Since each k -orthotope
in turn has 2k facets, the total number of split sets generated is S, where

S =

n−1∑
k=0

nCk2n−k + 1. (5)

It can be shown that S equals 3n. This is because each facet must have its
center as a valid Ip, and the set of all the centers is the set of points each of
whose coordinates can have only three possible values {0, bBi/2c, Bi}. Thus, the
total number of centers, and by corollary the number of hyperrectanges, has
to be 3n. Hence, in the worst case the number of split sets is exponential in
the number of dimensions. Listing 1.4 shows the generated loop nests for the
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example introduced in Lisiting 1.3. We show the equivalent C++ code for what
QOPT generates in the LLVM IR language.

6 Related Work

C++ ETs optimizations. Various approaches to array semantics in C++ us-
ing the C++ ETs idiom have been explored. Iglberger et al. [6] and Härdtlein et
al. [4] presented techniques to improve the sequential performance of ETs. The
Boost.SIMD package [3] provides an abstract interface built using ETs that auto-
mate generation of SIMD intrinsics to enable vectorized code generation. These
designs do not have a compiler-based component. Winter et al. [23] designed a
just-in-time compilation framework for ETs to optimize GPU kernels. None of
these approaches addresses the optimization of multiple statement. There are no
provisions for data layout transformations or for cache-blocking.

DSL compilation strategies. Compiler-driven techniques with goals similar
to ours have also been attempted. The ROSE [26] compiler framework was orig-
inally designed as a preprocessor generator that could do automatic property
discovery and optimizations from C++ ETs. The telescoping languages [11] de-
sign was also an influential proposal addressing many of these issues.

Stencil compilers. Special-purpose stencil compilers have been the target of
many research efforts. The Rice dHPF compiler allowed compilation of stencil
codes for distributed memory systems [16]. More recently, Datta et al. [1], Kamil
et al. [10] and Tang et al. [19] offered solutions for shared memory multi-core
platforms. Henretty et al. [5] built a stencil compiler incorporating data-layout
transformations for short-vector SIMD machines.

Compiler driven data-layout optimizations. Automating data-layouts se-
lection for vectorization has been addressed by number of recent works. Majeti et
al. [12] offered an automated solution for SoA to AoS transformations targetting
heterogeneous platforms. Sung et al. [18] provided a transformation technique
for structured grid applications on GPUs. Xu and Gregg [25] designed a pragma
based semi-automatic technique that also transforms SoA to AoS.

7 Status and Work in Progress

Currently, QUARC can process simple examples end-to-end to generate single-
threaded X86 64 executables. We currently support multi-dimensional arrays,
but do not yet support arrays nested at each lattice site to support the SU(3)
algebra used in LQCD. Ongoing work is addressing the extension of the semantics
to nested arrays with the objective of generating optimized code for non-trivial
LQCD applications. This work will relax the current type restriction (Section
3.1) on the mdarrays.
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We are in the process of integrating the late scalarization module with
LLVM’s parallel code generation framework to support OpenMP outlining and
vector code generation. We are also extending the array transformation frame-
work to support data partitioning at the level of MPI nodes.

Acknowledgement. This work was supported in part by the DOE Office of
Science SciDAC program on grants DE-FG02-11ER26050/DE-SC0006925 and
DE-SC0008706.
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