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Abstract. We propose LightHouse, a GPU code-generator for a graph
language named Green-Marl for which a multicore CPU backend already
exists. This allows a user to seamlessly generate both the multicore as
well as the GPU backends from the same specification of a graph algo-
rithm. This restriction of not modifying the language poses several chal-
lenges as we work with an existing abstract syntax tree of the language,
which is not tailored to GPUs. LightHouse overcomes these challenges
with various optimizations such as reducing the number of atomics and
collapsing loops. We illustrate its effectiveness by generating efficient
CUDA codes for four graph analytic algorithms, and comparing perfor-
mance against their multicore OpenMP versions generated by Green-
Marl. In particular, our generated CUDA code performs comparable to
4 to 64-threaded OpenMP versions for different algorithms.

1 Introduction

Processing big graphs in a reasonable time requires huge computing power as well
as ability to perform operations in parallel. Unfortunately, graph algorithms are
notoriously difficult to optimize and parallelize. The main source of difficulty in
graph algorithms stems from a technicality called irregularity. Graph algorithms
are irregular because their memory access, control-flow and communication pat-
terns cannot be predicted at compile time (as they depend upon the nature of
the input graph, which is unavailable during compilation).

In the last decade, we made a substantial progress in understanding graphs
and their access patterns in various algorithms. It has been shown that graph
algorithms indeed have a good amount of parallelism [8]. However, the analysis
and the parallelization techniques developed for regular programs (such as dense
matrix algebra) need not be best suited for graph-based computation [15]. Graph
algorithms are more amenable to dynamic processing, rather than compile-time
static processing performed for regular programs.

Over the years, researchers have optimized parallel graph processing for
multi-cores [10,9,19], GPUs [3,13], CPU clusters [1,12], and for heterogeneous
combination of these [5]. However, several of these codes can only be used and
modified by experts alone. Domain experts from various fields such as astron-
omy, physics, chemistry and biological sciences, who are not experts in high-
performance computing, often cannot directly utilize the proposed techniques.



One of the interesting approaches to allow non-experts to program in a do-
main is using domain-specific languages (DSLs). DSLs have been quite successful
in various fields, such as matrix computations using MATLAB, string processing
using regular expressions, and statistical processing using R. In a similar spirit,
DSLs have been developed for graph algorithms with a hope for non-experts to
achieve reasonable performance without worrying about the intricacies of the
hardware platform or parallel execution. Unfortunately, graph DSLs are cur-
rently limited to one type of platform. For instance, a graph DSL Green-Marl [6]
has a backend to generate code for multi-core CPUs, but is unsuitable for GPUs.
Efficient code-generation for GPUs is challenging due to separate memories of
CPUs and discrete GPUs (variables need to be defined, copied and accessed ap-
propriately in the generated code), GPUs being more suitable for hierarchical
computation spanning individual thread, warps, thread-blocks and GPU threads
(the compiler should be able to identify scenarios where such a hierarchical code
can be generated), lack of logical locks (which are routine in CPU libraries), and
generating code for various data structures using arrays and offsets rather than
pointers. We highlight and address these challenges in this work. Following are
our main contributions.

– We create a GPU backend for a graph DSL. In this process, we exploit
various architectural features of the GPU, and develop techniques to map
the high-level language constructs to efficient backend processing. While we
use CUDA as the target language, the techniques developed are general
enough to be applicable to other GPU languages as well.

– To reduce the learning curve for a programmer, we use the language speci-
fication of an existing DSL called Green-Marl, instead of developing a new
language. Green-Marl already has an OpenMP backend for multi-core exe-
cution. This also provides us with an opportunity to compare the efficiency
of LightHouse-generated GPU code with a well-optimized CPU backend.

– We overcome several GPU-centric challenges (separate memories, hierarchi-
cal computation, SIMD execution, etc.) by optimizing the abstract syntax
tree, and illustrate the efficacy of our compiler by generating four graph algo-
rithms: computing bipartite matchings, finding single-source shortest paths,
computing page-rank, and calculating conductance of a graph. Our experi-
mental evaluation reveals that the performance of the generated CUDA code
considerably varies compared to that of the multi-core CPU version (compa-
rable to 4 to 64-threaded OMP version), but overall, provides a productive
way to generate code for GPUs.1

2 Green-Marl Language Specification

In this section we introduce the constructs of the Green-Marl language. Green-
Marl has constructs that can be used to describe many graph analytic algorithms.
The language does not allow graph mutation, that is, the graphs are static. It

1 LightHouse code is available at http://pace.cse.iitm.ac.in/tools.php.

http://pace.cse.iitm.ac.in/tools.php


supports basic types such as nodes and edges as well as operations on collections
(such as a set of nodes or a sequence).

Algorithms in Green-Marl have a single procedure with input graph as ar-
gument along with the properties defined on the nodes and the edges of the
graph. The procedure returns a value or a property. The basic data types such
as int, bool, float are supported as property types. Nodes and Edges are also
supported as basic collection types in Green-Marl. To access individual elements
in the collections, Green-Marl supports iterators. In particular, it provides node
and edge iterators to navigate the graph. The order in which the graph elements
are traversed is decided by the collection type (a set or a sequence).

1 Procedure t r i a n g l e c oun t i n g (G: Graph) : Long // Return value type
2 {
3 Long T;
4 Foreach ( v : G.Nodes)
5 Foreach (u : v .Nbrs) (u > v ) {
6 Foreach (w: v .Nbrs) (w > u) {
7 I f ( (w. HasEdgeTo(u) ) )
8 T += 1 ;
9 }

10 }
11 }
12 }
13 Return T;
14 }

One of the advantages of the Green-Marl syntax is that most of the code
is sequential, which is very intuitive for the programmer. Parallelism is implic-
itly specified using a foreach construct. Combined with iterators, the foreach

loop allows a compiler to assign tasks to different processing workers (iterations
mapped to threads). Green-Marl follow the fork-join style of parallel execution.

At line 4 of triangle counting procedure, a set of parallel executions is
created starting the execution of the loop-body. At line 5, each running parallel
execution creates more parallel executions and waits for their completion at
line 11. Each of the outer parallel executions continues after line 11 and exits at
line 12. The scope of the iterators used inside a foreach statement is only within
the statement body.

The parallel execution style of Green-Marl has data races on the location read
from and written to concurrently. Green-Marl provides reduction statements to
provide determinism on some operations.

1 reducedValue += expr ;

expr values computed by all the parallel executions are reduced to reducedValue
such that the result would be the same as computed sequentially. The reduction
operation can be +, *, min, max, bitwise AND and OR. reducedValue should
be read only after all the parallel executions have finished the execution of the
reduction statement. Node and Edge properties can also be reduced.

1 Foreach (n : G.Nodes)
2 Foreach ( t : n .Nbrs)
3 n .A += t .B;

The property B is reduced into property A. The frontend of the Green-Marl
provides syntax checking to identify any conflicts in the locations being read
in expr and written to in reducedValue. In addition to the normal reduction



statement, Green-Marl provides constructs to gather values in the context which
minimized or maximized the expression.

Output of the Green-Marl compiler gm comp is a C++ code annotated with
OpenMP pragmas. This code needs to be compiled with another code containing
the main entry point to generate the final application.

Green-Marl Frontend: The front end provides the syntax checks and parallel
semantics checks, and generates an Abstract Syntax Tree (AST). The higher
level description of the program helps in identifying possible problems in the
parallel program semantics like data-races. For instance, consider this code:

1 Node Prop<Int> A; // node property
2 Foreach (n : G.Nodes)
3 Foreach ( t : n .Nbrs)
4 n .A = t .A;

At line 4, the iterators t and n are used to update the node property A. The
property A is written through iterator n and read through iterator t. At this
point, there is no guarantee that n and t could not create a data conflict on A;
that is, n in one thread and t in another may refer to the same node leading
to a race. The frontend analysis finds that at line 3, iterator t is defined on
n’s neighbors. The analysis reduces iterator t to random access along n. At this
point there is a write by n and the random access read by reduction from t.
A data conflict exists between iterator t and n on the node property A. The
compiler issues errors on identifying such conflicts. After parsing and checking
of the input specification, the front end generates an AST representing various
constructs defined in the Green-Marl language.

Green-Marl Optimizations: A set of architecture independent transforma-
tions is applied on the AST: (i) Perform loop fusion which combines two foreach

loops that have the same type of iterator and no loop-carried dependence. (ii)
Combine assignments that are running on the same iterator type into a single
parallel loop. (iii) Hoist the temporary property definition out of the sequential
loop to save the repeated allocations and deallocations. (iv) Convert the reduc-
tion inside a sequential loop to a normal assignment. (v) Move a reduction to the
outermost parallel loop just after the definition / declaration of the target sym-
bol. If there is no such loop then the compiler converts the reduction to a normal
assignment. The output of this phase is a modified AST which is transformed
by the above mentioned optimizations.

Green-Marl Backend: The existing backend currently generates OpenMP
code for multi-core CPU processing. The backend traverses the AST and gener-
ates parallel for construct for the outermost foreach loop. For single value
reductions, atomic construct is utilized, while for multi-value assignments, a
lock-based code gets generated. Note that generating such as a lock-based code
for GPUs is not an option due to inefficient execution of locks in the pres-
ence of hundreds of thousands of threads. Further, reductions on GPUs can be
accomplished by a hierarchical computation across warps and threads-blocks.



1 Procedure Test (G: Graph ,
2 A: N P<Int>, root : Node) {
3
4 N P<Int> B;
5 Int rootValue ;
6 Foreach (n : G.Nodes) {
7 Foreach ( s : n .Nbrs) {
8 n .B = n .A + s .A;
9 }

10 }
11 rootValue = root .B;
12 }

Fig. 1: Green-Marl Example

Symbol Type Parent Allocate in

G Graph GPU
A NP< Int > GPU
B NP< Int > GPU
n Node::I G GPU
s Node::I n → G GPU
root Node CPU
rootValue Int CPU

Fig. 2: Symbol Table for the Program in
Figure 1

This demands careful management of cooperation across threads. Finally, the
generated C++ procedure may contain temporary as well as global variables.
Temporaries get converted to thread-local variables, while global variables can
be directly accessed by OpenMP threads. However, in CUDA, the globals from
CPU are not directly accessible on GPUs (unless unified memory is used for
storing data). This demands identifying the locations of variables’ access as well
as their definitions. If the two devices are different, the compiler needs to insert
code to explicitly transfer such variables across the two devices.

3 GPU Code Generation

This section presents the challenges that LightHouse faces for efficient GPU
code-generation of the Green-Marl language specification. Apart from trans-
lating the usual constructs, LightHouse primarily involves four subtasks, which
we discuss in the following subsections.

3.1 Identifying Parallel Regions

This phase selects the part of the code to be run on the GPU. The Foreach

construct specifies parallelism implicitly. LightHouse generates a kernel corre-
sponding to the parallel loop. Only the outermost Foreach is selected to be run
on the GPU in parallel. For instance, for the code shown in Figure 1, the outer
Foreach on line 6 gets converted to a kernel which contains the body of the
loop. Thus, loop iterations are executed by concurrently running threads. The
inner Foreach on line 7, on the other hand, gets compiled into a sequential for
loop executed by each thread within its kernel code.

3.2 Identifying Variable Location

Unlike in the CPU backend, LightHouse needs to identify the variable location
(whether on CPU or GPU). This is decided by a static pass which relies on a use-
def analysis to find out the variables read and written to at different instructions



in the program. LightHouse maintains a symbol table which is populated with
variables and their type information. All the variables inside the parallel regions
have to be accessible to the GPU. These variables are allocated in the GPU
(global) memory. Variables of primitive data types can be passed as parameters
to the kernel. Variables that need to be in the GPU memory are marked to have
a GPU Scope. In addition, a variable written in the GPU kernel but used in the
CPU code needs to be transferred to the CPU. For instance, Table 2 shows the
symbol table for the Green-Marl program in Figure 1. The variables accessed
inside the foreach loop at line 6 need to be accessed in the GPU. This includes
Graph G, Node properties A and B, and Node iterators n and s. The iterator n

traverses all the nodes of G, and s traverses the neighbors of those nodes.
Each outermost foreach loop defines a new scope for the GPU. All the vari-

ables accessed in the foreach loop have to be declared and defined inside the
GPU scope. Node and Edge properties are converted to arrays. These arrays are
allocated space in GPU’s global memory and are sent as kernel launch param-
eters. Temporary variables used inside the foreach loops are declared inside the
kernel and are added to the lexicographic scope of the kernel. Variables which
are defined and used outside the kernel are added to the CPU (Global) scope.

For the variables in the Global scope that are also accessed inside the foreach
loop, LightHouse creates a copy in the GPU Global memory. It modifies the
variable accesses inside the kernel to the corresponding copies in the GPU scope.

3.3 Generating Indices for Memory Accesses

Fig. 3: Graph in CSR Format

The input graph is stored in Com-
pressed Sparse Row Format (CSR)
which consists of two arrays (another
array for weights). The row array R
has the adjacency list of all the nodes
in the graph. The column array C has
the indices into the row array for the
starting index of the adjacency list for

each node. Figure 3 shows an example graph in the CSR format. For each itera-
tor the index pattern based on the CSR format needs to be generated for CUDA
threads. The parent information of the iterator in the symbol table is used to
generate the index values.

For instance, consider the code snippet: Foreach (n: G.Nodes) ... In this code,
n is an iterator on all the nodes in the graph. Running this foreach loop in
a fully parallel manner on GPU assigns one node to each CUDA thread. The
corresponding index pattern generated is as follows.

1 n = threadID ;
2 i f (n > numNodes )
3 re turn ;

Here n is the node id being processed by a thread, derived from the unique
id threadID of the thread, computed in CUDA as blockIdx.x * blockDim.x
+ threadIdx.x. Similarly for the pattern below,



1 Foreach (n : G.Nodes)
2 Foreach ( s : n .Nbrs)
3 . . .

the inner foreach loop is converted into a sequential loop. Iterator s goes over
all the neighbors of n. The generated code is:

1 n = threadID ;
2 i f (n > numNodes )
3 re turn ;
4 f o r ( i = C[ n ] ; i < C[ n+1] ; i++) {
5 s = R[ i ] ;
6 . . .

Similar patterns are defined for in / out neighbors and in / out edge iterators.

3.4 Generating Code for Reduction Statements

Green-Marl provides min, max, add, mult, or, and, inc reduction constructs.
LightHouse converts these reduction operations to atomic operations on GPU.

1 Int T = 0 ;
2 Node src , dst ;
3 Foreach ( s : G.Nodes)
4 Foreach ( t : s .Nbrs)
5 T<src , dst> max= s .A + t .A<s , t>;

The assignment at line 5 performs a max-reduction of the expression s.A +

t.A to variable T and assigns the corresponding node ids to src and dst.

1 i n t T = 0 ;
2 GPUMemCpy(GPU T, T, HostToDevice ) ;
3 KernelCal l<<<LaunchPara>>>(C, R, A) ;
4 GPUMemCpy( from , GPU from , DeviceToHost ) ;
5 GPUMemCpy( to , GPU to , DeviceToHost ) ;
6
7
8 Kerne lCal l (C, R, A) {
9 s = threadID ;

10 i f ( s > NumNodes)
11 return ;
12 f o r ( i = C[ n ] ; i < C[ n + 1 ] ; i++) {
13 t = R[ i ] ;
14 expr = s .A + t .A;
15 atomicMax(&GPU T, expr ) ;
16 i f ( loca lExpr < expr ) {
17 loca lExpr = expr ;
18 localFrom = s ;
19 loca lTo = t ;
20 }
21 }
22 So f twareBar r i e r ( ) ;
23 i f ( loca lExpr == GPU T)
24 chooseThread = threadID ;
25 So f twareBar r i e r ( ) ;
26 i f ( chooseThread == threadID ) {
27 GPU from = localFrom ;
28 GPU to = loca lTo ;
29 }
30 }

Fig. 4: Code for multiple atomic assignment

The language definition of
Green-Marl demands evalua-
tion of line 5 in an atomic
manner. That is, assignments
to T, src and dst must
be seen by other threads
as happening together. We
call its type as multiple
atomic assignment statement.
On CPUs, the Green-Marl
OpenMP backend uses logical
locks to implement multiple
atomic assignments. CUDA
neither has a support for such
a statement type, nor is it fea-
sible to use locks in the pres-
ence of hundreds of thousands
of concurrent threads. For ef-
ficiency, we implement such
reductions using software bar-
rier and atomics. Figure 4
shows the CUDA code gener-
ated for multiple atomic as-
signment statement. All the



threads store the expression to be reduced (line 14) and perform an atomic
minimum (or maximum) on the target global value (line 15). If the new expres-
sion value is lesser (respectively, larger) than the previously computed value,
then the values of the sub-expressions are stored into local variables (line 17 -
19). All the threads synchronize at the end of the foreach loop (line 22) and
compare their individual local copies of reduction expressions with the reduced
value. Threads having the same value are the potential threads which might
have written the reduced value. According to the language semantics, one of
these potential threads must assign the reduced value. All the potential threads
write their threadID to a unique location (line 24) and only one of the writes
gets reflected at the end. This thread is chosen to write its value of local sub-
expressions to the global value (lines 26–28). This ensures that only one of the
potential threads which had reduced the value to its minimum / maximum also
writes the corresponding sub-expressions to the global location.

Lines 22 and 25 use a call to SoftwareBarrier() which implements a global
barrier across all the threads on the GPU. A global barrier is a synchronization
primitive that guarantees that all threads from all the thread-blocks belonging to
a kernel reach a specific point in the code before any thread may progress beyond
that point. CUDA supports a barrier at the thread-block level (syncthreads).
However, a global barrier (across thread blocks) needs to be emulated in software.
We implement it without using atomics [13,21].

4 Program Optimizations

In this section we present three important GPU-specific optimizations that are
implemented in LightHouse to improve the performance of the generated CUDA
code. The optimizations work with the control-flow graph and the def-use chains.

4.1 Eliminating Atomics

Reduction of a boolean value can be implemented without using atomics by
initializing a value to the reduction variable and set the variable based on the
condition. As only one thread is enough to change the value of the reduction
variable, subsequent reduction does not change the semantics of the program.

atomicOr(&A, val);
becomes
// initialized outside kernel
A = false;
....
if (val) A = true;

atomicAnd(&A, val);
becomes
// initialized outside kernel
A = true;
....
if (!val) A = false;

In the above translated code, there is a data race on A, but the threads par-
ticipating in the race set A to the same value. So, the race is benign. In case of
multiple assignment statement, a sub-expression of type boolean can be assigned
similar to the above code without using the software barriers. This gets rid of
the limitation of the software barrier which demands all threads participating in
the barrier to be resident (which reduces concurrency).



4.2 Loop Collapsing

Typical implementations of graph algorithms are vertex-centric, that is, a vertex
is assigned to a thread and the thread operates on all its neighbors. When the
input graph’s degree-distribution is rather uniform, as in road networks, a vertex-
centric algorithm assigns almost equal amount of work per thread. However, for
a graph with skewed degree-distribution, as in social networks, a vertex-centric
algorithm suffers from high load-imbalance [22,2]. The problem is exacerbated
on GPUs as warp-threads execute in SIMD fashion. One way to remove the
load imbalance is to make the algorithm edge-centric, that is, transform the
traversal on neighbors of all the nodes to traversal on all the edges. One thread
is assigned to work on one edge which creates evenly balanced workload and
hence improved parallelism. In CSR representation of the graph, each thread
accesses contiguous memory locations on the edge list. CUDA combines such
contiguous memory accesses from a warp into a single global memory access
(called as memory coalescing). This increases the memory bandwidth of the
process and results in better performance.

Foreach(e:G.Edges) {
Foreach(s:G.Nodes) becomes s = e.FromNode();

Foreach(t:s.Nbrs) t = e.ToNode();
... ...

From Green-Marl language
perspective, such a transfor-
mation can be depicted as
shown on the left. In this

code, FromNode and ToNode are API that return end-points of an edge. Such
an approach needs an array of edges rather than the CSR format. However, con-
verting a vertex-centric algorithm to an edge-centric version may change syn-
chronization requirements. For instance, in a pull-based implementation a thread
operating on a vertex reads-in attributes from its in-neighbors and updates the
current vertex’s attribute. In such an approach, each vertex is being written to by
only one thread, and hence threads need not synchronize their writes. However,
when such a pull-based implementation is combined with edge-centric version,
single-writer guarantee cannot be enforced, necessitating synchronization. Typ-
ically, for simple attributes (such as distance of a vertex or pagerank value), an
atomic instruction suffices for correct execution (e.g., atomicMin for the shortest
paths computation).

4.3 Full Device Occupancy

We also studied the effect of occupancy in the context of graph algorithms, by
generating codes with full-occupancy and otherwise. We observed in our experi-
ments that although occupancy is useful, its effect is limited in the case of graph
algorithms and gets overshadowed by other effects such as launch configuration,
memory coalescing, and thread-divergence.

4.4 Limitations of LightHouse

Although our code generator is automated, it can be improved in multiple as-
pects, such as generating code for heterogeneous systems, supporting graph mu-



Graph #Nodes #Edges OpenMP 1-thread(in msec)
(millions) (millions) MATCH SSSP COND PAGERANK PAGERANK

GATHER PROPAGATE

Epinions 0.076 0.509 11 11 1 48 139
LiveJournal 4.848 68.994 1432 1347 50 11818 21119

Pokec 1.633 30.623 273 1073 16 6267 8563
Orkut 3.073 117.185 687 3779 46 10724 20945

USA 23.947 57.709 1705 >35min 125 14312 26886

Table 1: Benchmark graphs and baseline performance

tation (would need changes in the language), reducing synchronization among
threads, and optimizations using GPU shared memory.

5 Experimental Evaluation

We added a CUDA backend to Green-Marl to read the AST and generate GPU
code as detailed in the previous sections. Thus, for the same graph algorithm
specification, we are now able to generate both OpenMP as well as CUDA codes.
This allows us to faithfully compare the performances of the generated programs.

5.1 Experimental Setup

We generated CUDA and OpenMP codes for four graph analytic algorithms:
bipartite matching (MATCH), single-source shortest paths (SSSP), page-rank
(PAGERANK), and conductance (COND) of a graph. MATCH is a matching
algorithm where a random edge is selected as matching between two nodes. The
algorithm returns one of the maximal matching and not the maximum matching.
Because of the randomness the algorithm can be run in parallel. SSSP computes
the shortest paths in a directed graph from a designated source vertex, and uses
a variant of Bellman-Ford algorithm. PAGERANK calculates the importance of
each node in the graph using the following formula.

PageRank(n) =
(1 − d)

NumNodes
+ d ∗

∑
tεIncomingNodes(n)

PageRank(t)

OutDegree(t)
(1)

COND identifies how well-knit a graph is based on the degree distribution.
The four algorithms test various aspects of our code-generator: MATCH in-
volves testing data parallelism, SSSP tests generation of multi-atomic assign-
ment, PAGERANK tests floating-point operations, while COND tests reductions
and conditional evaluation of expressions.

Table 1 shows the benchmark graphs used in our evaluation along with their
sizes in terms of the number of nodes and number of edges. The sizes range from



0.5 million edges (for Epinions) to 117 million edges (for orkut). All the graphs
are obtained from SNAP [11]. The last columns of the table also show execution
time of single-threaded OpenMP version for the three graph algorithms. We use
it as a baseline for comparison of multi-threaded OpenMP and CUDA versions.
We also compare our generated SSSP code against hand-optimized CUDA ver-
sions from LonestarGPU [3] and Totem [5]. Each algorithm implementation is
run in CUDA and OpenMP frameworks with 1, 4, 8, 16 and 64 threads. The
benchmarks for OpenMP are run on an Intel XeonE5-2650 v2 machine with 32
cores clocked at 2.6 GHz with 100 GB RAM, 32KB of L1 data cache, 256KB
of L2 cache and 20MB of L3 cache. The machine runs CentOS 6.5 and 2.6.32-
431 kernel, with GCC version 4.4.7 and OpenMP version 4.0. The CUDA code
is run on Tesla K40C device which has 2880 cores clocked at 745 MHz with
12GB of global memory. The GPU device is connected to the same CPU de-
vice. CUDA OPT is the baseline version with Eliminating Atomics and Loop

Collapsing enabled. The execution time is taken after all the data necessary
for computation is copied to respective memories till the procedure ends.

5.2 Experimental Results

Figure 5a shows the speedup obtained by the OpenMP and CUDA versions
of MATCH compared to the single-threaded OpenMP version. We observe
that CUDA OPT considerably outperforms the OMP version’s maximum per-
formance. The algorithm has a nested Foreach loop which goes over neighbors of
all nodes. CUDA OPT converts this nested Foreach loop into a single Foreach-
on-edge loop. Further, it converts the reduction of a boolean variable inside the
nested Foreach loop to a normal assignment. Its high speedup is due to less
conflicts across threads and load-balanced task distribution.

Figure 5b shows the results for COND. We observe that the OpenMP version
performs considerably better and scales well, achieving a speedup of 9.3× for
orkut. COND has atomics-based reductions to a variable from all the nodes
of the graph which turn out to be slightly expensive in the presence of massive
multithreading such as GPUs. Nonetheless, CUDA OPT performs reasonably
good and is comparable to 4-threaded OpenMP version.

PAGERANK is run with damping factor d = 0.85 and error tolerance of
0.0001 for maximum 40 iterations. It can be implemented both as a gathering or
a propagating approach. In the former, every node gathers the pagerank of its in-
coming nodes to calculate its own pagerank. An advantage of gathering is that it
does not need atomic writes, as every node is owned by a single thread. Figure 5c
shows Pagerank results, which indicate that OpenMP scales well with number
of threads. In case of CUDA, gather-based code improves synchronization, but
also increases load-imbalance, as each thread needs to sequentially process all
the incoming neighbors. On the other hand, in propagation-based code, every
node propagates its pagerank to its outgoing nodes. The propagation demands
atomics, but due to CUDA OPT’s node-based to edge-based optimization, the
load-balance improves, leading to better performance, as shown in Figure 5d.
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(d) PAGERANK-PROPAGATE
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Fig. 5: Performance of MATCH, SSSP, PAGERANK and COND on input graphs



Figure 5e shows the speedup obtained by the OpenMP and the CUDA ver-
sions of SSSP compared to the single-threaded OpenMP version. We observe
that, in contrast to MATCH, the OpenMP version performs better in case of
SSSP up to 16 threads (8× speedup). In comparison, our CUDA version per-
forms consistently better for each graph. SSSP has a nested Foreach loop to
propagate the distance value to all its neighbors. Along with minimizing the
distance, each iteration marks the neighbors for propagation in the next itera-
tion. Due to the irregular nature of the graphs and the algorithm, the number
of conflicts on a memory location and load-imbalance increases with the num-
ber of threads. CUDA OPT converts the traversal of neighbors of all nodes
into edge-traversal which enables more parallelism. Totem’s peak performance is
achieved when all the graph nodes are processed on the GPU. It is hand-tuned
to minimize the synchronization usage. In addition, automated code-generation
of LightHouse has its bookkeeping overheads, which can be overcome by adding
more architecture-independent optimizations to LightHouse.

Overall, we illustrate that LightHouse was able to generate well-performing
CUDA versions from the same high-level description of the graph algorithms.

6 Related Work

Green-Marl [6] is a DSL for graph analytic algorithms running on shared memory
systems. We explain Green-Marl’s language features and code-generation briefly
in Section 2. We use Green-Marl’s specification as our language syntax. This
allows us to retain existing productivity of the programmer. Further, in our
experience, Green-Marl’s syntax is intuitive (close to algorithmic description),
well-defined and easy to learn; thus making it ideal for new domain experts.

Elixir [16] is a system for synthesizing irregular algorithms on multi-core
platforms. Programmers specify the parallel computation as a set of operators,
which is executed by multiple threads. Efficient execution of operators necessi-
tates a good scheduling, which is often application dependent. Therefore, Elixir
also provides a flexibility of specifying schedules, which could be customized as
per the needs of an application. This allows generation of multiple implementa-
tions of the same algorithm (operator). Elixir also performs auto-inferencing to
identify the next set of graph elements (nodes or edges) to be processed from
the specification. An extension of Elixir [17] uses planning to generate schedules
as well as synchronization automatically. Compared to Elixir, Green-Marl’s syn-
tax does not involve schedule specification and LightHouse targets GPUs which
pose different challenges as discussed throughout the paper.

Halide [18] is a DSL for image processing. It provides a set of filters and a
pipelined execution, where the output of one filter acts as input to the other.
Users can write their own filters and alter the schedule to achieve the best results.
Halide programs are restricted to stencils, in which the memory access pattern
is regular (known at compile-time). Similar to our goal, Halide generates code
for multiple platforms such as GPUs and heterogeneous CPU+GPU combina-
tion. LightHouse differs from the Halide compiler because the access patterns



of graph algorithms are irregular, requiring dynamic parallelization techniques.
This means that the related optimizations in case of graph algorithms need to
be deferred until run-time.

While there are only a few DSLs for irregular codes, there are several library-
based platforms and parallelization frameworks proposed for processing graph
algorithms. Galois [10] is a C++ framework for writing multi-core graph algo-
rithms. A salient feature of Galois is that it supports morph algorithms also,
wherein the graph structure changes. Ligra [19] is a framework for paralleliz-
ing input-dependent programs, such as graph algorithms. LonestarGPU [3] and
Totem [5] are frameworks for GPU and heterogeneous implementations of graph
algorithms respectively. Medusa [24] is a C/C++ library-based approach to par-
allelize graph algorithms on multiple GPUs. GPU code generators for sparse
matrix-vector multiplication [20] are also relevant.

Graph algorithms [10,15] have been shown to bear enough parallelism espe-
cially in the context of distributed [2,4,14] and heterogeneous systems [5]. G-
Streamline is a software-based runtime approach to eliminate control-flow and
memory-access irregularities from GPU programs [23]. DyManD is an automatic
runtime system for managing recursive data structures (like trees) on GPUs [7].
Our work does not replace these existing approaches, but instead, complements
them by allowing the optimizations to be generated automatically.

7 Conclusion

We proposed techniques for efficient GPU code generation of graph algorithms
from their high-level description. We reused an existing graph analytics DSL,
Green-Marl, as the front-end and added a CUDA backend called LightHouse. It
had to overcome several challenges specific to GPUs due to separate memories,
thread-hierarchy and SIMD processing on GPUs. We discussed unique issues
encountered in GPU code generation compared to those in CPU code generation.
We illustrated the effectiveness of our approach by generating CUDA code for
four graph algorithms and comparing their performance against that of their
OpenMP versions generated by Green-Marl. The performance benefits reveal
that DSLs provide an effective way of developing parallel algorithms.
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