Adaptive Software Caching for Efficient
NVRAM Data Persistence

Pengcheng Li! and Dhruva R. Chakrabarti®

! University of Rochester & Hewlett Packard Labs
2 Hewlett Packard Labs

Abstract. Persistent memory is getting increasingly popular. However,
the existence of transient CPU caches brings a serious performance is-
sue for utilization of persistence. In particular, cache lines have to be
flushed frequently to guarantee consistent, persistent program states. In
this paper, we optimize data persistence by proposing a software cache.
The software cache first buffers lines that need to be flushed, and then
flushes them out at an appropriate later time. The software cache sup-
ports adaptive selection of the best cache size at run-time.

1 Introduction

Persistent memory or non-volatile memory (NVRAM) technologies, such as
memristors and phase change memory (PCM), are increasingly popular. Per-
sistent memory is byte-addressable and directly accessible (i.e., without DRAM
buffers) with CPU loads and stores. Data in NVRAM will not be erased if the
creator process does not clean it. It enables data reuse across system restarts and
of course process restarts. This in-memory durability model can greatly change
the programming paradigm for many applications [1].

A problem of NVRAM data persistence is the transient memories in current
computer architectures, such as CPU caches. At any point of program execu-
tion, some of the updates to persistent memory may only reside in CPU caches
and have not yet propagated to NVRAM. If there is a failure at this point of
execution, the program state in NVRAM may not be consistent thus preventing
full recovery.

Consistent persistent states are guaranteed by forcing all data out of caches to
persistent memory in the event of any tolerated failure. In Atlas [1] programming
model, a failure-atomic section (FASE) foresees a failure. A FASE is a code
segment that changes program invariants. Either all or none of the updates in
a FASE are visible in NVRAM. Therefore, persistent data is guaranteed to be
consistent at the end of a FASE.

In this paper, we propose a software cache to reduce the number of cache
line flushes. Its purpose is to cache the data writes and combine multiple writes
into a single cache flush at the time of eviction. We flush all cache lines in the
software cache at the end of a FASE. In addition, we develop a reuse-based
locality theory that allows us to optimize it by choosing the best cache size.

For the purpose of disambiguity, if without explicit clarification of hardware
cache, “cache” in this paper refers to the software cache.

2 Pengcheng Li, Dhruva R. Chakrabarti

2 Software Cache

0x200 |insert 0x600a

s.w. cache ° o, l‘write(OxéOO)
/(\/0
5%, | 0x400
0x800 0x600 o flush 0x400 durable

0x800 data

s.w. cache HARDWARE CACHE
p— NVRAM

Fig. 1: Tllustration of the software cache. The software cache has two cache lines
and is full. Thread 1 writes a new cache line 0x600. 0x400 is evicted from the
software cache and flushed out of the hardware cache.

The software cache is a per-thread in-memory local store. It is in control of
determining when to flush a cache line to persistent memory. Figure 1 shows
its basic execution model. When writing a value to persistent memory, CPU,
instead of immediately flushing the corresponding cache line, forwards the cache
line address to the software cache to buffer the write. In a parallel program, per-
thread caching provides isolation and good scalability. The isolation is important.
Each thread independently manipulates its own cache, without interference from
others. Scalability is good because the implementation does not require locking.

Each thread combines cache line flushes if the coming cache line is already in
its local store. Otherwise, it would replace a stale entry, when its local store is
full, with the new cache line. A thread issues a command to the hardware cache
to force data of the stale cache line out to NVRAM. Figure 1 shows that the
local store of thread 1 is full, and after inserting the new cache line 0x600, thread
1 instructs the hardware cache to force 0x400 out to the NVRAM storage.

The software cache is placed in the faster DRAM, rather than NVRAM.
We use Least-Recently-Used (LRU) replacement policy. Traditionally, hardware
cache has been optimized for fast reads. For persistent memory, the software
cache only stores modified data.

3 Adaptive Write Caching

It would be beneficial if cache capacity is workload-aware. Overly large cache
size incurs a long CPU stall at the end of a FASE, when CPU resources are
wasted. Too small cache size would cause too many cache line flushes.

We use the miss ratio curve (MRC). MRC shows cache miss ratios over
different cache sizes. We choose the size online adaptively, which has relatively
small cache miss ratio based on MRC and is not very large to stall CPU too
long, as the software cache size. The number of misses is the number of cache
line flushes in the software cache.

In this section, we present a reuse-based locality theory to derive MRC. We
consider an execution as a sequence of data accesses (writes). A logical time is

Adaptive Software Caching for Efficient NVRAM Data Persistence 3

assigned to each data access. A time window is designated by two data accesses
and includes all intervening accesses. The length of a window is the number of
accesses it contains.

The reuse locality is measured by the number of data reuses in a time window.
Counting the number of intra-window reuses is the same as counting number of
reuse intervals that fall within the window. We define the following;:

Definition 1 Reuse interval and Intra-window reuse The time interval
between a data access and its next access to the same datum is defined as a reuse
interval. If a reuse interval is enclosed within a window, we say that the window
has an intra-window reuse.

Different windows may contain different numbers of reuses. We define the
timescale reuse reuse(k) as the average number of intra-window reuses of all
windows of length k. We call the length k the timescale parameter. Given any
trace, reuse(k) is uniquely defined.

From Reuse to Cache Hit Ratio At any moment ¢ in fully associative LRU
cache, the content consists of data referenced by previous k accesses for some
k. reuse(k) is the average number of reuses in each k consecutive data accesses.
It follows that on average, there are k-reuse(k) distinct data in these accesses.
The next access is a hit if it is a reuse; otherwise, it is a miss. The difference,
reuse’ (k)=reuse(k+1) - reuse(k), shows the average portion of times that the
next access is a reuse. Hence, the hit ratio of cache of size (k - reuse(k)) is the
derivative of reuse(k) at k, as shown in Eq. 1.

hr(c) = reuse' (k) = reuse(k+1) — reuse(k) (1)

where ¢ = k — reuse(k). To illustrate, consider an example pattern “abab...” that
is is infinitely repeating. The following table shows discrete values of reuse(k)
and hit ratio, where ¢ denotes cache size, i.e., k-reuse(k).

Reuse vs. Footprint Locality Footprint fp(k) is the average number of distinct
data accesses in all windows of length k [4]. Hence, it is obvious that fp(k)
plus reuse(k) is k. Xiang et al. showed that the miss ratio is the derivative of
footprint [4]. Inspired by their work, we can prove that the derivative of reuse is
the hit ratio theoretically. The result is mathematically derivable from footprint,
so it is not new. However, the formulation is new and has not been considered
in past work. The new derivation gives a new linear-time algorithm to calculate
cache performance, which we refer to [3]. In addition, it is the first mathematical
connection between the theory of locality [4] (data caching) and the theory of
liveness [2,3] (memory allocation).

4 Pengcheng Li, Dhruva R. Chakrabarti

4 Preliminary Results

We implemented the software cache in Atlas [1], and used an emulator to use
DRAM to simulate NVRAM. The emulator system is a machine shipped with
60 Intel Xeon E7-4890 cores at 2.8GHz, running Linux kernel 3.10. We tested
SPLASH2 benchmark suite for single-threaded runs. We chose the best cache
size online once we have MRC. We compared our approach, SC, with three
alternatives:

— AT: the table approach used in the state-of-the-art Atlas [1].

— ER: the eager approach, which flushes cache lines instantly every time a
persistent store happens.

— LA: the lazy approach, which flushes all cache lines at the end of a FASE.

[Benchmarks | ER | LA | AT | SC [AT/SC[SC/LA|
barnes 1.00000{0.00295|0.08206|0.00391{20.987 x | 1.325%
fmm 1.00000{0.00246|0.01683|0.00328| 5.131x | 1.333x
ocean 1.00000{0.09203]0.40290(0.16467| 2.447x | 1.789x
raytrace 1.00000{0.07140{0.13952|0.07918| 1.762x | 1.108 x
volrend 1.00000{0.00219{0.03189|0.00219(14.561 x 1x
water-nsquared||1.00000{0.00107{0.05334|0.00411|12.978 x | 3.748 X
water-spatial |{1.00000{0.00103{0.07122|0.00157(45.363 % | 1.524x
average 1.00000{0.02473|0.11396|0.03698(14.747 x | 1.893 x
Table 1: The data flush ratios of different techniques.

Table 1 shows the write-back ratios of the four techniques. SC outperforms
AT by 15x significantly, as a result of selection of the best cache size. As profiled,
these sizes are all different and hence workload-aware. Moreover, SC achieves the
best for volrend. We also measured performance in execution time for ER, AT,
and SC. Over ER, the speedup of SC ranges from 1.4x to 34.2x, with an average
of 9.6x. The average speedup over AT is 2.1x. As tested, the online overhead
of MRC computation is negligible. LA reaches the lowest possible, 16%, since
it maximally combines data flushes. However, since all cache lines are written
back at the end of a FASE, CPU resources are wasted and hence performance
is extremely bad. For example, for volrend, LA is slower than AT by 17.8x in
running time.

References

1. Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging
locks for non-volatile memory consistency. In Proceedings of OOPSLA, 2014.

2. Pengcheng Li, Chen Ding, and Hao Luo. Modeling heap data growth using average
liveness. In Proceedings of ISMM, 2014.

3. Pengcheng Li, Hao Luo, and Chen Ding. Rethinking a heap hierarchy as a cache
hierarchy: A higher-order theory of memory demand (hotm). In Proceedings of
ISMM, 2016.

4. Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. HOTL: a higher order theory of
locality. In Proceedings of ASPLOS, 2013.

	Adaptive Software Caching for Efficient NVRAM Data Persistence

