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Abstract. As multi and many core chips steadily increase their core
count, we observe a phenomenon we call memory hierarchy capacity
per capita inversion. To overcome this inversion while remaining energy-
efficient, we present a dynamic tiling scheme which we apply to solve the
classic Matrix Multiply algorithm. The tiling scheme follows a Hilbert-
Inspired Curve strategy to minimize data movement energy, while still
allowing for slack and variance within the computation and memory
usage of a chip. Our algorithm is energy-conscious: it uses a machine
model which does not require symmetric memory (in size or addressing)
anywhere in the hierarchy. It only concerns itself with the energy con-
sumption of all memories. This property makes it very robust to chip
variance and allows all possible resources to be utilized, which is neces-
sary for future near-threshold voltage designs. Initial results, obtained on
a future many-core simulator targeting the Traleika Glacier architecture,
give initial estimates of memory reads and writes to all parts of the chip
as well as relative energy consumption.

1 Beyond Traditional Tiling: Targeting Exascale

Matrix Multiply (MM) has been studied for decades. Early works presented
algorithmic improvements for asymptotic reduction of operations of MM to
O(N log2(7)) by trading multiplications for simpler addition and applying re-
cursively [21]. More recent work has looked at communication avoidance by
seeking to minimize bytes read per floating point operation and attempting to
reach the known lower bound which can provide more locality and less com-
munication [11, 2, 17]. Other previous works have taken the traditional algo-
rithm and looked within the context of architecture and memory subsystems.
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Fig. 2: Graphic Representation of Capacity per Capita Inversion
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Fig. 1: Traleika Glacier Strawman Ar-
chitecture

Projects like ATLAS [23] looked to
apply auto-tuning techniques so that op-
timal tiling is created for each memory
level, which produced excellent results. As
multicore solutions evolved, these solu-
tions and others [1, 10] evolved to bet-
ter leverage parallelism and solve prob-
lems that arise from shared cache struc-
tures. Traditionally, lower level data in a
cache required replication to higher levels
of caches. While we see efforts to advance
the efficiency of complex cache hierarchies
to loosen this constraint [18] the principle
of having larger cache capacity at levels
farther from the processor is still true to-
day. However, we see a shift for future ar-
chitectures starting with GPUs.

We are targeting the Traleika Glacier
(TG) architecture, a prototype design
chip for exploring Near Threshold Volt-
age (NTV) computing and an extension of
the Runnemede many-core processor ar-
chitecture [6]. TG is highly hierarchical:
execution engines are grouped into blocks;
blocks are grouped into units; and units
are grouped under a single chip as shown
in Figure 1. The sizes of memory are very
unconventional as well. Figure 2 compares the memory hierarchy of a CPU, the
10 core Intel Xeon Processor E5-2470 v2 with a GPU, the NVidia Tesla K80,
and TG [6]. As the figure illustrates, for chip designs with dense amounts of
compute, the higher level memory would occupy far too much area on die and
thus is reduced. This reduction creates a memory capacity per capita inversion
(CPCI) for the levels of the memory hierarchy. Unfortunately, this inversion vio-



lates many of the assumptions made in classical cache analysis algorithms. And
it is difficult to analyze the chip as a distributed memory machine since there
is still significant locality associated with every memory in the hierarchy. Thus,
TG supports configuring all levels of memory as scratchpad or potentially as
incoherent cache [16] in order to research the best way to utilize the hierarchy.
Our solution for TG similarly follows how GPUs, leveraging the shared memory,
permanently store results in the lower levels of memory, leaving the higher level
cache for read-only accesses of A and B [19, 22, 20]. Further, this trend can ex-
tend every level of programmer controlled shared memory in a CPCI hierarchy.
This opens many possibilities for unique and interesting techniques for utilizing
this space including tiling which this paper will leverage.

Section 2 extends tiling, specifically looking at tiling for energy efficiency.
Section 3 introduces a novel method for dynamically generating tile shapes using
a hilbert inspired ordering. Section 4 combines these two techniques to provide a
methodology for creating a tiling scheme for any memory layout and explain how
to use asynchronous tasks to build a robust MM algorithm. Section 5 provides
specific details about our experimental testbed using the FSIM simulator and
the results.

2 Energy Efficient Tiling

2.1 Tiling Principles—The Matrix Multiplication Example

At the core of numerous numerical packages such as LU factorization, MM is an
ideal candidate for tiling. In fact, it is a common benchmark or the core routine
of benchmarks used to test hardware due to its large reuse of data which can
test memory and caching subsystems. It can be computed with a triple nested
loop, making the asymptotic computational complexity O(N3). In this paper,
MM is defined as CM,N = AM,K ×BK,N , A,B,C ∈ R2, M,N,K ∈ N∗.

There are three traditional ways to tile MM: inner product (i.e., dot product),
outer product (i.e., cross product), and a combination of the former two. Inner
product ordering reduces accesses to C; outer product ordering reduces accesses
to A and B, but requires additional local memory and synchronization. A hybrid
combination will perform a trade-off to reuse A, B, and C. Traditionally, a new
tile, static in both size and shape, will be used for each level of memory since more
temporary space is available at farther memory levels and thus can provide more
reuse of A, B, and C. The remainder of this section introduces a novel hybrid
method of distributing a tile amongst multiple levels of a CPCI hiearchy with a
dynamic shape that can better utilize memory and reduce data movement.

2.2 Energy Efficient Tiling

As previously mentioned, outer product tiling is the only way to provide reuse
of the A and B matrix at the expense of more temporary storage and strict
synchronization. The resulting energy consumption during computing can be
divided up into energy to do compute and energy to move data. As we shrink
lithography processes more, data movement and leakage will begin to dominate



energy consumption [5]. Since leakage occurs regardless of executing tasks, an
algorithm must keep all processors busy with little scheduling downtime. Thus,
we also rely on asynchronous fine-grained scheduling in order to keep processors
busy where synchronization is occuring, and double buffering to create slack in
the synchronization, in way similar to Garcia et al. [14]. For reducing data move-
ment, we propose a method to model the energy consumed by a tiling scheme to
quickly determine a near-optimal tile size for a given amount of memory. This
method creates a machine model using a few assumptions:

1. Accessing data (read or write) from any kind of memory can be approxi-
mated as a particular static cost composed of dynamic access, leakage, and
communication energy for both a farther memory and a closer memory

2. The static cost is the average for all the values of that memory level regardless
of variances in location, temperature, or circuit performance

3. The shared memory structure is physically near all neighbors and the dis-
tance travelled dominates the static energy cost function

The total energy consumed for a subtiling according to these assumptions
is modelled in Eq. 1. E is the static energy cost per access to either a memory
higher (HM) in both capacity and access energy or a lower memory (LM) in
which we are tiling. Matrices are AM,K and BK,N in HM with sub-tiles in LM
with dimensions m× n for outer product and k for inner product.

HMTotal = 2MN · EHM +

(
NMK

n
+

NMK

m

)
· EHM

LMTotal =
MN

mn
· K
k

(2 + 2k) ·mn · ELM

ETotal = HMTotal + LMTotal

(1)

In the HM energy consumption, every C result is read and written once be-
cause of the inner product ordering of the tile. m and n accesses for the A and
B tiles are reduced by using outer product ordering of the smaller subtile. These
reductions require increases in access to the lower memory (LM). First, a subtile
must read in a partial sum from the LM subtile, then read k values from the
A input buffer and k values from the B input buffer, perform k computes, and
finally write back the partial sum to the result subtile. This operation is per-
formed for the m ·n values for each result tile every K

k synchronization points at
the energy cost of LM. Then the final results are written back out to HM, and
the procedure will be repeated for the MN

mn number of result tiles needed to com-
plete the matrix in HM. To optimize the energy consumed by data movement,
we make several changes of variables and a memory constraint. Let R = EHM

ELM

define the ratio of energy consumption from higher to lower memory, and let
S = m

n define the ratio of the longest side to the shortest side of the subtile (for
this derivation, we assume m is longer). When S = 1, the tile is square, and
as the tile becomes more rectangular, the squareness factor increases. Eq. 1 can
then be simplified to Eq. 2.

ETotal = ELM ·
(
MNK ·

(
2

k
+ 2

)
+

(1 + S) ·MNK

Sn
·R + 2MNR

)
(2)



Next, we make a memory constraint and thus define Q as the quantity of
memory available for tiling in LM. We also will constrain our equation to a tiling
scheme which will double buffer the A and B input vectors in order to loosen
synchronization requirements which results in a memory constraint definition in
Eq. 3.

Q = Sn2 + (1 + S) · 2kn → k =
Q− Sn2

(1 + S) · 2n
(3)

Substituting k in our original expression and simplifying, we derive the total
energy consumed as a function of higher tile dimensions, ratios, quantity of
memory, and a single variable n to define the subtiling in Eq. 4.

ETotal = (1 + S) · 4Sn2+(Q−Sn2)·R
(Q−Sn2)·Sn ·MNK · ELM + (2MNK + 2MNR) · ELM

(4)

And lastly to find the minimum energy, we differentiate and set to 0 in Eq. 5.
Solving the quadratic for n2 we obtain the final equation, Eq. 6.

dETotal

dn = 0 = −1 · ((1+S)·(Q2R−2QS·(R+2)n2+n4·(R−4)·S2)
Sn2·(Q−Sn2)2 ·MNK · ELM (5)

The proper amount of memory that should be dedicated to the outer product
result tile is a function of the energy access ratio between HM and LM regardless
of the shape of the tile. We denote this function as the fill factor : it is designated
as FF in Eq. 6. It is important to understand that this model is based on
the three assumptions where the energy is static, which is not necessarily true.
Where the inner product length is extremely short, there will be potential startup
overheads that are not amortized such that the energy factor does not properly
relate to the real energy cost. Similarly, in the case where the inner product
is very long due to a low fill factor, the bandwidth requirements will increase
to the HM which typically requires more energy per operation when accessed
at higher bandwidths. Thus, this model should only be utilized as a first order
approximation strategy for an overall tiling scheme.

Sn2 = Q

(
(R + 2)−

√
8R + 4

R− 4

)
FF =

{
(R+2)−

√
8R+4

R−4 R 6= 4
1
3 R = 4

(6)

Other limits and checks should be imposed as well to ensure this is the
optimal tiling. One such requirement is that k ≥ 1 and n ≥ 1 can be violated by
the non-discrete fill factor calculation and by using Eq. 3 and Eq. 6, additional
constraints to the tiling shown in Eq. 7 can be added to make sure enough
memory is available.

1 ≤ Q− Sn2

(1 + S) · 2n
→ Q ≥ 4(S + 1)2FF

S(FF − 1)2
(7)

Lastly, we previously defined S as m
n , where m and n are sides of a full rectan-

gle tile. S′ is defined as an imperfectly filled tile which contains work equivalent



to S. To do this, the outer product work of the partial tile and the A and B input
buffer width requirements of the partial tile are matched to determine what the
full tile equivalent would be. After simplification and derivation, it yields Eq. 8.

S′ =
Inputs2 − 2Work + Inputs

√
Inputs2 − 4Work

2Work
(8)

. . . with Work = Sn2, and Inputs = (1 + S)n. We will see in future sections
how these constraints and S′ can be applied to coarsen tiles and lower runtime
overhead, and still ensure that sufficient memory is left for input buffers.

3 Hilbert Inspired Global Layout
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Fig. 3: Order 1 through 3 Hilbert and Mor-
ton Curves

Beyond the mathematical modelling
used to obtain basic rectangular tiling
to assign the proper amounts of A, B,
and C tiles in memory level (in the
abstract sense), we need an automatic
method for explicitly aggregating tiles
which creates a tile shape that has the
least projected surface area for both
dimensions (thus a low S′). Explicit
aggregation is important since recur-
sive implicit aggregation like in cache-
oblivious algorithms would fail to ex-
pand memory consumption in the lower memories. Our method must also be
able to adapt to any memory layout, and be robust for any problem dimension.
This makes a space filling curve an excellent candidate since these curves map
a higher order space into a one dimensional space perfect for linearly enumerat-
ing as asynchronous tasks while also ensuring a good amount of locality. Some
space-filling curves like Morton curves are computationally very inexpensive, but
they have unbounded Hölder continuity and thus if used recursively could lead
to large jumps within the matrix. Better candidates are Peano or Hilbert curves.
Fig. 3 provides examples of Hilbert and Morton curves.

Once the requirement to replicate data down a cache-like hierarchy is re-
moved, the freedom to pin tiles anywhere in the hierarchy is possible. However,
there is no obvious strategy to get the best layout. We present a data layout
and an asynchronous scheduling technique which maximizes memory utiliza-
tion, adapts to different memory sizes, preserves locality even during dynamic
throughput changes in processors, and is based on energy optimal tiling princi-
ples. This produces tiles in certain memory locations in the method shown in
Fig. 8. In order to achieve the properties described, the aggregations are not
perfectly square or perfectly filled, which will incur some performance penalty
that must be quantified before describing our curve technique.

3.1 Measuring S′ Empirically
Hungershöfer and Wierum [15] show that for all sections of a Morton and a
Hilbert curve, Hilbert curves have slightly lower average surface area to volume
but also contain a higher worst case surface area to volume ratio.
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Fig. 4 shows our calculations for worst case, average, and minimum S′ values
for every possible aggregation that follows the curve order for each curve length
using a 1024 × 1024 Morton and Hilbert curves. For S′, the Hilbert curve out-
performs Morton by a factor of four on average and has a bounded maximum
below 8 whereas the Morton curve produces large maximum aspect ratios. This
is because S′ is more related to projected surface areas than standard surface
areas, giving an even larger penalty to Morton curves and making the choice of
Hilbert inspired curves as the most reasonable choice.

3.2 Decomposition Rules for Layout
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Fig. 5: HIC: Hilbert Inspired Curve

Fig. 5a gives an example curve for any arbitrarily dimensioned problem which
provides good locality for tiling, which we call Hilbert Inspired Curve (HIC). To
this end, we implement a pseudo-Hilbert curve algorithm influenced by the works
of Zhang et al. [24] and Chung et al. [9], which will be close to a Hilbert curve in
S′ performance. Unlike Zhang et al. where divisions create splits with sections
having power of 2 dimensions on the outer portions of the matrix, our algorithm
makes simple divisions by 2, split in both dimensions until we reach a base
case. While Zhang’s technique generates more regular patterns at the expense
of different aspect ratios throughout the matrix, our technique ensures a Hilbert
order with as close to the overall aspect ratio of the matrix at the expense of a
more complex base case ordering.



In order to lower the aspect ratio of the tiles and reduce the expected S′,
HIC will make scanlines of tiles following Chung et al.’s work, rather than using
Hilbert recursion.

This is because dividing a rectangular tile into a more square tile occurs only
until the longer length switches axes and is no longer smaller than the current
S value. This creates the condition shown in Eq. 9.

S >
1
S
2

→ S >
√

2 (9)

This is equivalent to always dividing the longest dimension of the tile, sim-
ilarly to many cache oblivious algorithms, except the single dimension split is
only performed when the curve types allow a scanline recursion. This results in
the recursion rules laid out in Figure 5b.
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Look Up Table

In the base case where either tile dimension goes
below 7, HIC terminates recursion and specifies ev-
ery possible scanline order in a look-up table similar
to Zhang. We ensure that a split in the base case
cannot result in two odd tiles by shifting the split as
necessary. This reduces our look-up table to 4 cases
for each curve type, resulting in 64 total scanline
orders. Figure 6 illustrates the scanline order for all
cases of base tiles for a curve traversing from lower
left to lower right. The other three curve orienta-
tions are not presented. Dots indicate start points
for each scanline and the highlighted case does not
have a contiguous end/start connection between the two upper subtiles as pre-
viously mentioned.

This is exactly what we see in our example tile from Fig. 5a, with the ratio
8 : 5 >

√
2, and so a single dimension cut on the X axis is made in the middle

(shown in blue dashes). This produces two tiles with S = 5 : 4. Hence Hilbert
recursion begins with the first 2 cuts (shown in red dashes). Several aspect ratios
were tested to ensure S′ values were still reasonable to evaluate the impact of
these changes and allow arbitrary matrix dimensions, instead of the traditional
Hilbert curve. Results are presented in Figure 7.
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While the maximum value has reached as high as 16 for smaller tile sizes,
the overall S′ values remain nearly the same as the original Hilbert curve, which



will bode well in Section 4 when utilizing this curve to aggregate tiles in a CPCI
hierarchy.

4 Tiling Up and Down a Hierarchy Efficiently
4.1 Aggregating Tiles

Tile Aggregation
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Fig. 8: Example Tiling and Mem-
ory Layout3

The first step to implement our algorithm is
to query the runtime for all program available
memory in the chip memory hierarchy. Then a
tree is built where the smallest memory clos-
est to the processor is a leaf and the mem-
ory shared between different groups of pro-
cessors are inner nodes. Next the base tile size
and inner product length n and k are deter-
mined, (see Section 2). Of course, a tile size
of 1 could work but the overhead of runtime
queues, curve pointer calculations, and syn-
chronization would be cost prohibitive. If the
base tile size is made too coarse, then smaller
regions of memory will be unusable: fragment
pieces of memory during tiling create exces-
sive work stealing, and (for small problem
sizes) expose too little concurrency. Hence the
importance of determining the proper base tile
size. For the purposes of our experiments, we
picked our base tile sizes empirically, but this
process is autotunable.

Bottom-up tile formation starts by at-
tempting to aggregate base blocks together
into larger tiles that can form outer products
while still having enough memory available for
the input buffers. All aggregations must follow
a global layout dictated by the HIC. Thus, the task is simply to divide what por-
tions of memory will be A input buffers, B input buffers, and C result tiles for
that memory block using the FF equation from Figure 6 and the HIC curve
function to project what inputs will be needed. Once the children of a subtree
have finished, the subtree attempts to partition the shared memory using the
FF equation with one exception: it regards the value Q in the equation as not
only the size of its memory but also the result tiles from all its children in the
calculation. This exception is made due to assumption 3 of our machine model
from Section 2. It is intuitive: any child could steal work from another child at
the cost of the shared memory access when gross imbalance occurs. The rest
of the memory in the subtree is divided and utilized for the A and B tiles ac-
cording to the dimensions created by the HIC. Additionally, we insure that an
upper level input buffer can hold a large enough buffer (product length of k) to

3 These memory capacities are for illustrative purposes only



support lower level input buffer reads. This assignment continues sequentially
all the way through the memory tree until the root finishes by initiating the first
data movement of matrices from DRAM. After all nodes of the memory tree are
initialized, data layout is finished and the spawning of tasks for computation can
begin.

4.2 Creating Tasks

Fig. 9: Data Dependency Graph

As mentioned earlier, outer
product operations have syn-
chronization requirements if
multiple operations are oc-
curing in parallel. In or-
der to perform these op-
erations, yet still maintain
high performance, we imple-
ment a hierarchically double-
buffered and load-balanced
asynchronous computation.
This is similar in style to Gar-
cia et al. [14].

As shown in Figure 9,
there are 4 kinds of nodes that
we give to the runtime. Each
node has a set of dependen-

cies that must be satisfied before it can placed in the running queue. Similarly,
once a node finishes, it will satisfy its future dependencies by making calls to
the runtime with a globally unique identifier for each dependency.

Once higher memory level work is available, each execution engine performs
direct DMA transfers, bypassing all other memory structures. While we could
have provided additional data reuse by recruiting groups of XEs in the same
block or unit to perform a similar input broadcast into the lower level buffer just
as the lower level tiles did, this would add more synchronization and potentially
affect performance.

5 Experimental Results
5.1 Testbed
We experiment using FSim, which is a heavily multithreaded and multi-process
functional simulator created by Intel. It models the TG architecture: execution
and control engines, load-store queues, memory controllers and memory banks
at each level of the TG hierarchy, are all implemented as individual threads. The
runtime we used on FSim only allows up to 1

8 of the targeted 2048-core TG chip
to be simulated: up to 4 units of 8 blocks each, with 8 execution engines and one
control engine in each block (≈ 256 cores). Because we are only simulating part
of the chip, we reduce the chip area to 64 mm2 for performing on-chip network
energy calculations, and modify the amount of memory in the Unit and Chip
shared memories in order to maintain a hierarchy inversion ratio of 2:1 as seen
in Table 1.



Chip Shared Memory 16 MB
Units/Chip 4

Unit Shared Memory 8 MB
Blocks/Unit 8

Block Shared Memory 2 MB
Base Tile Size → n 30
Base Tile Size → k 30

Table 1: Simulation Parameters

We trace and count all matrix data move-
ments from any memory module in the hier-
archy using our runtime; in addition we re-
port relative energy consumption provided by
FSim that includes dynamic tiling computa-
tions and runtime overheads. However, FSim
is not cycle accurate: we are unable to esti-
mate static power consumption or the actual
performance of the MM, but all dynamic en-

ergy consumption is measured using approximations developed from architec-
tural designs. For this paper, since we are more interested in data movement,
we fix the voltage to be in superthreshold operation so all dynamic energy con-
sumption is on that order.

5.2 Tiling Related Results
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Fig. 10: Memory Accesses

Figure 10 shows the num-
ber of memory accesses to all
shared memories on the chip.
Our energy-aware algorithm
gives a clear preference for
the closer memory operations,
preferring to access BSM 20
times more than DRAM. In
fact, the algorithm favors the
local operations so strongly
that the number of DRAM
operations is exactly the lower
bound on the number of ac-

cesses to do the MM operation. This is in spite of the C matrix being 83%
of the size of the CSM showing that our algorithm can easily operate on working
sets larger than the highest capacity of memory in the hierarchy.

It is not necessary to compare this method to other standard cache-oblivious
algorithms, since they follow the inclusion property.

This is because any algorithm that only uses the CSM would certainly be
unable to fit all 3 matrices in memory, necessitating that at least one of them be
accessed a second time. Since all our energy consumption in the on-chip memories
is less than 25%, it is already clear that we would consume less energy than any
competitor that does not have some kind of explicit outer product layout. This
is why we specifically chose this single case to illustrate our point.

5.3 Machine Related Results
The preference for on-chip memory operations over DRAM accesses is very help-
ful for off-chip bandwidth utilization as well. Given that a 1050 × 1590 × 1590
requires a total of 5.3 GFLOP and our tiling scheme is able to only require
60 MB of loads or stores to DRAM, with throughput levels of 1.75 TFLOP/S
which we would expect that 1

8 of a chip could perform, it would still only require
a DRAM bandwidth of 20 GB/s.



Fig. 11: Relative Energy Consumption

This could potentially be an even
larger reduction in off-chip bandwidth re-
quirements if the full memory capacity
were simulated. This comes at a cost with
large increases in on-chip accesses which
we would expect an on-chip network could
handle the added requirements.

Figure 11 shows the relative energy
consumption (without static energy) to
the 4 different shared memory regions of
the chip as well as the dynamic energy
consumption of the processors for three
different MM sizes. Here we notice that
even though the BSM, USM, and CSM
are read and written orders of magnitude
more than the DRAM, the energy con-
sumed by the DRAM is still much more
than the more local memory operations.

6 Related Work

Space-Filling Curves. Chatterjee et al. [7]
studied recursive data layouts for multiple
kinds of Morton curves as well as Hilbert
curves in the context of Matrix Multiply,

while Bader and Zenger [3] created an algorithm using Peano curves. More re-
cently, Ballard et al. [4] used a Morton inspired ordering in which they divide
by the largest dimension which in a square matrix resolves to Morton order.
These works solely looked at the locality properties of space filling curves in
order to provide cache friendly ordering. In addition, our work incorporates a
hierarchy of scratchpad memories and ensures the tiling scheme provides energy
optimal data movement. Furthermore, this technique also leverages the curve in
a scheduler for more choreographed data movement to increase locality.

Cache Oblivious and Communication Avoiding Algorithms. Frigo et al. [13] de-
fine an algorithm as being cache-oblivious when the algorithm is cache optimal
without requiring any parameters defining the cache. They do this by using the
inclusion property of caches to simplify the problem into a 2 memory space
problem: fast cache memory and slow system memory, similar to our formu-
lation. They then can infer cache optimality for any algorithm that provably
minimizes communication between these two memories so long as the algorithm
is not a function of the sizes. However, this means exclusive caches or noncoher-
ent caches or scratchpads like the CPCI hierarchies we target can not apply to a
cache-oblivious algorithm or if so a complex analysis of the coherence algorithm
is necessary to determine what the maximum working set the cache can hold
and under what conditions of memory operations that maximum working set
can exist. We only require the energy cost to be inclusive and let the capacity be



a variable we define in our model. The downside to our algorithm is that it nat-
urally operates using a machine model where all data movement is explicit and
formulating an algorithm within a traditional cache hierarchy would be difficult
if not impossible for some caches.

More recent work includes communication avoiding (CA) classes [11, 2, 17].
They extend the cache oblivious concept to networks. CARMA [12] utilizes
a breadth-first\depth-first hybrid algorithm that leverages additional available
memory to reduce communication across distributed-memory and NUMA ma-
chines. It is not obvious how CARMA would handle an inverted memory hi-
erarchy such as TG since it is usually applied to distributed memory systems.
Additionally, we assume that energy consumption will be a dominating and lim-
iting factor within a chip in future architectures rather than bandwidth. Because
CA algorithms are cache-oblivious, they place equal weight on memory accesses
regardless of the energy liabilities they generate which could limit overall per-
formance when thermal constraints are considered.

7 Conclusion

This paper has presented a novel energy-aware algorithm targeting future many-
core architectures. It relies on the memory capacity inversion property and ap-
plies a custom space-filling curve to implement our tiling method and achieve
energy efficient matrix multiplication execution. We provide a demonstrative
simulation experiment to show the advantages of our techniques and predict an
energy-optimal bandwidth to flop ratio absent of other bottlenecks in the TG de-
sign. While this work provides a precise account of dynamic energy expenditure
and makes every effort to amoritize overheads properly, a not-yet implemented
cycle-accurate simulator would quantify the scheduling overheads of our algo-
rithm, which would allow for the computation of the total estimate of energy
per operation. This would inform computer architects in how inverted memory
hierarchies could be utilized. Likewise, our machine model is extensible: band-
width consumption can be modelled, following Chen et al.’s work [8]. From a
compiler perspective, our proposed algorithm can be integrated in a more gen-
eral framework, taking advantage of polyhedral models to extend our dynamic
space filling curves and energy model. From a runtime standpoint, there is the
potential for using runtime information to guide custom schedulers for optimal
locality using our framework. Lastly, initial confirmation of the energy model
can be empirically made on systems like KNL which have scratchpad modes for
the in-package memory.
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