Formalizing Structured Control Flow Graphs

Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann

Purdue University, West Lafayette IN 47907, USA

{asabne, psakdhna, eigenman}@purdue.edu

Abstract. Structured programs are easier to understand, and are compiler friendly [2][5][14].
However, compilers do not process the source programs directly; they instead work on control
flow graphs (CFGs) of the programs. Despite a long history of contributions to structured
programming, the existing formalizations of structured CFGs are insufficient. This paper aims
to fill this gap.

1 Introduction

Structured programming is a
paradigm where programs are

written using just three base ° o o °

constructs [6][14], namely, i) °.° 0 OR °
sequence of statements, ii) ~
if-then-else blocks, and iii) (8) 0 0 (o)
loops. Structured program-

ming increases program read-

ability [5][14]. It was believed (a) Sequence (b) Selection (¢) Loop

that the generated CFGs from Fig. 1: Pictorially Represented Base Structured Patterns

structured programs do not contain irreducibility [3], easing compiler analyses. However, this
is only true if compiler front-ends performed one-to-one mappings of structured program con-
structs, which is not the case in practice. Unstructured CFGs are not supported on certain
architectures, e.g., OpenCL disallows gotos because AMD GPUs do not support unstruc-
tured CFGs. Compiler optimizations, such as short-circuit optimization and inlining, can
turn structured programs into unstructured CFGs [13]. Worse, some transformations, such
as tail call elimination and jump threading, can lead to irreducibility [11]. It is therefore
essential to have mechanisms that can ensure the structuredness of resulting CFGs.

The prevalent notion [7][12] of structured CFGs considers
three base patterns similar to the structured program con-

structs mentioned above. They comprise a sequence (Fig. 1a), o °
a selection (Fig. 1b), and a loop (Fig. 1c). We argue that such
pictorial depiction of base patterns alone is insufficient and G-e 9 G 3
leads to imprecision. The “definition” fails to clearly distin- o
O,

guish a structured CFG from an unstructured one. Consider
the CFGs in Fig. 2, which do not show any obvious matching
to the base patterns. Creating structured CFGs contrasts with
structured programming, where just by looking for the pres-
ence of unstructuring-causing constructs, such as goto and
break statements, unstructuredness can be easily detected.
The difficulty in doing the same in CFGs arises because the pictorial representations of the
base structured patterns do not show how to compose the patterns into larger CFGs or
decompose large CFGs.
The contribution of this paper is to formalize structured control flow graphs.

Fig. 2: Are these CFGs
structured? The base pat-
terns in Fig. 1 fail to answer.



2 Preliminaries

Definition 1. Path : A path between nodes A and B is an ordered list of adjacent edges
and vertices. The list begins with an out-edge of A, and ends with an in-edge of B.
Definition 2. Condition Node : Any node with two or more out-edges.

Definition 3. Region : The region between two nodes (edges) A and B contains all nodes
and edges that are present on any path from A to B.

Definition 4. Single-entry-single-exit (SESE) region : The region between two nodes
(edges) A and B is SESE if all of the following are true: i) A dominates B, ii) B post-
dominates A, iii) every cycle containing A also contains B and vice versa.

A node (edge) is a SESE region by itself. Each base pattern in Fig. 1 represents a SESE
region. For the selection pattern (Fig. 1b), node A is the entry and node D is the exit. For
the loop pattern (Fig. 1c), node A is the entry as well as the exit. In Fig. 4a, region between
R and F is not SESE, while the region between C and D is.

Definition 5. Loop condition node, loop path : A given condition node N is said to be
a loop condition node, if there is a simple path (all nodes along the path have in/out-degree
of one) that originates and ends at N. We refer to any such path as a loop path.

3 Previous Work on Defining Structuredness

There is ample ambiguity even in the terminology used while describing structured pro-
gramming, e.g., structured programs can have goto statements in [8], while [9] considers
programs with case statements to be structured too.

The first work, from Williams [12], intepreted structured CFGs to be composed of the
base patterns in Fig. 1, and unstructured CFGs must comprise one of the five patterns of un-
structuredness. Oulsnam [10] presented similar patterns. However, the lack of formalization
in the definition required sophisticated pattern matching to assess the CFG structuredness,
toward which no algorithms were provided. E.g., the CFG on the left in Fig. 2 neither
matches base structured patterns in Fig. 1, nor the base unstructured patterns in [12].

The latest attempt of defining structured CFGs is from
Anantpur et. al. [4]. However, their definition, although for-
mal, does not truly capture the notion of structured CFGs. °
Their definition recognizes unstructuring as scenarios where i)
there exists an incoming/outgoing edge from a loop, or ii) an °‘ o
edge exists between a condition node and a node with multiple G
in-edges where there is no dominator/post-dominator relation-
ship between the two nodes. This definition departs from the G
base patterns. Consider the CFG in Fig. 3, where all nodes are
strongly connected, with a common entry node, A. All nodes
thus belong to the same loop [1], meaning that the first con- Fig. 3: This CFG is con-
dition is satisfied. Node A is the only multiple in-edge node, stdered structured in [4];
but it dominates all other nodes. Hence the second condition @/though it maps to no
is satisfied too. Thus, this CFG will be considered structured structured program!
in [4], in spite of having no mapping to a high-level structured program.

To remove these ambiguities, it is essential to formalize the notion of structured CFGs
in a way that enables an algorithmic mapping to the three high-level program constructs
used in structured programming. Doing so will ease compiler analyses.

4 Formalizing Structured CFGs

We now formalize the notion of structured CFGs. We start by providing formal definitions
for structured condition nodes and for the base structured patterns. Next we introduce the
conceptual framework of folding, which decomposes CFGs into base patterns.



Restrictions on CFGs: We consider CFGs with single entry and exit nodes. There
exists a path from each node in the CFG to the exit node. Symmetrically, each node in
the CFG can be reached from the entry node. Also, the maximum in-degree and out-
degree for all nodes is two. Generality is maintained since a CFG with any in-degree or
out-degree can be converted into a CFG with a maximum in-degree and out-degree of two.

We begin by defining structured selection and loop condition nodes.

Definition 6. Structured selection condition node, selection body : A condition
node N is a structured selection condition if for every path from N to its immediate pos-
dominator (IPDOM), the region between the first and last edges is SESE. Therefore, the
region between the structured selection condition and its IPDOM is SESE as well, which is
said to be its selection body.

Definition 7. Structured loop condition node, loop body : A structured loop condi-
tion node is a loop condition node having an SESE region between one of its out-edges and
in-edges. This SESE region is called the loop body.

Definition 8. Unstructured condition node : If a condition node is neither a structured
selection, nor a structured loop condition node, then it is an unstructured condition node.

Examples: 6
Node A

in the 0

base se- S D,

lection pat- (V) 0

tern (Fig. 1b) Fold @’ Fold w QLD 4

is a struc- W) (0 @ ; - -
tured se- ®)

lection con- ) ®

dition. Node (®)

Ain Fig. 1c
is a struc- (a) Unstructured CFG (b) Structured CFG
tured loop Fig. 4: Maximal Folding: Both CFGs are reducible

condition, with edge A—A being both the entry and exit edge of the SESE region (left fig-
ure) or edge A—B being the entry edge and the edge B— A being the exit edge of the SESE
region (right figure). For condition node A in Fig. 4a, G is the IPDOM. A—B —E—G is
one path from A to G, on which the region between the first and last edges is not SESE.
Hence, A is not a structured selection node. Similarly, for no out-edge and in-edge pair of
A, there exists a SESE region. Therefore, A is not a structured loop condition node either.
Hence, A is an unstructured condition node. On the other hand, in Fig. 4b, nodes U and T
are structured selection condition nodes, while VZ is a structured loop condition node.

Now, we present formal definitions for the base structured patterns.

Definition 9. Sequence : Two nodes, A and B, and an edge A — B form a sequence if B
is the sole successor of A, and A is the sole predecessor of B.

Definition 10. Selection : This pattern contains a structured selection condition node,
its IPDOM, and the selection body. The selection body must contain at least one node, and
any path from the selection condition node to the IPDOM can have at most one node.
Definition 11. Loop : This pattern contains a structured loop condition node, the loop
body, and the entry and exit edges of the loop body. The loop body can contain at most
one node.

To determine CFG structuredness, we introduce a new concept, called folding.
Definition 12. Folding : Folding is a process of replacing a base structured pattern with
a single node in the CFG. During folding, any edge not belonging to the base pattern, but
having its source (sink) node in the base pattern, is redirected so that the newly created
single node is its source (sink).



Definition 13. Maximal Folding : Maximal folding repeatedly applies folding to a CFG
until no more base structured patterns exist.

The above formalization of base structured patterns removes ambiguity and makes the
process of folding straightforward. Implementing folding simply requires looking for base
patterns formed on each node, which is a constant-time operation. Thus, maximal folding
is O(n), where n is the number of nodes in the CFG. Fig. 4 shows examples of structured
and unstructured CFGs and their maximally folded equivalents.

Definition 14. Completely Foldable CFG : If a maximally folded CFG contains a single
node, then the CFG is called completely foldable.

Definition 15. Structured CFG : A CFG is said to be structured iff it is completely
foldable. Otherwise, it is called an unstructured CFG.

Complete foldability, i.e., structuredness, implies that the CFG is composed of the base
structured patterns. Structuredness gurantess CFG reducibility. While reducibility eases
CFG analysis, it does not determine if the CFG is structured or not. E.g., the CFG in Fig. 4a
is reducible, but is unstructured. Also, a structured CFG does not imply structuredness of
all condition nodes. E.g. in Fig. 4b, Z is an unstructured condition node by itself. After the
first folding step, the generated VZ node is a structured loop condition node.

5 Conclusion

This paper has identified that structured programs do not necessarily imply structured
CFGs, and showed that previous definitions of structured CFGs led to ambiguities. The
paper presented a formalization and a method for recognizing structured CFGs.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1986)

2. Allen, F.E.: Control flow analysis. In: Proceedings of a Symposium on Compiler Optimization.
pp. 1-19. ACM, New York, NY, USA (1970)

3. Ammarguellat, Z.: A control-flow normalization algorithm and its complexity. IEEE Trans.
Softw. Eng. 18(3), 237-251 (Mar 1992)

4. Anantpur, J., R., G.: Taming control divergence in gpus through control flow linearization.
In: Cohen, A. (ed.) Compiler Construction, Lecture Notes in Computer Science, vol. 8409, pp.
133-153. Springer Berlin Heidelberg (2014)

5. Baker, B.S.: An algorithm for structuring flowgraphs. J. ACM 24(1), 98-120 (1977)

6. Bohm, C., Jacopini, G.: Flow diagrams, turing machines and languages with only two formation
rules. Commun. ACM 9(5), 366-371 (May 1966)

7. Chapin, N., Denniston, S.P.: Characteristics of a structured program. SIGPLAN Not. 13(5),
36-45 (May 1978), http://doi.acm.org/10.1145/953395.953398

8. Knuth, D.E.: Structured programming with go to statements. ACM Comput. Surv. 6(4), 261—
301 (Dec 1974), http://doi.acm.org/10.1145/356635.356640

9. Moretti, E., Chanteperdrix, G., Osorio, A.: New algorithms for control-flow graph structuring.
In: Fifth Conference on Software Maintenance and Reengineering, CSMR, 2001, Lisbon, Portu-
gal, March 14-16, 2001. pp. 184-187 (2001), http://dx.doi.org/10.1109/.2001.914984

10. Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3), 379-387 (1982)

11. Stanier, J., Watson, D.: A study of irreducibility in ¢ programs. Softw. Pract. Exper. 42(1),
117-130 (Jan 2012), http://dx.doi.org/10.1002/spe.1059

12. Williams, M.H.: Generating structured flow diagrams: The nature of unstructuredness. Comput.
J. 20(1), 45-50 (1977), http://dx.doi.org/10.1093/comjnl/20.1.45

13. Wu, H., Diamos, G., Wang, J., Li, S., Yalamanchili, S.: Characterization and transformation of
unstructured control flow in bulk synchronous gpu applications. Int. J. High Perform. Comput.
Appl. 26(2), 170-185 (May 2012), http://dx.doi.org/10.1177/1094342011434814

14. Zhang, F.; H. D’Hollander, E.: Using hammock graphs to structure programs. IEEE Trans.
Softw. Eng. 30(4), 231-245 (Apr 2004)


http://doi.acm.org/10.1145/953395.953398
http://doi.acm.org/10.1145/356635.356640
http://dx.doi.org/10.1109/.2001.914984
http://dx.doi.org/10.1002/spe.1059
http://dx.doi.org/10.1093/comjnl/20.1.45
http://dx.doi.org/10.1177/1094342011434814

	Formalizing Structured Control Flow Graphs
	Introduction
	Preliminaries
	Previous Work on Defining Structuredness
	Formalizing Structured CFGs
	Conclusion


