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Abstract. We introduce a new parallel algorithm for approximate breadth-
first ordering of an unweighted graph by using bounded asynchrony to
parametrically control both the performance and error of the algorithm.
This work is based on the k-level asynchronous (KLA) paradigm that
trades expensive global synchronizations in the level-synchronous model
for local synchronizations in the asynchronous model, which may result
in redundant work. Instead of correcting errors introduced by asynchrony
and redoing work as in KLA, in this work we control the amount of work
that is redone and thus the amount of error allowed, leading to higher
performance at the expense of a loss of precision. Results of an imple-
mentation of this algorithm are presented on up to 32,768 cores, showing
2.27x improvement over the exact KLA algorithm with minimal error on
several graph inputs.

Keywords: parallel graph algorithms, breadth-first search, distance query,
approximate algorithms, asynchronous, distributed memory

1 Introduction

Processing large-scale graphs has increasingly become a critical component in a
variety of fields, from scientific computing to social analytics. Due to the ever
growing size of graphs of interest, distributed and parallel algorithms are typi-
cally employed to process graphs on a large scale.

Computing shortest paths in networks is a fundamental operation that is use-
ful for multiple reasons and many graph algorithms are built on top of shortest
paths. For example, computing centrality metrics and network diameter relies on
distance queries. In addition to being a building block for other algorithms, short-
est path queries can be used on their own to determine connectivity and distances
between particular vertices of interest. For many large real-world graphs, com-
puting exact shortest paths is prohibitively expensive and recent work [30, 27,
22, 28] explores efficient approximate algorithm for this problem. In unweighted
graphs, an online distance query can be answered through the use of breadth-first
search (BFS).

In this work, we introduce a novel approximate parallel breadth-first search
algorithm based on the k-level asynchronous [15] (KLA) paradigm. The KLA
paradigm is a generalization of level-synchronous processing [20] (based on the
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bulk-synchronous parallel model [34]) and the asynchronous model [26], allowing
for parametric control of the amount of asynchrony from full (asynchronous)
to none (level-synchronous). In a level-synchronous execution of breadth-first
search, converged values are correct at the end of a level, at the cost of expensive
global synchronizations. On the other hand, a high amount of asynchrony in
breadth-first search may lead to redundant work, as the lack of a global ordering
could cause a vertex to receive many updates with smaller distances until the
true breadth-first distance is discovered. Each update to the vertex’s state will
trigger a propagation of its new distance to its neighbors, potentially leading to
all reachable vertices being reprocessed many times and negating the benefit of
asynchronous processing.

Our novel algorithm alleviates the amount of redundant work performed by
controlling how updates trigger propagation and allowing for vertices to contain
some amount of error. By not sending the improved value to a vertex’s neighbors,
we limit the amount of redundant work that occurs during execution. We modify
the KLA breadth-first search algorithm by conditionally propagating improved
values received from a neighbor update.

The contributions of this work include:

– Approximate k-level asynchronous breadth-first search algorithm.
We present a new algorithm for approximate breadth-first search that trades
accuracy for performance in a KLA BFS. We find and prove an upper bound
on the error as a function of degree of approximation.

– Implementation that achieves scalable performance. Our implemen-
tation in the stapl Graph Library shows an improvement of up to 2.27x
over the exact KLA algorithm with minimal error. Results show that our
technique is able to scale up to 32,768 cores.

2 Approximate Breadth-First Search

Our algorithm is implemented in the k-level asynchronous paradigm. In KLA,
algorithms are expressed using two operators. The vertex operator is a fine-
grained function executed on a single vertex that updates the vertex’s state and
issues visitations to neighboring vertices. It may spawn visitations through the
use of Visit(u, op) or VisitAllNeighbors(v, op), where u is the ID of a
single neighbor and v is the ID of the vertex being processed. These visitations
are encapsulated in the neighbor operator, which updates a vertex based on
values received from a single neighbor.

In the exact KLA breadth-first search, skipping the application of the neigh-
bor operator could lead to an incorrect result, but reduces the performance over-
head of redundant work that is often seen in highly asynchronous algorithms. We
show that the amount of error can be bounded, while improving the performance
of the distance query.
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2.1 Algorithmic Description

In this section, we show how to express approximate breadth-first search using
the KLA paradigm. The goal is to compute, for each vertex, the distance from
the vertex and the root in the breadth-first search tree. We denote this distance
as d(v).

Function VertexOperator(v)
if v.color = GREY then

v.color = BLACK
VisitAllNeighbors(v, NeighborOp, v.dist+1, v.id)
return true

else
return false

end
Algorithm 1: k-level asynchronous BFS vertex operator.

Initially, all vertices except the source have distance dk(v) = ∞, no parent,
and color set to black. The source vertex sets its distance to 0, itself as its parent
and marks itself active by setting its color to grey. Algorithm 1 shows the vertex
operator that is executed on all vertices in parallel. Each vertex determines if it
is active by checking if its color is set to grey. If so, it issues visitations to all
of its neighbors, sending its distance plus one. The traversal is completed if all
invocations of the vertex operator return false in a superstep (i.e., none of the
vertices are active).

Algorithm 2 presents the neighbor operator for the exact breadth-first search
algorithm. The distance and parent are updated if the incoming distance is less
than the vertex’s current distance. In addition, the vertex sets its color to grey,
marking it as active, and returns a flag indicating that it should be revisited. In
the k-level async model, if the invocation of the neighbor operator returns true,
the vertex operator will be reinvoked on that vertex only if its hop-count is still
in bounds of the KLA superstep. That is, if d(v) mod k = 0, then the visitation
is at the edge of the superstep and thus the vertex operator will not be invoked
until the start of the next superstep.

In this work, we introduce a new neighbor operator in Algorithm 3 that
allows for the correction of an error and repropagation of the corrected distance
under certain conditions. We use tolerance 0 ≤ τ < 1 to denote the amount of
error a vertex will allow until it propagates a smaller distance. For a visit with
current distance d and better distance dnew, we will propagate the new distance
if (d − dnew)/d ≥ τ . We now need to store two distances: one that represents
the current smallest distance seen and the distance of the last propagation. The
last propagated distance is required as a vertex may continually improve its own
distance, but it will only repropagate if a neighbor visitation contains a distance
that is τ -better than its last propagated distance. By following a vertex’s parent
property, the algorithm also provides a path from the every reachable vertex to
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Function NeighborOperator(u, dist, parent)
if u.dist > dist then

u.dist ← dist
u.parent ← parent
u.color ← GREY
return true

else
return false

end
Algorithm 2: Original k-level asynchronous BFS neighbor operator.

Function ApproximateNeighborOperatorTolerance(u, dist, parent)
if u.dist > dist then

u.dist = dist
first time ← u.parent = none
better ← (u.prop - dist)/u.prop ≥ τ
if first time ∨ better then

u.parent ← parent
u.prop ← dist
u.color ← GREY
return true

end

else
return false

end
Algorithm 3: Approximate k-level asynchronous BFS with tolerance neigh-
bor operator.

the source, similar to the traditional version of breadth-first search. However,
these vertices may report a larger distance than the length of the discovered
path, due to updates that were not propagated.

The parameter τ controls the amount of tolerated error. Note that if τ <
1/|V |, then there is no error in the result and the neighbor operator is equivalent
to the exact version in Algorithm 2.

2.2 Error Bounds

As the approximate breadth-first search may introduce error, we quantify the er-
ror that may be caused due to asynchronous visitations. We denote the breadth-
first distance of a vertex v at the end of a KLA traversal using dk(v), where k
is the level of asynchrony. Similarly, d0(v) is the true breadth-first distance for
vertex v. In this section, we will show that the error of the breadth-first distance
is bounded by dk(v) ≤ d0(v)k.

Lemma 1. At the end of the first KLA superstep, all reached vertices have
distance dk(v) ≤ k.
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Proof. Assume at the end of the first superstep, there exists a vertex v with
distance dk(v) > k. This means that v was reached on a path from the source
that has h > k hops. This is not possible, as the traversal will not allow a
visitation that is more than k hops away. Therefore dk(v) ≤ k. ut

Theorem 1. At the end of the algorithm, all reachable vertices will have dis-
tance dk(v) ≤ ksv, where sv is the superstep in which v was discovered.

Proof. Assume that after superstep s all reached vertices will have distance
dk(v) ≤ sk. Lemma 1 shows this holds for s = 1. All active vertices will issue
visitations to their neighbors, traveling up to at most k hops in superstep s+ 1.
Consider a previously unreached vertex u that will be discovered in superstep
s+1 from some vertex w that was discovered in superstep s. Vertex w was on the
boundary of superstep s and has distance at most sk from the source. Therefore,
dk(u) ≤ dk(w) + k because u will be discovered from a path that is up to k hops
from w.

dk(u) ≤ dk(w) + k

≤ sk + k (inductive hypothesis)

≤ (s+ 1)k (simplification)

Through induction, dk(u) ≤ sk for a vertex u discovered in superstep s. ut

Lemma 2. If there exists a path π from the source to a vertex v, then v must
be discovered no later than superstep |π|.

Proof. We will show the lemma holds by induction. If the length of path π is 1,
vertex v shares an edge with the source. Then in the first superstep, the source
will visit all edges and discover v.

Suppose the lemma holds for any path with length i. Let π be a path with
length |π| = i+1. Then the ith vertex along the path, vi, will have been discovered
in or before the ith superstep. Now, by Algorithm 1, the vertex vi will traverse
all of its outgoing edges in or before the (i + 1)th superstep and discover the
(i + 1)th vertex along the path π. This proves the lemma holds for any path π
of length i+ 1. Therefore, the lemma holds for any path π by induction.

Lemma 3. If there exists a path from the source to a vertex v, then v will be
discovered at the latest in superstep d0(v).

Proof. If a vertex has distance d0(v), then the shortest path π∗ to v has length
|π∗| = d0(v). By Lemma 2, this path must be discovered at the latest in superstep
d0(v). ut

Theorem 2. At the end of the algorithm, all reachable vertices will have dis-
tance dk(v) ≤ d0(v)k.

Proof. By Theorem 1, dk(v) ≤ svk. We know through Lemma 3 that v will be
visited by superstep d0(v)k . Combining these, the approximation of the true
breadth-first distance is off by at most a multiplicative factor of k: d0(v)k. ut
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Fig. 1. Example graph showing two different paths from the source to a vertex v.

2.3 Bounds with Tolerance

When using the tolerance heuristic, a vertex with distance d will only propagate
a new distance dnew if the following is true:

d− dnew
d

≥ τ (1)

In the exact k-level asynchronous algorithm, all vertices that are distance

d0(v) away from the source will be visited in superstep d0(v)
k . However, since we

allow some bounded error, it is possible for a vertex to be visited in the dk(v)
k

superstep, which may be later than its original visitation. In addition, all edges
that are traversed through visitations will be visited in the same superstep in
which the visit was issued. However, not all visitations trigger a propagation of
a better distance to the vertex’s neighbors.

We will denote the discovered distance of a vertex using the tolerance heuris-
tic as dτ (v). In this section, we will prove that by using this heuristic, if a vertex

v is reached at the end of the first superstep, then dτ (v) ≤
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v) .

Lemma 4. All vertices with a true distance of 1 will propagate a distance that
is at most 1

1−τ .

Proof. Because the distance from the source to v is 1, the shortest path π∗ =<
(src, v) > will be processed eventually in the traversal. Consider that vertex v
is discovered along a path π from the source and marks itself as distance |π|.
Once the path π∗ is processed, v will not propagate its distance if |π|−1|π| < τ .

Simplifying, the length of the path is |π| < 1
1−τ . Therefore, v will propagate a

distance that is at most 1
1−τ , otherwise a repropagation will be triggered.

ut

Theorem 3. At the end of the first superstep, all reachable vertices will propa-

gate a distance at most
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v) .
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Proof. Let W (i) =
∑i−1

j=0(1−τ)
(1−τ)i

j

denote the length of the longest path that will

be tolerated by a vertex of true distance i without triggering a propagation.
Lemma 4 shows that this holds for vertices with true distance 1. Assume that
this property holds for vertices of distance i.

Let v be a vertex with true distance i+ 1 discovered along some path π. By
definition, v will not repropagate upon seeing a path πnew if the following holds:

|π| − |πnew|
|π|

< τ (2)

The shortest path πnew that could be discovered without repropagating could
have length |πnew| = W (i)+1. Any path longer than πnew would have triggered a
repropagation along the path, by definition of W (i). See Figure 1 for an example.

The vertex will not propagate the better distance if the threshold is not met:

|π| − (
∑i−1

j=0(1−τ)
j

(1−τ)i + 1)

|π|
< τ (3)

Written in terms of |π|, this can be simplified:

|π| <

∑i−1
j=0(1−τ)

j

(1−τ)i + 1

1− τ

=

∑i−1
j=0(1− τ)j

(1− τ)i+1
+

(1− τ)i

(1− τ)i+1

=

∑i
j=0(1− τ)j

(1− τ)i+1

= W (i+ 1) (definition of W (i))

The bound therefore holds for vertices with true distance i + 1 and thus all
vertices by induction. ut

As shown in Algorithm 3, a vertex always updates its distance upon seeing a
better distance, without necessarily propagating it. This means that a vertex’s
discovered distance is at most its propagated distance. That is, all vertices dis-

covered in the first superstep will have distance at most dτ (v) ≤
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v) .

Note that in the case of τ = 0, dτ (v) =
∑d0(v)−1
j=0 1/1 = d0(v). Therefore,

τ = 0 is equivalent to the exact algorithm.

2.4 Combined Bounds

By the definition of KLA, the maximum distance that any vertex can be assigned
in the first superstep is k. Therefore, for a vertex of true distance i, its discovered
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distance can be at most k. W (i) is the length of the longest path that can be
tolerated by a vertex of true distance i without propagation. However, if this
path is longer than k, then it will not be visited and thus the worst case distance
will be less than W (i). Now, solving W (i) = k for i only considering τ > 0
because, as shown above, there is no error for τ = 0, we find:

k = W (i) =

∑i−1
j=0(1− τ)

(1− τ)i

j

=

1−(1−τ)i
1−(1−τ)

(1− τ)i
(Partial geometric sum, where 1− τ > 0)

kτ =
1− (1− τ)i

(1− τ)i

kτ + 1 =
1

(1− τ)i

i = log(
1

kτ + 1
)/ log (1− τ)

If a vertex v has at most true distance i, then its discovered distance is
bounded byW (i). However, if the true distance is greater than log( 1

kτ+1 )/ log (1− τ),
then the vertex’s discovered distance can be no more than k, because the path
that causes the bound of W (i) is no longer reachable in k hops.

Therefore, if a vertex v is reached in the first superstep, the maximum dis-
tance dτk(v) that v can have is:

dτk(v) ≤


d0(v) τ = 0∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v) d0(v) ≤ log( 1
kτ+1 )/ log (1− τ)

k otherwise

Figure 2 presents the trend of this function for various values of τ and a fixed
value k = 16. We see that W (i) can grow very rapidly, but is bounded by at
most k. For τ = 0, the approximated distance is the same as the exact distance.

Using the same technique as Theorem 2, we can show that error will accu-
mulate across supersteps in an additive way. Therefore, the total distance that
a vertex at the end of the algorithm will have is dτk(v) ≤ d0(v)k.

3 Implementation

We implemented the approximate breadth-first traversal in the stapl Graph
Library (sgl) [14, 16, 15]. sgl is a generic parallel graph library that provides
a high-level framework that abstracts the details of the underlying distributed
environment. It consists of a parallel graph container (pGraph), a collection of
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Fig. 2. Computed distance dτk(v) vs actual distance d0(v) for multiple τ and fixed k.

parallel graph algorithms, and a graph paradigm that supports level-synchronous
and asynchronous execution of algorithms.

The pGraph container is a distributed data store built using the pContai-

ner framework (pcf) [31] provided by the Standard Template Adaptive Parallel
Library (stapl) [10]. It provides a shared-object view of graph elements across
a distributed-memory machine. The stapl Runtime System (stapl-rts) and
its communication library armi (Adaptive Remote Method Invocation) use the
remote method invocation (RMI) abstraction to allow asynchronous communi-
cation on shared objects while hiding the underlying communication layer (e.g
MPI, OpenMP).

4 Experimental Evaluation

We evaluated our technique on two different systems.
Cray-XK7. This is a Cray XK7m-200 system which consists of twenty-

four compute nodes with AMD Opteron 6272 Interlagos 16-core processors at
2.1 GHz. Twelve of the nodes are single socket with 32 GB of memory, and the
remaining twelve are dual socket nodes with 64 GB of memory.

IBM-BG/Q. This is an IBM BG/Q system available at Lawrence Livermore
National Laboratory. IBM-BG/Q has 24, 576 nodes, each node with a 16-core
IBM PowerPC A2 processor clocked at 1.6 GHz and 16 GB of memory. The
compiler used was gcc 4.8.4.

The code was compiled with maximum optimization levels (-DNDEBUG -O3).
Each experiment has been repeated 32 times and we present the mean exe-
cution time along with a 95% confidence interval using the t-distribution. We
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Fig. 3. Approximate BFS with tolerance heuristic on TX road network with 512 cores
on Cray evaluating (a) runtime and (b) error.

also measure the relative error of a vertex’s distance, where error is defined as
(dτk(v)− d0(v))/d0(v). We show the mean relative error across all vertices.

4.1 Breadth-First Search

In this section, we evaluate our algorithm on various graphs in terms of execution
time and relative error.

In Figure 3, we evaluate both the execution time and error on the Texas road
network from the SNAP [2] collection on 512 cores on the Cray-XK7 platform.
This graph has 1.3 million vertices and 1.9 million edges. As expected, a lower
value of τ results in slower execution time as more repropagations occur with
lower tolerance. In the extreme case of τ = 0, every message that contains a
better distance is propagated and thus it is the same as the exact version of the
algorithm. Figure 4(a) shows the number of repropagations that occur as we vary
the level of asynchrony and τ . As expected, higher values of k result in many
more visitations, while higher τ triggers relatively less visitations. This behavior
results in the corresponding time and error tradeoffs we observe in Figure 3.

Figure 4(b) shows speedup vs error on the Texas road network. Speedup is
defined as the ratio of the exact algorithm’s execution time with the fastest k
and the approximate algorithm’s execution time. If an application is willing to
tolerate error in the result, we see that we are able to achieve 2.6x speedup for
an execution with 42% error.

Figure 5 shows that we see similar benefit using the road network graph on
the IBM-BG/Q platform for a fixed value of k. We see that the exact version
of the KLA breadth-first search (τ = 0) is slower than the level synchronous
version, and the approximate version is faster than both. At 32,768 cores, the
approximate version is 2.27x faster with around 17% mean error.

Random Neighborhood. We next evaluate the algorithm on a deformable
graph that allows us to vary the diameter from very large (circular chain) to
very small (random graph). This results in graphs with different diameters by
allowing any given vertex to randomly select and connect only to its ±m-closest
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and (b) speedup over the fastest k.

●

●
● ● ● ● ● ● ●

Level Synchronous

3

4

5

6

7

8
9

0.0 0.05 0.1 0.2 0.3 0.4 0.5
τ

T
im

e 
(s

)

Approximate BFS Runtime on TX Road Network
on Cray with p = 32768 and k = 32

(a)

●

●

●

●
●

● ● ● ●

0.00

0.05

0.10

0.15

0.0 0.05 0.1 0.2 0.3 0.4 0.5
τ

R
el

at
iv

e 
E

rr
or

Approximate BFS Error on TX Road Network
 on Cray with p = 32768 and k = 32

(b)

Fig. 5. Strong scaling of approximate BFS on IBM-BG/Q platform evaluating sensi-
tivity of (a) runtime and (b) error.

neighboring vertices. This is similar to the approach described by Watts and
Strogatz [35] where the rewiring mechanism is limited in terms of distance.

Figure 6 shows the performance and error of an execution of this algorithm
on a random neighborhood graph on 512 cores on the Cray-XK7 platform.
As shown, we see a benefit for using the approximate version for higher values
of k. At a k of 512, the approximate algorithm has a 1.12x speedup over the
fastest exact version but only has an error of 0.3%. Because this graph does not
have as much opportunity for wasted work as the road network, the benefits
of approximation are not as pronounced, but we still see an improvement in
performance with negligible error.
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Fig. 6. Approximate BFS with tolerance heuristic on random neighborhood network
(n = 1, 000, 000 and m = 16) with 512 cores on Cray-XK7.

5 Related Work

Graph Processing and Breadth-First Search. The vertex-centric program-
ming model, popularized by Pregel [20] and its open-source equivalent Giraph
[3], has become a standard in parallel graph processing. The so-called think like a
vertex paradigm allows algorithm writers to express their computation in terms
of vertex programs, which describe the operations to be executed on a single
vertex and its incident edges. Whereas Pregel’s model is push-based, GraphLab
[19] offers a pull-based model based on the three operators gather-apply-scatter.

Many general purpose frameworks and runtimes [23, 21, 12] for graph process-
ing have been proposed and are used in practice. Galois is an amorphous data
parallel processing framework with support for many vertex-centric paradigms
[24]. Grappa [23] is a distributed shared memory framework designed specifically
for data-intensive applications. Graph-based domain-specific libraries [17] exist
and have been shown to perform well in practice.

Many techniques have been proposed specifically to improve breadth-first
search. Most notably, the Graph 500 benchmark [1] has sparked much research
into improving [8, 9] breadth-first search on scale-free networks for distributed-
memory architectures. A hybrid top-down bottom-up breadth-first search was
presented in [6] that shows large improvement on scale-free networks.

Approximation. Decades of research exist for efficiently approximating
graph features, including diameter [11], neighborhoods [25] and triangles [7].
In this work, we focus on single-source distance queries for unweighted graphs.

In [29], the authors propose automatic synthesis of approximate graph pro-
grams through several auto-approximation techniques. Our work is similar to the
task skipping approach where inputs from neighbors are ignored under certain
conditions. However, the authors primarily focus on single-core processing while
we consider distributed-memory parallel algorithms.

There has been a large body of work to approximate the all-pairs shortest
path problem for weighted graphs through the use of distance oracles [13, 32,
4] ([30] provides a comprehensive survey). An O(min (n2, kmn1/k))-time algo-
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rithm for computing a 2k − 1 approximation has been presented in [5]. In [27],
a distributed-memory algorithm using local betweenness is presented. We focus
our work on online queries of unweighted shortest paths from a single source.

Ullman and Yannakakis [33] show a high-probability PRAM algorithm for
approximating a breadth-first search tree by performing multiple traversals from
landmark vertices. This was extended to weighted graphs [18] on a concurrent-
write PRAM using a hop-limited traversal, similar to the k-level async model.
A recent work [22] introduces a (1 + o(1))-approximation for weighted graphs
using multiple rounds of an exact BFS.

To the best of our knowledge, our approach is the first to incorporate asyn-
chrony into the approximation and leverage the benefit of asynchronous process-
ing for performance.

6 Conclusion

In this paper, we presented a novel parallel algorithm for approximating breadth-
first distances in a graph. We provide bounds for the error of such an approach
and show that experimentally, the observed errors are much lower than the
theoretical bounds. Our implementation shows substantial benefit in some cases
with only minor losses in precision of the exact answer.
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