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Abstract. Static analysis discovers provable true properties about be-
haviors of programs that are useful in optimization, debugging and ver-
ification. Sequential static analysis techniques fail to interpret the mes-
sage passing semantics of the MPI and lack the ability to optimize or
check the message passing behaviors of MPI programs. In this paper,
we introduce an abstraction for approximating the message passing be-
haviors of MPI programs that is more precise than prior work and is
applicable to a wide variety of applications. Our approach builds on the
compositional paradigm where we transparently extend MPI support to
sequential analyses through composition with our MPI analyses. This is
the first framework where the data flow analysis is carried out in par-
allel on a cluster, with the message-carried data flow facts for refining
inter-process data flow analysis states. We detail ParFuse – a framework
that supports such parallel and compositional analysis of MPI programs,
report its scalability and detail the prospects of extending our work for
more powerful analyses.

1 Introduction

HPC systems have become increasingly complex as we step into the exascale com-
puting era. In parallel, MPI has also evolved, introducing sophisticated commu-
nication primitives for interprocess communication. Debugging and performance
tuning of message passing programs have become notoriously difficult. With the
growing complexity of writing message passing programs, tools to assist develop-
ers are crucially needed. While many dynamic and runtime tools exist to assist
MPI programmers, only a handful of static analysis based tools exist in com-
parison. Static analysis of MPI programs can discover provably true properties
about the communication behaviors of the MPI programs which are useful in
optimization, error detection and verification. For instance, compilers can re-
place point-to-point operations in a neighborhood communication pattern with
their optimized collective counterparts [11] if the MPI program’s communication
topology can be determined.

Many standard dataflow analyses such as constant propagation are MPI ag-
nostic i.e., they do not model the effects of dataflow due to MPI communication,
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losing precision at the call sites of MPI operations and thereby missing the
opportunity to apply program optimizations. Static analysis of MPI programs
require abstractions for modeling the communication behaviors where the ab-
straction must provide an interpretation for MPI operations and compute the
possible message matches. This task is challenging requiring composition of mul-
tiple static analyses.

Prior work on analyzing MPI programs have focused on a non-compositional
approach. The message passing semantics are modeled by constructing a com-
munication graph [19, 20, 2] and the analysis associates special transfer functions
for each MPI operation to interpret the dataflow information along the commu-
nication edges. Adopting a new dataflow analysis for MPI programs under this
setting requires implementing the special transfer functions corresponding to
each MPI operation. In this paper, we build on the compositional principles of
the Fuse[3] framework where we implement a suite of analyses for modeling the
MPI message passing semantics. Our approach allows any dataflow analyses to
be composed with MPI analyses which transparently adds MPI support for the
MPI-agnostic analyses.

In this paper, we offer the first static analysis method with the following
features:
– We introduce specific abstractions for MPI operations which enables us to

reach a useful level of accuracy that covers many real applications.
– Our abstractions for MPI operations are built on top of the Fuse framework

where MPI-agnostic static analyses are leveraged with MPI support through
composition with our MPI analyses.

– Our analysis is carried out in parallel on a cluster to ameliorate the cost when
analyzing an MPI program with N processes. We provide an evaluation of
the scalability of our approach.

– Visualization of possible communication matches as an automatically gener-
ated “dot graph” built using our compositional infrastructure for analyzing
MPI programs.

The rest of the paper provides background on compositional analysis and prior
work in Section 2, our abstractions for MPI semantics in Section 3, MPI analyses
that realizes our abstraction in Section 4, our parallel and compositional ParFuse
framework in Section 5 and the results in Section 6. Related work and concluding
remarks follow.

2 Background

2.1 Compositional Analysis

In a prior project [3], we introduced the Fuse compositional framework that sim-
plifies composition of static analyses through a data structure called Abstract
Transition System (ATS). ATSs are graphs where the nodes correspond to dif-
ferent possible code execution paths and edges represent transitions from one
program state to another. Static analyses can be executed on ATSs and com-
pute constraints (e.g. dataflow facts) on reachable program executions, which
are stored as annotations on each ATS node. The ATS organizes the constraints
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on reachable executions using sets of program state components (memory loca-
tions, values or operations). This allows analyses to portably communicate the
constraints on reachable executions as set constraints on state components to
other analyses, which we denote as “abstract objects”. While the abstract objects
are opaque (their individual values may be infinitely many), its implementations
must include standard set operations such as overlaps, must-equals, equal-sets,
subset etc. This enables other analyses to compare two abstract objects and
make complex inferences based on them without knowing how they were com-
puted. The graph representation for the ATS makes it easier to transparently
introduce path pruning (by eliminating nodes that correspond to impossible ex-
ecution paths), path-sensitivity or context-sensitivity (e.g. multiple copies of a
function’s body for each code location from which the function may be called).
The structure of the graph is made available via a standard graph interface and
Fuse uses it to execute additional analyses with the added precision by associ-
ating constraints on the modified graph.

Fuse enables analysis interactions through a novel query interface which al-
lows analyses to prove new constraints. The interactions between the analyses
are organized as a client-server architecture where clients are static analyses
asking questions and servers are static analyses providing answers to client’s
questions. Client queries are either a graph query or a set query where the
graph queries (GetATSInit,GetATSFin) are used for traversing the graph and
set queries (GetMemLoc,GetValue,GetCodeLoc) are used accessing the con-
straints at an ATS node. To access the set constraints at an ATS node, the
clients provide a program segment and ask for the set of memory locations,
values, or operations denoted by the program segment. The server provides an
approximate interpretation of the program segment and returns abstract objects
for the set query. The interactions are orchestrated by a composer entity which
forwards the queries from clients to the servers and returns the abstract objects
from the servers back to the clients.

Illustration Consider the source code in Fig. 1 requiring composition of mul-
tiple static analyses. The analyses constant propagation 1(b), unreachable code
elimination 1(c), points-to analysis 1(d) and constant propagation 1(e) inter-
acts using the Fuse query interface to determine the value of the expression
∗p+ 5. Constant propagation 1(b) determines the outcome of the branch condi-
tion as true. Unreachable code elimination 1(c) queries constant propagation for
GetValue(arr[1] == 3). Constant propagation responds with an abstract value
object {True} which allows unreachable code analysis to eliminate the infeasi-
ble path. Points-to traverses the modified graph and computes the constraint
p → arr[0]. Constant propagation 1(e) queries points-to for GetMemLoc(∗p)
using which it computes the value of ∗p + 5.

Key Advantages Fuse allows for a configurable program analyses where the
developer picks the static analyses to be applied on a given program. The analysis
composition is described as a composition command. The Fuse query interface
allows analyses to communicate constraints in an API-agnostic way i.e., without
being aware of analysis specific API such as LLVM’s Alias Analysis interface
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arr[0]=6 
arr[1]=3 
if(arr[1]==3) 
  p = &arr[0] 
else 
  p = &arr[1] 
print *p+5; 
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arr[1]=3 
if(arr[1]==3) 
  p = &arr[0] 
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Fig. 1: Compositional Analysis by Fuse

[13]. Fuse simplifies analysis composition and allows modular abstractions to be
introduced and flexibly composed with other analyses. We will leverage this ca-
pability in this paper to create a set of new analyses that model MPI semantics
and compose our MPI analyses with traditional analyses that model non-MPI
aspects of a program’s behavior. This enables traditional static analyses to accu-
rately analyze a wide range of properties (e.g. optimization potential or memory
safety) of MPI applications.

2.2 Prior Work : Dataflow Analysis of MPI Programs

The fundamental challenge in reasoning about MPI programs is identifying the
communication topology of the MPI program i.e., statically matching the send-
receive operations. While this problem is undecidable in general, analyses com-
pute approximations for it. The computed approximation must be sound (i.e., it
must connect each pair of send and receive operations that may possibly match)
but does not need to be complete (i.e some of the matched operations may not
actually match in a real execution). Abstracting the communication topology
requires: (1) an abstraction for the MPI operations and (2) a matching of the
send abstractions with the receive abstractions. One simple abstraction for the
communication topology is to group all the send operations into one equivalence
class and all the receive operations into another equivalence class and match the
two equivalence classes. While sound, this simple abstraction is imprecise for
practical purposes.

MPI operations can be grouped into equivalence classes based on the static
code location. Strout et al [20] use this abstraction to construct the MPI-ICFG
where the matchings are computed by (i) grouping all the send operations from
a send statement into an equivalence class (ii) grouping all the receive opera-
tions from a receive statement into an equivalence class (iii) connecting the send
and receive equivalence classes. MPI-ICFG extends the interprocedural CFG by
adding communication edges between the send and receive CFG nodes and the
dataflow analysis is performed by propagating dataflow facts over the communi-
cation edges. The matchings are further refined using tags, datatypes and simple
path constraints. This approach has two drawbacks. First, this approach uses a
single CFG for modeling the message passing behaviors and consequently, the
abstraction for MPI operations groups the MPI operations issued by different
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processes executing the same path into a single equivalence class. For instance,
consider the following code snippet

while(true) {

if(rank % 2 == 0) MPI_Send(buf ,.. rank +1);

else MPI_Recv(buf ,..rank -1);

}

MPI-ICFG for the code snippet groups the send operations of all even pro-
cesses into one equivalence class and the receive operations of all odd processes
into another and connects the two equivalence classes. While sound, this ab-
straction allows communication between process 0 and process 3 which never
happens in the original program. Furthermore, when the target expressions of
MPI operations and path constraints are complex(left-neighbor, right-neighbor
expressions), refinement of the send-receive matchings is cumbersome. Second,
this approach ignores the matches-before ordering of MPI matching semantics,
thereby losing opportunities for potential refinement.

Bronevetsky [2] constructed a parallel control-flow graph (pCFG) which im-
proves the matching precision by grouping processes into equivalence classes and
the equivalence classes were split at communication points or branch conditions
and merged whenever they were identical. Message passing semantics are simu-
lated by performing the analysis on the pCFG. To precisely match MPI opera-
tions in pCFG, the analysis would first block on corresponding MPI operations
and the symbolic constraints on the target expression of a send must isomor-
phically match the symbolic constraints on the target expression of a receive
operation. While scalable, this approach makes matching difficult when complex
abstractions are used to describe the equivalence classes and target expressions
evaluating to multiple values.

3 Approximating MPI Semantics

Our key insight is that computing an approximation of the communication topol-
ogy with a reasonable precision on an unbounded number of processes is expensive
and cumbersome. In our approach, we relax the unbounded constraint and fix the
number of processes and compute an approximation for a fixed number of pro-
cesses. This means that the program must be analyzed separately for each
number of processes the user wants to run with; this can be done as a final
compilation pass at job load-time.

Abstracting MPI Operations Our approach analyzes a concurrent MPI
program with N processes using a cross-product of the ATSs given by AT1 ×
AT2×· · ·×ATN

where we associate an analysis instance for each process. For ab-
stracting the MPI operations, we group MPI operations issued from an ATS node
of a process into an equivalence class. Our abstraction differentiates the MPI op-
erations issued by different processes, in different locations in the code, which
allows ParFuse to compute more precise matchings than previous approaches.
Furthermore, our abstraction allows ParFuse to compute process-sensitive value
approximations (i.e., specific to each process) for the buffers of the MPI opera-
tions.
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MPI Matching The challenge in matching the abstractions for MPI opera-
tions i.e., their equivalence classes, is that they must be matched following the
out-of-order matching semantics of the MPI. Blocking operations are matched in
the program order i.e., the order in which they are issued by the program. How-
ever, non-blocking operations are matched out of order i.e., two non-blocking op-
erations to two different process are matched in any order. But two non-blocking
operations to the same process are matched in the program order. MPI enforces
this by the non-overtaking rule. One way to formalize the out-of-order matching
of MPI is through matches-before relations. Vakkalanka et al [21] introduce intra
matches-before relations (within a process) between the MPI operations issued
by a process where the matches-before relations are due to the MPI matching
semantics. The intra matches-before ordering between the operations is summa-
rized as follows.

– Two blocking or non-blocking MPI point-to-point operations are matches-
before ordered if they are send/receive to the same process and two oper-
ations are unordered if they are send/receive to different processes (non-
overtaking rule).

– The non-blocking point-to-point operations are ordered before their respec-
tive MPI Wait operations.

– MPI-specific strong-ordering points such as Barrier and Wait are matches-
before ordered with any MPI operations that follow in program order.

Explicitly matching the equivalence classes of MPI operations following the
matches-before ordering is cumbersome in practice. We simplify matching by
delegating the task to the MPI runtime. In our approach, when a dataflow anal-
ysis reaches the ATS node of a send or a receive equivalence class it issues the
operation to the MPI runtime where they are matched and exchange dataflow
facts as the message payload.

While our approach simplifies MPI matching, it imposes three restrictions:
First, we require that the matches-before ordering must be exactly determinable
at compile time. Second, we require that the MPI operations are deterministic
as the non-deterministic MPI operations have many possible matching choices
that are not explored by the MPI runtime. Third, we require the divergent
paths of the MPI processes where MPI send/receive operations are potentially
issued to be loop-free. While these restrictions may seem onerous, we believe that
composable static analysis of many MPI programs can be achieved under these
restrictions, and that the data flow facts obtained under these restrictions can
prove to be useful, while guaranteeing soundness. In particular, all of our MPI
benchmarks yielded useful data flow facts under these restrictions. Furthermore,
by introducing new MPI analyses (i.e., improving the MPI abstractions), our
framework allows MPI-agnostic analyses to be MPI-aware on a larger set of
applications. By fixing the number of processes and using the MPI runtime for
matching provides ParFuse an unique opportunity towards building a parallel
dataflow analysis framework for MPI programs where the framework is deployed
as an MPI application.
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Novelty Our approach improves upon the prior work where our abstraction
for MPI operations allows ParFuse to compute more precise matchings. We differ
from other approaches in matching the MPI abstractions where we delegate the
matching to the MPI runtime. By performing the matching on the fly we do not
require a priori construction of a communication graph for dataflow analysis.
We realize our abstractions by implementing MPI specific analyses in the Par-
Fuse framework. Our method allows analysis of each process to be carried out
independently in parallel allowing ParFuse to scale better. Lastly, by building on
the compositional principles of Fuse framework our work enables compositional
reasoning of MPI programs.

4 MPI Analyses in ParFuse

Our approach for approximating MPI semantics is based on the following key
ideas. First, we relax the unbounded process constraint by fixing the number
of processes for the analysis. Second, we associate the MPI operations issued
from an ATS node into a group. Third, we match the send-receive groups using
the MPI runtime and exchange dataflow facts as message payload in-lieu of
actual messages. We realize these novel ideas by modularly introducing MPI
specific analyses into analysis composition using Fuse’s compositional principles
and transparently extending MPI support to existing MPI-agnostic analyses.

MPI Context Sensitivity (MCC) The role of MCC is to implement our
abstraction for MPI operations by replacing the context-insensitive single copy
of the ATS node for an MPI function body (empty stub) with multiple copies
creating one copy for each call site. MCC operates on an input ATS and emits a
MPI context sensitive ATS as its output. Observe that the ATS node is specific
to each process and context of MPI operations at two different processes are not
equal. The successors of MCC operate on the MPI context sensitive ATS allowing
them to interpret the message passing semantics due to MPI operations issued
from the same ATS node.

MPI Value (MV) MPI value provides semantic interpretation of MPI spe-
cific variables rank (the pid of the MPI process) and size (the total number of
MPI processes). The values of rank and size are assigned by the MPI runtime
when the program executes the functions MPI Comm rank and MPI Comm size

respectively. The transfer function of MV semantically interprets the two MPI
operations MPI Comm rank and MPI Comm size using MPI COMM WORLD as
the argument and assigns positive integer constants to the variables rank and
size as assigned by the MPI runtime. Analyses such as constant propagation
when composed with MV, can infer new information based on the values com-
puted by MV.

MPI Communication (MCO) MPI communication analysis provides se-
mantic interpretations for the MPI communication operations such as MPI Send,
MPI Recv by executing the operations. The message payload is the dataflow facts
corresponding to the buffer of the MPI operations. MCO traverses the ATS of a
previously completed analysis and at ATS nodes of MPI communication oper-
ations queries a prior analysis for the set of values denoted by the buffer using
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the Fuse query interface function GetValue. The abstract value object obtained
from a prior analysis is serialized using the boost serialization API [1]. The MCO
executes the MPI Send operation to transmit a serialized representation of the
abstract value object as the message payload.

The envelope information of the MPI operations such as target and tag

must be known to execute the MPI operations. As such, the execution of MCO
must be preceded by a value analysis, such as constant propagation, which can
compute this information. Then MCO can obtain the values for target and
tag by the value analysis by calling GetValue on these variables. The MCO
analysis requires that the values of the expressions target and tag evaluate to
integer constants and aborts if the values are unknown. The restriction that the
matches-before ordering of the MPI operations be exactly determinable at static
time ensures that the values of the expressions exactly target and tag evaluate
to integer constants. With the values for target, tag and *buf obtained from a
prior analysis, MCO transmits the analysis information to the MPI runtime by
executing the MPI operations.

MCO of the receiveing process deserializes the received information and caches
the abstract value object at the call site of the MPI Recv operation. The value
approximation computed by a dataflow analysis is moved from the MCO of a
sending process to the MCO of the receiving process. The portable query in-
terface makes it possible for ParFuse to transparently add a dataflow analysis
into the analysis composition and MCO propagates the dataflow facts from one
process to another through the MPI runtime.

5 ParFuse Framework

We realize our methods for analyzing MPI programs in the ParFuse framework.
ParFuse creates N instances of the Fuse compositional analysis framework, one
for each ATS graph of a process. Each Fuse instance Fi executes an identical
composition command containing a list of analyses that are composed using
sequential composition where the analyses are executed one after the other. The
ParFuse framework with N Fuse instances is deployed itself as an MPI program
where each MPI process is a Fuse instance.

5.1 Analysis Composition Recipe

The standard dataflow analyses such as constant propagation(CP), points-to
analysis(PT), unreachable code elimination(UC), calling context sensitivity(CCS),
array analysis(ARR) have been observed to be useful to compose with our MPI
analyses and will be the focus of our experiments, although any standard dataflow
analyses can be composed in the ParFuse framework. First, these analyses ben-
efit from MPI semantics provided by the MPI analyses. Second, these analyses
are also instrumental in static determination of the matches-before ordering re-
quired by the MPI analyses. We illustrate this using a simple example shown
in Fig. 2a. Let CC denote the composition command and we will add analyses
to CC based on the demands of the MPI program. For notational convenience,
we differentiate two instances of an analysis appearing in CC using subscripts.
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For instance, CP1 is the first instance of constant propagation and CP2 is the
second instance. Fig 2a shows the base ATS graph computed by the syntactic
analysis(SYN) that transforms the source code to an ATS and provides syntactic
constraints for memory, values and code locations. MPI analysis begins with the

if rank == 0 

comm_rank(&rank) 

x=5 

send(&x, rank+1) 

if rank == 1 

recv(&y, rank-1) 

x=y+1 

print x 

(a) Base ATS Graph

if rank == 0 

comm_rank(&rank) 

x=5 

send(&x, rank+1) 

if rank == 1 

recv(&y, rank-1) 

x=y+1 

print x 

send(&x, rank+1) recv(&y, rank-1) 

Entry 

Exit 

MPI_Send 

Entry 

Exit 

MPI_Recv 

(b) MCC ATS Graph

if true 

comm_rank(&rank) 

x=5 

send(&x, 1) 

if false 

recv(&y, -1) 

x=y+1 

print x 

send(&x, 1) recv(&y, -1) 

Entry 

Exit 

MPI_Send 

Entry 

Exit 

MPI_Recv 

GetValue (rank) 

(c) CP ATS Graph

if true 

comm_rank(&rank) 

x=5 

send(&x, 1) 

print x 

send(&x, 1) 

Entry 

Exit 

MPI_Send 

GetValue (rank==0) 

(d) UC ATS Graph

Fig. 2: Analysis Composition Recipe: Illustration

abstraction of MPI operations and we introduce MPI Context Sensitivity(MCC)
into analysis composition which assigns a unique context to MPI operations
based on the ATS node.

CC = SEQ(SYN,MCC)

The ATS graph extended by MCC calling-site context for each MPI operation
is shown in Fig. 2b. The ATS graph constructed by MCC is identical for both
process 0 and process 1. For matching the send-receive groupings using the MPI
runtime, determining the value of the target expressions rank + 1 and rank− 1
of the send and receive operations is critical. We will extend the composition
command CC with points-to (rank is passed using pointers to MPI Comm rank),
constant propagation (to propagate initial constants from MPI headers to MPI
operations), MPI value (which interprets MPI Comm rank) and another constant
propagation (propagate the rank value to target expressions) to determine the
value of the target expressions of the send and the receive operation. Unreachable
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code elimination (UC) is then added to prune infeasible paths.

CC = SEQ(SYN,MCC,PT,CP1,MV,CP2,UC)

The ATS graph for process 0 after CP2 is shown in Fig. 2c and the ATS graph
after UC is shown in Fig. 2d.

With the value of target expressions known, we can now introduce MPI
communication analysis for matching the send-receive groupings using the MPI
runtime and propagating the dataflow fact {x} → 5 from the send call site
of process 0 to the receive call site of process 1. This is illustrated in Fig. 3
The points-to composed earlier disambiguates the points-to relations at MPI

if rank==0 

comm_rank(&rank) 

x=5 

send(&x, 1) 

print x 

send(&x, 1) 

Entry 

*p 

MPI_Send 

Exit 

if rank!=0 

comm_rank(&rank) 

if rank==1 

recv(&y, 0) 

x=y+1 

recv(&y, 0) 

print x 

Entry 

*p 

MPI_Recv 

Exit 
p -> x p -> y 

*p->5 

y=5 

GetValue (*p) 
GetMemLoc(*p) 

Fig. 3: MPI Runtime Matching Using MCO

call sites. MCO of process 0 queries CP2 of process 0 for the values of x and
propagates the value from the sender (rank=0) to the receiver(rank=1). The
received value object is cached by the MCO of process 1. By adding another
instance of constant propagation after MCO, the received value is propagated to
the rest of the program.

CC = SEQ(SYN,MCC,PT,CP1,MV,CP2,UC,MCO,CP3) (1)

The analysis composition CC described above is the basic recipe for analyzing
MPI programs with message passing behaviors. The Fuse query interface allows
for transparent exchange of dataflow facts between the analyses and the MPI
communication analysis(MCO) communicates the dataflow facts through MPI
message passing operations.

5.2 Illustration: Configurable Analysis of MPI Programs

We demonstrate the flexibility of our approach by proving a message passing
dependent property shown in Fig. 4 that requires a non-trivial composition of
standard dataflow and MPI analyses. ParFuse proves the property with two Fuse
instances using the following analysis composition.

CC = SEQ(SYN,MCC,PT,CP1,MV,CP2,UC1,MCO1,CP3,UC2,CP4,MCO2,CP5)
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if(rank == 0) {

x = 2;

MPI_Send (&x, 1, MPI_INT , rank+1, 0, MPI_COMM_WORLD);

MPI_Recv (&z, 1, MPI_INT , rank+1, 0, MPI_COMM_WORLD ,

MPI_STATUS_IGNORE);

}

else if(rank == 1) {

MPI_Recv (&y, 1, MPI_INT , rank -1, 0, MPI_COMM_WORLD ,

MPI_STATUS_IGNORE);

if(y==2) z = 3;

else z = 4;

z = z+2;

MPI_Send (&z, 1, MPI_INT , rank -1, 0, MPI_COMM_WORLD);

}

assert(z == 5);

Fig. 4: Configurable Program Analysis Example

The analysis composition consists of 13 instances of dataflow analyses which are
composed sequentially one after the other. The two Fuse instances are executed
independently of each other where MCO1 propagates the value of x from the
sender to the receiver. CP3 propagates the received value to the branch condi-
tion, using which UC2 eliminates the infeasible path. CP4 on the receiver side
computes precise value for z which is propagated back to the sender using MCO2.
Finally, the newly received value is propagated to the assert statement by CP5.
The compositional reasoning of ParFuse simplifies the task of proving the mes-
sage passing dependent property which is otherwise cumbersome when using the
existing non-compositional static analysis techniques for MPI programs. ParFuse
makes it possible to configure program analyses to target the complexity of the
program and the property to be proven. ParFuse also makes it easy to add
new MPI analyses implementing different abstractions for MPI operations with
varying cost/accuracy tradeoffs.

6 Experimental Results

We implemented the ParFuse framework in the ROSE [18] compiler infrastruc-
ture where our current implementation provides semantic interpretations for
the following MPI operations: MPI Comm rank, MPI Comm size, MPI Barrier,
MPI Bcast, MPI Send, MPI Recv and MPI Reduce. Our goal is to evaluate the
performance of realistic compositions of analyses that include our MPI analyses.
Instead of timing the executions of MPI analyses, we will pick a concrete analy-
sis task, compose a variety of standard dataflow analyses with MPI analyses to
accomplish this task and measure the performance of the analysis execution for
varying process counts. Two factors determine the choice of our analysis compo-
sition: (i) analysis composition required to accomplish the concrete analysis task
(ii) analysis composition required to resolve the send-receive matching unam-
biguously. The communication topology of an MPI program is a useful property
to be known statically with many applications such as debugging, overlapping
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the computation with communication, optimal process placement etc. For the
concrete analysis task, we will synthesize the communication topology of the MPI
program as a DOT [10] graph. For this, we will compose MPI Dot Value(MDV)
(a visualization tool) with our MPI analyses. MDV assigns unique id to the call
sites of MPI send operations. The MPI Communication analysis(MCO) employs
the Fuse API GetValue to obtain the unique id as a value object from MDV
and transmits the value object to the matching receive call sites. The MDV at
a receiving process employs the Fuse API GetValue and queries MCO to update
the receive call sites with the received information. The communication graph
in the DOT language is then synthesized by adding edges between send and
receive ATS nodes using the received information. MDV also exemplifies the ver-
satility of the ParFuse framework where non-dataflow facts such as unique ids
are exchanged through our compositional principles.

We chose the following MPI programs: (i) Jacobi [16] iteration solving the
Laplacian equation in two dimensions (ii) Heat [6] equation solver solving the
time dependent heat equation in one dimension (iii) 2D Diffusion [9] solver solv-
ing the diffusion equation (iv) Prime [5] counting parallelized using MPI (v)
Quadrature [4] approximating an integral using the quadrature rule for our
study. The programs are of varying complexity in their source code requiring
different analysis composition to unambiguously resolve the send-receive match-
ing. Table 1 summarizes the analysis composition required for each benchmark
to synthesize the communication topology as the DOT graph. The analyses are

Table 1: Analysis Composition Summary
Benchmark Analysis Composition

Jacobi SEQ(SYN,MCC,PT1,CP1,MV,CP2,UC,ARR,PT2,MDV1,MCO,MDV2)

Heat
SEQ(SYN,CCS,MCC,CP1,ARR1,CP2,PT1,MV,CP3,UC,CP4,ARR2,PT2,

MDV1,MCO,MDV2)

2D Diffusion
SEQ(SYN,CCS,MCC,CP1,ARR1,CP2,PT1,MV,CP3,UC,CP4,ARR2,PT2,

MDV1,MCO,MDV2)

Prime SEQ(SYN,CCS,MCC,CP1,PT,MV,CP2,UC,MDV1,MCO,MDV2)

Quadrature SEQ(SYN,CCS,MCC,CP1,PT,MV,CP2,UC,MDV1,MCO,MDV2)

repeatedly applied as the reapplication discovers new information. For instance,
to determine the memory locations denoted by the expression arr[maxn/size],
where size is assigned by MPI Comm size, constant propagation (CP) must be
reapplied after MPI value (MV). The array analysis (ARR) composed after the CP
queries CP for the value of the index expressions and consequently, determines
the set of memory locations denoted by the the expression arr[maxn/size].
We evaluated the performance of our analysis composition with varying process
counts up to 1024. The experiments were performed on a cluster with over 290
nodes(5104 cores, 32GB memory per node). The nodes are Intel Xeon (Sandy-
bridge/Ivybridge E5-2670 and Haswell) processors and are connected through
the Mellanox FDR Infiniband interconnect. Figure 5 shows the plots comparing
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Fig. 5: Scalability Evaluation

the average execution time (wall time) of the application and the analysis com-
position for each benchmark. The input problem size for the applications Jacobi,
Prime and 2D Diffusion was not changed and with increasing process count they
exhibit strong scaling whereas the input problem size for applications Heat and
Quadrature was increased proportionally to the number of processes and they
exhibit weak scaling. Figures 5a to 5e show a weak scaling for our analysis compo-
sition. Our results show that our approach scales linearly with increasing process
counts. The challenge lies in picking the suite of analyses for disambiguating the
communication and carrying out the analysis task for proving properties. Our
current method is partial where the analyses are manually picked based on the
complexity in the source code (arrays, pointers, mpi variables etc.). We repeat-
edly apply the analyses until the necessary information for disambiguating the
communication is determined. We can overcome this challenge i.e., the phase or-
dering problem [7] by performing a tight composition which is computationally
expensive and learning based approaches [12] that learns the characteristics of
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the code being optimized and decides the best ordering of the analyses. Tight
composition [14] evades the phase ordering problem by discovering all the in-
formation in one phase. Our preliminary implementation of tight composition
reveals that this effort merits further investigation.

7 Related Work

In Section 2.2, we summarized prior work on dataflow analysis of MPI programs.
In this section, we will summarize non-dataflow static techniques for analyzing
MPI programs and dataflow analysis techniques for non-MPI message passing
programs. McPherson et al [15] employed a tree based data structure for under-
standing the call sites of the MPI operations. The tree based structure allowed
them to compute the value of target expressions when they involve rank and size

on demand. They used a bit vector for a process sensitive computation of the
target expressions of the MPI operations. Similar to our approach, they bound
the number of processes and determine the values of target expressions and the
message payload size at the call sites of the MPI operations. Their approach did
not however match the send receive operations and simulate the message pass-
ing behaviors. Droste et al [8] implemented static checks purely based on the
AST of the program. While the tool implements many useful checks based on
the ATS, it was able to match MPI operations only when the target expression
is trivial (constants) and the other arguments are exactly the same. Their tech-
nique solely relied on the AST producing sub-optimal results when matching
point-to-point MPI operations. Reif [17] introduced a monotone lattice theo-
retic dataflow framework for communicating concurrent processes. Similar to
our approach, Reif bounded the number of processes. The matching however
was computed explicitly considering the semantics of the message passing op-
erations. The framework was monolithic and was applied on a simpler message
passing model than MPI.

8 Concluding Remarks

This paper presents a compositional approach towards building a dataflow anal-
ysis framework for analyzing MPI programs. Our approach builds on the compo-
sitional principles of the Fuse framework where abstractions for message passing
operations are modularly introduced, by adding MPI specific analyses into anal-
ysis composition. We implemented a specific abstraction for MPI operations
that allowed us to compute a more precise matching of the MPI operations than
previous approaches. We adopted a simple solution for matching MPI abstrac-
tions by delegating it to the MPI runtime where our analysis is not burdened
with simulating the complex matching semantics of MPI. Our compositional
approach provides a mechanism to extend sequential dataflow analyses to work
with MPI programs. Standard dataflow analyses can be transparently added into
the analysis composition with the MPI analyses where the MPI analyses handles
the task of abstracting message passing semantics. Our design choice of fixing
the number of processes provided us a unique opportunity for carrying out the
analysis of each process independently of each other, allowing the analyses to be
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executed in parallel on a cluster and help our techniques scale for a large number
of processes. The framework is also first in its kind where the dataflow facts are
exchanged as message payload in lieu of actual messages.
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