
Polygonal Iteration Space Partitioning

Aniket Shivam1, Alexandru Nicolau1, Alexander V. Veidenbaum1,
Mario Mango Furnari3, and Rosario Cammarota2

1 University of California Irvine, Irvine, USA
2 Qualcomm Research, San Diego, USA

3 ICIB - National Council for Research, Pozzuoli, Italy

Abstract. This work presents a new set of loop transformations to ex-
pose and maximize data locality in loop-nests with non-uniform reuse
patterns. The proposed set of transformations use the norms of the Poly-
hedral Model to represent loop-nests and then leverages such a represen-
tation to partition the iteration space into polygonally shaped partitions
with maximum locality. However, the partitioning algorithm tends to
produce partitions with complex geometry (shape) and with progres-
sively smaller number of iterations, which, in practice, introduces much
run-time overhead. This work also focuses on containing the number of
partitions and properly manage their geometry at run-time, to contain
unnecessary overhead. The proposed transformations also exposes loop
level parallelism, by grouping together independent iterations, thus im-
proving performance of both serial and parallel execution. In parallel
execution a selective mapping of partitions to threads based on the type
of reuse these partitions exhibit is proposed.
The proposed transformations show a consistent performance speedup
on serial execution (up to 1.2x over Polly) and parallel execution (up to
3.17x over PLuTo) of some loop-nests.

Keywords: Polygonal Partitions, Shape and Size Independent Tiling,
Temporal Locality, Polyhedral Model.

1 Introduction

Modern compilers, such as LLVM, GNU GCC and Intel ICC perform many loop
transformations, such as tiling, strip-mining, fusion and interchange [10], to
speedup program execution. Loop transformations, such as tiling [7], focus on
grouping iterations (tiles) to improve data locality. Such transformations effec-
tively speedup program execution when loop-nests exhibit uniform reuse dis-
tances between loop statements and across loop iterations. Tiles shape and
size, determined based on the cache hierarchy organization, are usually constant
and repeat during the loop execution to include all the iterations. For exam-
ple, in a doubly-nested loop where iteration Ii,j accesses array index Ai−1,j−1

and Ai+1,j+1, the formation of either square or rectangular tiles would help in
improving locality. Tiling ensures that data remains in cache until Ii−1,j−1 and
Ii+1,j+1 are computed.



2 Shivam et al.

However, tiling loop-nests with non-uniform reuse patterns still remains a
challenge, due to the impossibility of defining a single set of dependency vectors
which can govern a tile size and shape. For example, if iteration Ii,j accesses
array index Ai,j and Ai+j,j , neither a single fixed-shape tile nor a symmetric tile
can ensure improved cache data reuse during the whole execution of the loop-
nest. The technique proposed by Meister et al. [9] for partitioning loops works
irrespective of reuse pattern, i.e., it is not bound by constraint of shape and size
of the tiles or partitions. The price of such a technique, however, is that the
management of the boundary condition for the tiles introduces much instruction
overhead, which the halt condition of the original partitioning algorithm does
not account for.

This work proposes a new set of loop transformations to address the case of
loop-nests with non-uniform reuse patterns, and to cope with the management
of the execution of tiles of arbitrary shapes. Our proposed technique represents
a loop-nest in the norms of the Polyhedral Model and then categorize itera-
tions, i.e., create partitions based on the number of iterations that can linked
by the reuse of their accessed data elements. In principle, the process could in-
discriminately proceed until all the iterations in the loop belong to a partition.
Alternatively, the compilation process may be set to halt at a predefined maxi-
mum number of partitions. However, the number of partitions has to be selected
appropriately based on the characteristics of the loop-nest and the features of the
target architecture to achieve maximum performance. We show that an optimal
number of partitions can be determined per loop. Selecting more than the opti-
mal number of partitions would introduce much overhead at run-time, whereas
selecting less than the optimal number of partitions would miss a portion of
exploitable locality and hence reducing speedup in both cases.

The proposed technique is implemented using the integration of source-to-
source optimizer PLuTo4 with PolyLib5 library. The performance of the tech-
nique is compared against the combination of loop transformations already sup-
ported in Polyhedral Frameworks like Polly6 and like PLuTo [4] (later compiled
with ICC). Experimental results show a consistent speedup up to 1.2x w.r.t. Polly
on serial execution and up to 3.17x w.r.t. PLuTo on parallel execution.

The rest of the paper is organized as follows: Section 2 presents our pro-
posed set of loop transformations. Section 3 presents our experimental setup
and results. Section 4 presents and comments on prior and related work. Finally,
Section 5 summarizes our findings and presents our conclusive remarks.

2 Polygonal Iteration Space Partitioning

The proposed technique for generating the polygonal partitions of a loop-nest is
presented in this section.

4 PLuTo: http://pluto-compiler.sourceforge.net
5 PolyLib: http://icps.u-strasbg.fr/∼loechner/polylib/
6 Polly (LLVM Plugin): http://polly.llvm.org



Polygonal Iteration Space Partitioning 3

2.1 Determining Reuse using the Polyhedral Model

With the polyhedral representation of a nest of loops, a set of mathematical
equations can be derived for identifying the data accessed by the references in
a statement. For each instance of a statement in the body of a loop-nest, an
iteration vector I is defined. For instance, if the enclosed statement accesses the
data at a particular position of a multi-dimensional array A, the exact location
of the data (A(I )) can be calculated as: A(I ) = R × I + r. The reference
matrix, R, is based on the coefficient of the iteration variables in the subscript
representing the data access in A. Whereas, the offset vector, r, represents the
constant from the subscript. For a D-dimensional array A, with N being the
depth of the loop-nest, R will be a D×N matrix and r will be a D-dimensional
vector identifying an offset in each dimension. To provide a explanatory example,
consider the following loop-nest:

f o r ( i = −N; i <= N; i++)
f o r ( j = −N; j <= N; j++)

X[ i , j ] = Y[ i , i+j +3] ∗ Y[ i+j , j ] ;

The reference Y[i,i+j+3] references a two dimensional array Y enclosed in a two

dimensional loop-nest. Therefore, R will be a 2 × 2 matrix,

(
1 0
1 1

)
. Each row

represents the projection of the reference along each dimension of the array, i.e.,
the value of subscript in each dimension (i and i+j+3). The column represents
the coefficient associated with each iteration variable (i and j) of the loop-nest.

The offset vector r is a column vector,

(
0
3

)
, representing the offset for reference

along every dimension, i.e., the constants in the subscript. An iteration I can
be substituted using a column vector (i j). Each reference to the array is an
unique combination of (R, r). The pair is represented as Γ to locate the accessed
data point by an iteration. Γ is a function which computes the image of the
polyhedron. In the above loop-nest, the two references to the array Y are written

as: Γi,i+j+3 =

(
1 0
1 1

)
I +

(
0
3

)
and Γi+j,j =

(
1 1
0 1

)
I +

(
0
0

)
.

Suppose, there is reuse of a data by two different references Γα and Γβ in
iterations Iα and Iβ respectively. Then, the dependence between two iterations
can be described using Equation 1.

Γα = Γβ ⇔ RαIα + rα = RβIβ + rβ (1)

Therefore using Equation 1, as suggested in [9], the temporal reuse relation
or dependence relation, T , between Iα and Iβ can be formally represented by
Equation 2.

R−1
β RαIα +R−1

β (rα − rβ) = Iβ ⇔ TαβIα + tαβ = Iβ , iff R is invertible. (2)

The reuse relation T is a combination of (Tαβ , tαβ), where Tαβ = R−1
β Rα

and tαβ = R−1
β (rα− rβ). Substituting a particular iteration in place of Iα yields

another iteration (Iβ) that reuses the same data. If and only if R is invertible,
then T can be computed. Therefore, the reference matrix R needs to be an square
matrix. This implies that it is critical for the application of this technique that



4 Shivam et al.

the dimensions of the involved array is same as the depth of the loop-nest. This
reduces the applicability to the loops with references that generate an invertible
reference matrix R and hence an invertible T . However, using R and T makes it
possible to determine if a data accessed by Iβ using Γβ is also accessed by Iα using
Γα, Iα = T−1

αβ Iβ - T−1
αβ tαβ . Therefore, the temporal reuse relation T = (T, t) for

the loop-nest in the example is: T =

(
0 −1
1 1

)
and t =

(
−3

3

)
using Equation

(2). In the example above, to check if the data accessed by an iteration, say i
= 2 and j = 1, using reference Γi,i+j+3, is also accessed by another iteration
using the reference Γi+j,j . Substituting the iteration vector by (2,1) in Equation

2,

(
0 −1
1 1

)(
2
1

)
+

(
−3

3

)
, yields vector (-4,6). Therefore, it can be concluded

that iterations (2,1) and (-4,6) have reuse.

2.2 Partitioning Technique

The goal of our proposed technique is to identify and execute non-adjacent par-
titions of the iteration space in an order such that the data is reused in the
cache. For an unoptimized version of the loop-nest, this data would have been
flushed out of the cache before its reuse. These partitions are thereafter grouped
based on the locality of the data their iterations access. Hence, all the partitions
accessing the same set of data are aggregated. Assuming there are two references
Γα and Γβ to an array in a single statement in the loop-nest. The primary step
is to partition the iteration space (D) in three sets denoted by L, P1 and P2.
• P1 contain iterations that reference the data using Γα that another iteration
in D accesses by Γβ , i.e., these iterations have an image in D using relation T .
• Iterations referencing the data using Γβ that is also referenced by another
iteration in D using Γα form the set P2. These iterations are the images of the
iterations in P1. In other words, they have a Pre-Image in D (Image(T −1,D)).
• The rest of the iterations in D, i.e., the iterations that reference the data which
is not referenced by another iteration are included in the partition denoted by
L. These iterations neither project nor they are projected in D using T . Hence,
D = P1+P2+L.

The sets P1 and P2 can be further categorized into three subsets named C,
D1 and D2, in addition to L.
• C: These iterations belong to both P1 and P2, i.e., C=P1 ∩P2. Data accessed
by these iterations using both the references (Γα and Γβ) is also accessed by
other iterations.
• D1: These iterations belong to P1 only, i.e., D1=P1-C or D1=P1-P2. The data
accessed by Γα of these iterations is accessed by other iterations. Data accessed
by Γβ is not reused.
• D2: These iterations belong to P2 only, i.e., D2=P2-C or D2=P2-P1. Similarly,
the data accessed by these iterations using Γβ is reused, whereas data accessed
by Γα remains unused.



Polygonal Iteration Space Partitioning 5

(a) DC1 (b) C1 (c) DC2

(d) C2
(e) Set Representation

Fig. 1: Classification of iterations - formation of the sets DC1, C1, DC2, C2.

After categorizing the iterations based on the reuse of their accessed data, a
further sub-categorization is performed such that each subset is executed in a
specific order to improve the temporal locality. That is, iterations having reuse
among them and forming smaller partitions (DCk and Ck) are linked together.
Fig. 1 shows a graphical illustration of how iterations are categorized.
• DC1: D1 iterations that link to D2 iterations by T , i.e., DC1 = D1 ∩T −1(D2).
• C1: C iterations that are linked to themselves by T , i.e., T (C1) = T −1(C1).
• DC2: D1 iterations that link to C iterations that link to D2 iteration, i.e., D1

iterations that link to D2 iterations by T 2, DC2 = D1 ∩ T −1(C) ∩ T −2(D2).
• C2: The remaining C iterations that form cyclic-link with one other iteration in
C, i.e., C iterations that are linked to themselves by T 2, C2 = C ∩ T −1(C)∩ {I ∈
C|T 2I + Tt+ t = I} − C1.
After k repetitions of the previous steps:
• DCk: D1 iterations that link to chain of k − 1 C iterations and at the end
link to a D2 iteration by T k, i.e., DCk = {I ∈ D1|Tt + t ∈ C, T 2I + Tt + t ∈
C, ...., T kI + T k−1t+ ...+ Tt+ t ∈ DC2}.
• Ck: The remaining C iterations that are linked to themselves by T k forming
a cyclic-link of k C iterations, i.e., Ck = {I ∈ C|Tt + t ∈ C, T 2I + Tt + t ∈
C, ...., T kI + T k−1t+ ...+ Tt+ t = C} − {C1 + ....+ Ck−1}.

These repetitive steps generate partitions based on the number of iterations
that can linked by reuse of their accessed data elements. This partitioning tech-
nique requires a halting condition such that the number of steps of the algo-
rithms, k, can be determined and so does determines the number of partitions
that it creates. As mentioned in [9], the value of k can be chosen as: (a) If after
the kth repetition of the algorithm, the entire iteration space (D) is completely
partitioned. At this point T k is an identity matrix, where T is represented as(
T t

0..0 1

)
, and (b) If value of k is preset, the algorithm stops after the k repeti-

tions and put the rest of the iterations in Ck+1.
The partitions categorized as either DCi or Ci, where 1 ≤ i ≤ k, are disjoint



6 Shivam et al.

partitions spread across the iteration space. Therefore, the partitions labeled as
DCi can be numbered based on the position of their containing iterations in the
chain. In the DCi partitions, the first partition containing only D1 iterations are
labeled as DC0i . The next i− 1 partitions containing C iterations are labeled as
DC1i , DC

2
i ,...,DC

i−2
i and DCi−1

i . The last partition in the chain containing D2

iterations is labeled as DCii. The same naming paradigm is followed for Ci par-
titions. These i partitions are labeled as C0i , C1i ,...,Ci−2

i and Ci−1
i . The number

of iterations in the partitions of similar type is always equal, since the itera-
tions in the successive partitions are the images of the iterations in the previous
partition.

2.3 Orchestrating Formation of the Partitions

Premature Halting. An indiscriminate application of the algorithm introduce
overhead at run-time due to large number of small sized partitions, which is not
considered in the halting conditions defined above. The increase in the num-
ber of partitions increases the control statement overhead in the restructured
loop-nest. Therefore, in the partitions with very few iterations the gain in per-
formance from better locality is overshadowed by the control overhead needed
to manage such partitions.

We introduced an termination method for the algorithm so that the control
statement overhead does not overshadow the speedup gained through maximiz-
ing locality, by predicting the minimum tile size. Specially in loop-nests where
the longest chain of linked iteration is very long, i.e., T k generates an identity
matrix for a very high value of k, say kmax, it is critical to find an optimal value
of k < kmax to protect gained speedup from increasing control overhead. This is
applicable to most loop nests with one dimensional non-uniform reuse pattern.
Therefore, the algorithm is halted after partitioning for T k and the remaining
iterations form partition Ck+1. From our experiments, it can be deduced that
the algorithm must be halted if the number of iterations in newly generated
partitions is below 25× 25, .i.e., 625 iterations.7

Multi-Level Tiling. The partitions generated on each repetition of the tech-
nique are labeled as DCi and Ci, where 1 ≤ i ≤ k. Partitions labeled as DCi
or Ci are set of separate and distantly located partitions of the iteration space.
The execution order of these partitions influences the improvement in locality or
improved cache hit-miss ratio at a certain cache level. A single partition targets
the improvement in locality in the smallest cache with the least expensive data
transfer cost, ideally L1 cache. The set of partitions in DCi or Ci targets a larger
cache that can be either L2 or L3 cache. This technique guarantees that for loops
with non-uniform reuse pattern, the cost in terms of time spent in fetching data
for reuse is reduced by making it available in closest possible cache level.

Locality on Parallel Execution of the Partitions. Loop-nests without any
loop-carried dependences can be executed in parallel without any constraints.

7 The number of integer points contained by a parameterized polyhedron is computed
using the Ehrhart Polynomials as implemented in PolyLib.



Polygonal Iteration Space Partitioning 7

But tiling such loops can improve the performance by improving locality so
that the cost of data transfer is reduced. During parallel execution more fetches
from private memory and lesser fetches from the shared memory improves the
performance. Scheduling similar partitions (either a DCi or Ci, 1 ≤ i ≤ k) on the
same thread achieves the improvement in locality, since each thread finds the
required data in private memory.

2.4 Multi-Reference Statements

We also extend the technique to statements with multiple references to the array
and also to stencil computations that exhibit fixed pattern reuse in multiple di-
rections. Every pair of temporal reuse relations lead to different partitions which
on combining would generate a single partition. Reuse along multiple directions
create a complex network of iterations linked by T , therefore it is important to
eliminate reuse relations such that iterations do not link to themselves by either
T or T 2. For example, the reuse vector vi,j−1 and vi,j+1 link themselves by T 2.
Therefore, one of them must be eliminated. Also, vi,j must be eliminated since
it links to itself by T . One drawback of the original algorithm is that some pairs
of reuse vectors produce partitions which consume the entire iteration space like
vi,j+1 and vi+1,j . These pairs are eliminated. The aim is to find the ‘pair ’ (best
set of two references) from all the references that generate the best possible par-
titions for maximizing locality.

Another heuristics to choose the pair is to select it based on the amount
of reuse in the partitions that it creates. A reuse count function as shown
in Equation 3 is used to predict the amount of reuse in the partitions can be
appended in the original technique. This step involves choosing the best pair out
of every set of two references - from those left after eliminating the redundant
references - based on the amount of reuse that can be calculated from size of
DCs and Cs sets. When the algorithm is prematurely halted to reduce control
statement overhead as described in the previous section, the residual iterations
that form Ck+1 are not counted towards the reuse.

Reuse(Γα, Γβ) =

k∑
i=1

i× |DC0i |+
k∑
i=1

i× |C0i | (3)

This technique can also be extended to multiple statements enclosed in a loop-
nest. Since, reuse of data from an array might occur between references spanning
across multiple statements. These multiple references can be reduced to the best
pair of references exploiting the maximum locality.

2.5 Code Generation paradigm

The code generation for these partitions begins by analyzing the polyhedron
representation for each partition. This polyhedron representation contains the
constraints (boundary hyperplanes) that define the affine boundaries for the par-
titions. These constraints are then scanned using the Fourier-Motzkin algorithm
implemented in PolyLib and also using tools like CLooG [3]. CLooG generates
code by scanning the polyhedrons and performs the union of distinct polyhe-
dron to produce code with the least control statement overhead. The work in [9]



8 Shivam et al.

suggests a methodology to scan just the initial partition from each category,
i.e., DC0i for the DCi type partitions and C0i for Ci type partitions. The next
steps is to derive the subscripts for the next iterations in the link using the reuse
relation T . Let, I, a column vector, represent the iterations in the DC0i . The sub-
script for the iterations in the following partitions DC1i , DC

2
i ,..., DC

i
i are derived

from T (I), T 2(I),..., T i(I) respectively. The locality is exposed in the successive
statements since there is reuse between I and T (I) iteration, then in T (I) and
T 2(I) iteration, etc. This methodology is efficient unless the value of k is high
in which case it enormously expands the code size. The loop-nest for DCi and
Ci partitions encloses i + 1 and i statements respectively. For some value of k,
the code will have a minimum of k loop-nests for either DC or C type partitions
and maximum of k × 2 (k DC plus k C) loop-nests. Each of them containing
statements between 0 and k. For a higher value of k, a better solution is to find
the union of the polyhedron representing a type of partitions (DCi or Ci) to gen-
erate code. Also, since each partition in DCi or Ci type partitions contain equal
iterations, they tend to form similar geometries. These geometries are recurring
patterns and hence code generation for them requires slight modification in the
boundary conditions of the control statements. These modification can be cap-
tured to form a basis for iterating through each partition of a particular type.
Hence, reducing the total count of loop-nests in the code.

An important part of the speedup comes from re-partitioning the generated
partitions to reduce boundary check overheads. This is performed by computing
these partial partitions and scanning them so as compute multiple partitions in
a single loop. The entire partitioning technique is shown in Algorithm 1.

For generating parallel code, we propose the use of OpenMP R© Sections. It
allows the selective mapping of a certain type of partitions onto a single thread.
This improves the locality in each thread which in turn reduces the fetching of
same data from shared memory on multiple threads. These sections are dynami-
cally scheduled to achieve load balancing. However, the generation of a schedule
for parallel execution of polygonal partitions of a loop-nest with non-uniform
data dependence remains a challenge. Because if the execution of partitions as
per the technique violates any data dependence, then modifying the execution
order without violating dependence disrupts locality.

3 Experiments and Results

For evaluating our technique, we choose four cases in which the corresponding
loop-nests exhibit different reuse patterns. These styles are: (a) Two Dimen-
sional Non-Uniform Reuse in which the reuse pattern varies along both
dimensions of a two dimensional iteration space; (b) One Dimensional Non-
Uniform Reuse in which the reuse pattern varies along a single dimension;
(c) Symmetric or Uniform Reuse in which the reuse is generally among
neighboring iterations along a certain direction(s); (d) Multiple References
in which loop-nests contains multiple references to an array in a single state-
ment, e.g., as seen in benchmark suites like PolyBench8.

8 PolyBench/C 4.1: http://web.cse.ohio-state.edu/∼pouchet/software/polybench/



Polygonal Iteration Space Partitioning 9

Algorithm 1 Polygonal Tile Generation

1: Input: A loop-nest with potential reuse on a dataset (array).
2: Eliminate set of references that link iterations to themselves by either T or T 2.

(Section 2.4)
3: for each set of two references (Γα, Γβ) to the array do
4: Define the Reuse Relation T using the two references Γα and Γβ .
5: Generate coarse partitions of the iteration space (D):
P1 (Image(T ,D)), P2 (Image(T −1,D)) and L (No reuse).

6: Categorize P1 and P2 into: C=P1 ∩ P2, D1=P1 − P2 and D2=P2 − P1.
7: while D is not completely partitioned do
8: Create partitions (DCi and Ci) that have iterations linked by relation T i.
9: if Iterations in the generated partitions is below 25× 25 then

10: k = i (Since the algorithm is halted, k is set to i.)
11: Put rest of the iterations in Ck+1.
12: break
13: end if
14: Increment i.
15: end while
16: end for
17: Remove the set of references that produce a single partition which consume the

entire iteration space. (Section 2.4)
18: On the remaining set of references, apply the Reuse Count Formula (Equation

3) to estimate the amount of reuse.
19: Choose the pair having the maximum reuse in their polygonal partitions for code

generation.
20: Scan the polygonal partitions using the Fourier-Motzkin algorithm to generate the

boundaries for the partitions.
21: Use the code generation tools like CLooG with modifications so as to generate

array subscripts using the function T i(I).
22: Output: Polygonally tiled iteration space that improves data locality.

The compiled codes are analyzed for performance on Intel’s Sandy-Bridge Core
i7-2600 CPU @ 3.40GHz. The processor has 4 cores (8 threads) with 32 KB L1
I/D cache, 1024 KB L2 cache and 8 MB LLC. Hardware performance counters
were analyzed for measuring performance metrics.

3.1 Case 1: Two Dimensional Non-Uniform Reuse Pattern
f o r ( i = −N; i <= N; i++)

f o r ( j = −N; j<= N; j++)
X[ i , j ] = Y[ i , i+j +3] ∗ Y[ i+j , j ] ;

Fig. 2: Case 1: Loop-Nest with Two Dimensional Non-Uniform Reuse

In the loop-nest shown in Fig. 2, the references to the array Y can be repre-

sented as: Γi, i+j+3 =

(
1 0
1 1

)
I +

(
0
3

)
, Γi+j, j =

(
1 1
0 1

)
I +

(
0
0

)
. Therefore,

the temporal reuse relation T = (T, t) can be calculated using Equation 2, where

T =

(
0 −1
1 1

)
and t =

(
−3

3

)
. For this case k comes out to be 6, since T 6 is



10 Shivam et al.

I

J

(a) Polygonal partitions of the iteration
space for Case 1 - T 6 = I (identity).

(b) RAR dependence in the loop-nest

Fig. 3: Partitions of the iteration space in Case 1.

an identity matrix. Therefore, the partitioning process would terminate after six
repetitions of the core algorithm. The remaining iterations in C are placed in
partition C6 as described in the technique. The graphical representation of the
partitioned iteration space is shown in Figure 3a [9]. The partitioning algorithm
generates a fixed number of partitions, which is independent of the input size.
Hence, the partitions generated from this technique are scalable with the dataset
size. Since, the maximum value of k is 6, it generates a small number of par-
titions which suggests that the control statement overhead will have negligible
effect on performance. Therefore, there is no need to apply the halting condition
described in Section 2.3 in this case. Hence, the maximum value must be chosen
to obtain the finest partitions with the maximum reuse.

f o r ( i = −N; i <= −4; i++) {
f o r ( j = MAX(−N+3,− i−N−3); j <= −i−N−1; j++) {

X[ i ] [ j ] = Y[ i ] [ i+j +3] ∗ Y[ i+j ] [ j ] ;
X[− j −3] [ i+j +3] = Y[− j −3] [ i +3] ∗ Y[ i ] [ i+j +3] ;
X[− i−j −6] [ i +3] = Y[− i−j −6][− j ] ∗ Y[− j −3] [ i +3] ;
X[− i −6][− j ] = Y[− i −6][− i−j −3] ∗ Y[− i−j −6][− j ] ;
X[ j −3][− i−j −3] = Y[ j −3][− i −3] ∗ Y[− i −6][− i−j −3] ;

}
}

Fig. 4: Index calculation for DC4 using reuse relation(T ).

Dataset Size
1024 2048 4096

Im
p

ro
v
e

m
e

n
t(

%
)

-50

0

50

100

150

200

250

300

350

400

450
L1 Cache Hits
L2 Cache Hits
LLC MPKI
Instructions Retired

Fig. 5: Case 1: % Improvement in L1, L2,
LLC and Instructions Retired Counters

The code shown in Fig. 4 presents
the application of the function T i(I)
where 0 ≤ i ≤ 6, as mentioned in Sec-
tion 2.5, to compute array subscripts
for disjoint but equivalent DC4 parti-
tions. This optimization reduces the
control statement overhead, as well
as increases the temporal locality due
to consecutive data accesses in subse-
quent iterations. Also, because of this
there are less memory accesses and
therefore there is a constant 35% de-



Polygonal Iteration Space Partitioning 11

crease in instruction count. Fig. 5 shows the increase in cache hits.
The serial code optimized using the technique shows up to 1.19x speedup

(Fig. 11a). For parallel execution, each type of partition is executed on a differ-
ent thread using OpenMP R© Sections so as to maximize data reuse on a core.
On parallel execution the speedup is even higher (up to 3.17x) as shown in Fig.
11b due to the selective mapping of the partitions. Polly and PLuTo generate
rectangular tiles for the given program, since both of them do not use the infor-
mation from RAR dependence to optimize code for locality, unlike the proposed
technique. Experimental results show scalability of performance with the input
size because even though the number of partitions remains constant, the size of
the partitions scales with the input size.

3.2 Case 2: One Dimensional Non-Uniform Reuse Pattern

f o r ( i = −N; i <= N; i++)
f o r ( j = −N; j<= N; j++)

X[ i , j ]= Y[ i , j ] + Y[ i , i+j+N ] ;

Fig. 6: Loop-Nest with One Dimensional Non-Uniform Reuse

The references to array Y for this case, shown in Fig. 6, are: Γi, j =

(
1 0
0 1

)
I +(

0
0

)
, Γi, i+j+N =

(
1 0
1 1

)
I +

(
0
N

)
. Therefore, the temporal reuse rela-

tion T = (T, t), assumes the following form, according to Equation 2: T =(
1 0
−1 1

)
, t =

(
0
−N

)
. For this case, the maximum value of k is too high. It

is dependent on the variable N , which is a representation of the dataset size, as

such: T k =

(
1 0
−k 1

)
, t =

(
0
−kN

)
.

Since the reuse is along the dimension J , refer to Figure 7a, the maximum
value that k can reach is 2N − 1. As the algorithm moves towards −I direction,
it forms smaller partitions. This leads to the drawback of the original algorithm.
As described in the Section 2.3, an optimal value for k must be chosen such

I

J

(a) Reducing partition size (b) Computational Wave-front

Fig. 7: Partitions of the iteration space in Case 2.



12 Shivam et al.

K (Number of Partitions)
20 30 40 60 100 200 400

S
p

e
e

d
u

p

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Small Dataset
Medium Dataset
Large Dataset
Baseline(Unpartitioned)

(a) Speedup vs Number of Partitions.

Dataset Size
1024 2048 4096

Im
p

ro
v
e

m
e

n
t(

%
)

-400

-200

0

200

400

600

800
L1 Cache Hits
L2 Cache Hits
LLC MPKI
Instructions Retired

(b) % of Improvement in L1 and L2 hits,
LLC misses and Instructions Retired

Fig. 8: Case 2: Optimal Number of Partitions and Improvement in Counters

that the achievable speedup is not diminished by the excessive control state-
ment overhead. Therefore, the algorithm must halt as soon as tile size reduces
below 25× 25 iterations. This is deduced from the experimental data as shown
in Figure 8a. The optimal value of k was found to be around 30 in a small
dataset (N=1024), 40 in a medium dataset (N=2048), and 60 in a large dataset
(N=4096). If a value of k is chosen to be lower than the optimal value, the loop
execution experiences a performance degradation due to low locality exploita-
tion. On the other hand, if a value of k is chosen to be larger than the optimal
value, the loop execution experiences a performance degradation due to control
statement overhead.

Another important contribution to the achieved speedup comes from a code
generation optimization which is discussed in Section 2.5. If partitions are exe-
cuted similarly as in Case 1, the control statement overhead will inhibit achieve
the maximum speedup achievable. By further splitting and executing them in a
variable step wave-front (Fig. 7b) the control overhead is reduced - because the
loop boundary conditions are simplified. This method does not conform to the
originally proposed method of computing partitions of similar reuse pattern to-
gether inside single loop nest. This wave-front method execute different partition
types together inside the outer-most loop. It also improves spatial locality due
to reuse on same cache-line for multiple partition-types. The increase in cache
hits as shown in Fig. 8b is evident of improvement in locality.

On serial execution, the maximum speedup of 1.13x is achieved for the
medium dataset (Fig. 11a). Whereas, on parallel execution the speedup improves
with the size of the dataset reaching maximum of 2.27x (Fig. 11b).

3.3 Case 3 (Seidel-2D) and Case 4 (Jacobi-2D): Uniform Reuse
Pattern and Multiple References

Case 3 and 4 are stencil benchmarks taken from the PolyBench. Case 3 (Sei-
del stencil) from Fig. 9a has multiple references in 8 directions. Therefore, the
heuristics mentioned in Section 2.4 must be applied to choose the best two
references for creating partitions. The reuse vectors vi,j−1 and vi,j+1 link them-



Polygonal Iteration Space Partitioning 13

P a r t i a l loop−ne s t s expos ing reuse

f o r ( i = 1 ; i < N; i++) {
f o r ( j = 1 ; j< N; j++) {
A[ i ] [ j ]=(A[ i −1] [ j−1]+A[ i −1] [ j ]+

A[ i −1] [ j +1]+A[ i ] [ j−1]+
A[ i ] [ j ]+A[ i ] [ j +1]+
A[ i +1] [ j−1]+A[ i +1] [ j ]+
A[ i +1] [ j + 1 ] ) / 9 . 0 ;

}
}

(a) Seidel-2D

f o r ( i = 1 ; i < N; i++) {
f o r ( j = 1 ; j< N; j++) {

B[ i ] [ j ]=(A[ i ] [ j ]+
A[ i ] [ j−1]+
A[ i ] [1+ j ]+
A[1+ i ] [ j ]+
A[ i −1] [ j ] ) ∗ 0 . 2 ;

}
}

(b) Jacobi-2D

Fig. 9: Loop-Nest with Uniform Reuse Pattern and Multiple References

selves by T 2. Therefore, one of the reuse relations must be eliminated. The
same applies to (vi−1,j−1, vi+1,j+1),(vi−1,j , vi+1,j) and (vi+1,j−1, vi−1,j+1).

J

I

Fig. 10: Partitions for Stencils

Reference vi,j must also be removed
since its combination with any other
v generates multiple equivalent par-
titions along v. Therefore, references
vi,j+1, vi+1,j+1, vi+1,j , vi+1,j−1 and
vi,j must be eliminated. Also, some
pairs of reuse vectors produces par-
titions which consume the entire
iteration space, i.e., the two ref-
erences (vi−1,j−1, vi,j−1) link ev-
ery iteration in the domain. There-
fore, this pair of references must be
eliminated in addition to the pairs
(vi−1,j , vi−1,j−1), (vi−1,j , vi−1,j+1)
and (vi−1,j−1, vi−1,j+1). Finally, vi,j−1 and vi−1,j are left and they create the
partitioning as shown in Figure 10.

The two stencils show different performance results due to different amount
of reuse among iterations in the partitions. In the case of Seidel-2D, there is more
reuse between consecutive iterations inside a single sub-partition than Jacobi-2D,
due to additional reuse on vi+1,j−1 and vi−1,j+1 in Seidel-2D.

3.4 Improvement in Performance

Serial Execution. The performance of the polygonally tiled code, compiled
with LLVM (flags: -O3 -fno-inline-functions), is compared against Polly - an op-
timizer for LLVM - optimized code (flags: -O3 -polly -polly-vectorizer=stripmine
-fno-inline-functions, tile size = 32 × 32). The lack of benchmarks exhibiting
non-uniform reuse pattern in standard benchmarks suites like SPEC CPU and
Polybench restricts the comparison of our technique to the existing techniques.

Parallel Execution. The polygonally tiled code is compared for performance
against the code optimized using PLuTo-0.11.4 (flags: --tile --parallel --diamond-
tile, tile size = 32×32) that generate OpenMP R© code. PLuTo is chosen for par-



14 Shivam et al.

Small Dataset Medium Dataset Large Dataset

S
p
e
e
d
u
p

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Case 1(2D Non-Uniform Reuse)
Case 2(1D Non-Uniform Reuse)
Case 3(Seidel-2D)
Case 4(Jacobi-2D)
Baseline(Unpartitioned)

(a) Speedup (Serial Execution)

Small Dataset Medium Dataset Large Dataset
0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

Case 1(2D Non-Uniform Reuse)

Case 2(1D Non-Uniform Reuse)

Baseline(Unpartitioned)

(b) Speedup (Parallel Execution)

Fig. 11: Performance Improvement

allel execution because it generates better schedules for regular tiles on parallel
execution and supports diamond tiling. Both codes are compiled with Intel’s
ICC-15.0.4 compiler (flags: -O3 -xHost -ansi-alias -ipo -fp-model precise -fno-
inline-functions) and are executed across 8 threads.

4 Related work

Loop tiling, its variants and combination with other loop transformations [7, 12,
13] aim to optimize data locality along with other objectives, e.g., exhibiting
loop level parallelism [1, 14]. Tiling techniques are concentrated on partitioning
the iteration space into group of iterations (tiles) of similar shape and size. The
factors determining the size of tiles may depend on memory hierarchy, cache
capacities, etc. When execution proceeds tile by tile, reuse distances are no
longer a function of the problem size, but a function of the tile size.

Optimal Tile Size and Parametrized Tiling. Determining the tile size
at compile-time usually produce suboptimal solution since the cache sizes for
the target architecture are not known in many situations. Parameterized tiling
techniques [11, 8] have shown that it is possible to get comparable performance
and parallelism [6] as compared to statically compile-time generated tiled loop-
nests. However, tiling the loops with non-uniform reuse pattern is still a challenge
due to the inability of defining a single set of dependency vectors which can
govern a tiling size and pattern. Whereas, in our technique the size of the tiles
is solely determined by the reuse pattern of the loop-nest.

Modern Tiling Geometries. In addition to the variable sized tiles, some re-
cent work on the exploration of newer tiling geometries have shown some promise,
especially for stencil computations. The work in [2] shows that diamond-shaped
tiles - when executed in parallel - can achieve concurrent start for the tiles which
might not have been possible with regular rectangular/parallelogram tiles. Tiling
in the shape of variable-sized Hexagons [5] provides better locality and con-
current execution of tiles for parallel architectures like GPUs. But, varying tile
shapes for better locality has not received similar attention. The polygonal tiling
technique presented in this work is not bound to a specific tile shape. Instead,
tile shapes are determined based on the iteration space’s reuse pattern.



Polygonal Iteration Space Partitioning 15

5 Conclusion

In this work, a polygonal tiling technique is presented, which is not constrained
to either the shape or the size of tiles that needs to be pre-determined. The
shapes and sizes are governed by the reuse pattern of the loop-nests. The pro-
posed technique partitions the iteration space and schedule the partitions to
maximize locality.

Our experiments on a set of loops exhibiting either non-uniform or uni-
form reuse patterns show that a significant portion of the achievable speedup
is missed when applying traditional loop tiling to such loops. Speedup is sig-
nificant for loops with non-uniform reuse pattern on serial execution as shown
in the case studies. Benefits of the presented polygonal tiles is even greater for
multi-threaded execution for such loops. High speedup (up to 3.17x) is achieved
and it consistently improves on increasing the input size.

References

1. Agarwal, A., et al.: Automatic partitioning of parallel loops and data arrays for
distributed shared-memory multiprocessors. TPDS ’95 6(9), 943–962 (Sep 1995)

2. Bandishti, V., et al.: Tiling Stencil Computations to Maximize Parallelism. In: SC
’12. pp. 40:1–40:11. IEEE Computer Society Press, Los Alamitos, CA, USA (2012)

3. Bastoul, C.: Code Generation in the Polyhedral Model Is Easier Than You Think.
In: PACT ’13. pp. 7–16. Juan-les-Pins, France (September 2004)

4. Bondhugula, U., et al.: A Practical Automatic Polyhedral Program Optimization
System. In: PLDI (Jun 2008)

5. Grosser, T., et al.: Hybrid Hexagonal/Classical Tiling for GPUs. In: CGO ’14. pp.
66:66–66:75. ACM, New York, NY, USA (2014)

6. Hartono, A., et al.: DynTile: Parametric tiled loop generation for parallel execution
on multicore processors. In: IPDPS ’10. pp. 1–12 (April 2010)

7. Irigoin, F., Triolet, R.: Supernode Partitioning. In: POPL ’88. pp. 319–329. ACM,
New York, NY, USA (1988)

8. Kim, D., et al.: Multi-level tiling: M for the price of one. In: SC ’07. pp. 1–12 (Nov
2007)

9. Meister, B., Loechner, V., Clauss, P.: The Polytope Model for Optimizing Cache
Locality. Tech. rep., Technical Report RR 00-03, ICPS-LSIIT (2000)

10. Padua, D.A., Wolfe, M.: Advanced Compiler Optimizations for Supercomputers.
Commun. ACM 29(12), 1184–1201 (1986)

11. Renganarayanan, L., et al.: Parameterized Tiled Loops for Free. In: PLDI ’07. pp.
405–414. ACM, New York, NY, USA (2007)

12. Wolfe, M.: Iteration Space Tiling for Memory Hierarchies. In: Proceedings of the
Third SIAM Conference on Parallel Processing for Scientific Computing. pp. 357–
361. SIAM, Philadelphia, PA, USA (1989)

13. Wolfe, M.: More Iteration Space Tiling. In: SC ’89. pp. 655–664. ACM, New York,
NY, USA (1989)

14. Xue, J.: Loop Tiling for Parallelism. Kluwer Academic Publishers, Norwell, MA,
USA (2000)

Acknowledgments. We would like to thank Benôıt Meister and Vincent Loechner
for providing us with their implementation which laid the foundation for this work.
This work was supported in part by NSF award XPS 1533926.


