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Abstract. The last several decades have been marked by dramatic in-
creases in the use of diagnostic medical imaging and improvements in the
modalities themselves. As such, more data is being generated at an ever
increasing rate. However, in the case of Magnetic Resonance Imaging
(MRI) analysis and reports remain semi-quantitative, despite reported
advantages of quantitative analysis (QA), due to prohibitive execution
times. We present a collaborator’s QA algorithm for Dynamic Contrast-
Enhanced (DCE) MRI data written in MATLAB as a case study for
exploring parallel programming in MATLAB and Julia. Parallelization
resulted in a 2.66x speedup in MATLAB and an almost 60x speedup in
Julia. To the best of our knowledge, this comparison of Julia’s perfor-
mance in a parallel, application-level program is novel. On the basis of
these results and our experiences while programming in each language,
our collaborator now prototypes in MATLAB and then ports to Julia
when performance is critical.

Keywords: MATLAB, Julia, Parallel Programming Languages, Paral-
lel Applications, Medical Imaging, Dynamic Contrast-Enhanced MRI

1 Introduction

Over the last 30 years there has been a dramatic increase in the usage of Mag-
netic Resonance Imaging (MRI) and other imaging modalities in the research
and medical communities [26, 27]. Simultaneously, there have been substantial
improvements to the underlying technologies themselves that allow for images to
be captured at significantly higher spatial and temporal resolutions. One of the
consequences of these improvements has been a massive increase in the amount
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2 Parallel Programming Models for MRI

of data being generated [16]. For scientists and clinicians, this has often trans-
lated to making the difficult decision to forgo a truly quantitative analysis (QA)
and instead sub-sample the available data to perform analyses and generate re-
ports within an acceptable time frame. One application that currently suffers this
plight is Quantitative Analysis (QA) model-based Dynamic Contrast-Enhanced
MRI (DCE MRI) [22]. DCE MRI is used to visualize and characterize cancer-
ous tumors in animal models and humans. The results can be used to predict
patient-specific response to anticancer drugs and provide insight for new drug
discovery [10, 19]. DCE MRI is thus highly valuable to clinical oncologists and
scientists. Dr. Julio Cárdenas-Ródriguez, a researcher at the University of Ari-
zona, developed a serial implementation of DCE MRI analysis code written in
MATLAB that had an unacceptable run time unless it used dramatically sub-
sampled datasets (≥ 50x). For example, evaluating the QA algorithm on the
researcher’s pancreaticand breastcancer datasets was estimated to take approx-
imately six months, which is not practical.

To understand the volume of data being generated, it is valuable to briefly
summarize the workflow of a DCE MRI experiment. Two separate regions, the
volume containing the tumor and a volume containing normal vascular tissue
(known as the reference region; in our case the leg), must be imaged continuously
for several minutes. The MRI machine generates a 2-dimensional double array
of intensities (at a specified spatial resolution) for every time point captured
during the imaging time frame. These volumes must be imaged twice - first as
a baseline to determine the tissue’s innate relaxation properties (TR volume),
and then many times after the injection of a gadolinium-based contrast agent
(CA). The CA’s properties cause a change in the relaxation properties of the
tissue, translating to different voxel intensities. These changes in signal intensity
over time are used to calculate the CA’s concentration, which is run through
to a non-linear least squares computation to estimate the permeability of the
tumor [19]. For more information, we refer readers to Cárdenas-Rodŕıguez et al.,
2016 [5].

The computationally expensive portion of the QA DCE MRI algorithm lies
in the non-linear fitting step, which must be performed for each voxel containing
tissue in the image volume. Even in our heavily sub-sampled dataset, thousands
of non-linear least square problems must be solved. Analysis of the original serial
MATLAB code revealed that the majority of the workload could be computed
in an embarrassingly parallel fashion, as each spatial point in the volume is
independent of the others.

Given that the original code was already implemented in MATLAB and
the popularity of the language in the biomedical engineering community, the
straightforward approach to solving the performance problem was to implement
an equivalent parallel implementation using the Parallel Computing Toolbox
(PCT) in MATLAB [31]. However, this only improved performance on a by
2.66x using 8 cores at best. Therefore, we decided to do a case study where we
implemented a version in a newer language called Julia [4]. With Julia, we were
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able to achieve an approximately 57x performance improvement over the serial
MATLAB implementation.
This paper makes the following contributions:

– We analyze the serial algorithm and identify areas where parallelization is
expected to increase performance.

– We provide a more substantial benchmark for the Julia programming lan-
guage (previous publications only include microbenchmark results) via quan-
titative performance data for the MATLAB and Julia versions.

– We provide a comparison of the process of writing parallel code in MATLAB
and Julia based on our experiences in this case study.

Based on the significant increase in performance observed in the Julia imple-
mentations (18x speedup for the serial version and 57x speedup in the parallel
version), Dr. Cárdenas-Ródriguez’s research group has begun to translate all
their performance critical code to Julia.

The remainder of the paper is organized as follows: Section 2 contains a thor-
ough description of the serial code and the experimental methodology. Sections 3
and 4 discuss the MATLAB and Julia parallel implementations. Section 5.1 de-
tails our quantitative timing results. Section 5.3 provides an anecdotal compari-
son of the programming languages. Section 6 presents related work, and Section 7
concludes.

2 Analysis of the Serial MATLAB Code

The QA DCE MRI code consists of the following five tasks:

1. Loading the data
2. Segmenting the tissue from the background
3. Calculating T1 time (seconds) on a per-voxel basis via non-linear least squares

curve fitting to its phenomenological equation and evaluating the goodness-
of-fit via the R2 value

4. Calculating the change in R1 as a function of time
5. Estimating the relative permeability between the tumor and muscle tis-

sue (RKtrans) using the linear reference region model and evaluating the
goodness-of-fit via the R2 value.

The original serial algorithm was revised to remove all unnecessary operations
(e.g. those done solely to produce human-interpretable images), and the stan-
dards [32] recommended by The MathWorks were enforced. This resulted in
about a 1.5x speedup (execution time of 56.49 ± 1.22 seconds vs. 83.03 ± 1.52
seconds). This simplified version, whose execution time is profiled in Figure 1, is
used as the baseline for all comparisons presented in the paper. The remainder
of this section analyzes the performance of the serial MATLAB implementation
and describes each task in more detail.
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Step
Time (seconds)

Tumor Leg

Load data 0.141 ± 0.013

Segmentation 0.018 ± .002 sec 0.019 ± 0.002

T1 calculation 41.332 ± 0.930 13.383 ± 0.321

∆R1 calculation 0.028 ± 0.008 0.009 ± 0.0003

Ktrans via RRM 1.555 ± 0.068

Total run time 56.486 ± 1.222

Fig. 1: Execution time for main tasks of serial MATLAB implementation.

2.1 Experimental Methodology

The execution times reported are the average of five runs ± their standard
deviation measured after a warm up run whose time was not included. This
allows just-in-time (JIT) compilation to complete in both languages to avoid
comparing compiler speeds and efficiencies, and instead provide a comparison
of the performance of the JIT-compiled computations themselves. Additionally,
given that these are one-off costs that are amortized over many datasets, the
contribution to the overall run time becomes negligible.

All execution times were obtained by submitting jobs to a PBS schedul-
ing system on the University of Arizona’s high-performance computing cluster
consisting of compute nodes with Xeon Westmere-EX Dual 6-core or 8-core pro-
cessors operating at 2.66 GHz. The dataset used for benchmarking the various
implementations consisted of 250 time points, each composed of a 256 x 256
array of doubles. MATLAB 2015b was used.

Timing information in MATLAB was obtained using the built-in tic/toc
construct. These values were validated against MATLAB’s built-in code profiler
and were not found to be significantly different.

2.2 Performance Bottleneck: T1 calculation

As shown in Figure 1, the T1 calculation accounts for approximately 97% of the
total run time on average. The disparity between the run time of the tumor and
leg volume arises due to the difference in the number of tissue voxels present
post-segmentation (3199 voxels vs 1083 voxels). If we account for this difference,
it appears that the execution time for this function scales linearly, so there is
nothing intrinsically different about the tumor.

In this task, each voxel from the TR volume is fit to the following phenomeno-
logical equation to solve for T1:

S(t) = Mz(1− e−TR/T1(t)) (1)

via MATLABs built-in non-linear least squares solver, lsqcurvefit. As previ-
ously mentioned, dependence analysis revealed that each spatial location within
the volume was independent (i.e the voxel at (1, 1) at timepoint 1 is independent
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of all other voxels at timepoint 1), and that the two TR volumes are independent
of each other as well. As such, calculations at each voxel can be computed in
an embarrassingly parallel fashion. Parallelization efforts were focused on this
function for the MATLAB and Julia implementations.

2.3 Other Tasks

The raw output from the MRI machine is pre-processed into an array of doubles
that are stored in a MATLAB .mat file and a csv format for the Julia imple-
mentation. MATLAB’s built-in command load() takes virtually no time as can
be seen in Figure 1, and the same is true of Julia’s readdlm function.

Segmentation is performed using MATLAB’s built-in k-means clustering al-
gorithm. A 1-D vector containing all voxels is input and the function categorizes
all voxels as either tissue or background. MATLABs built-in implementation of
Otsus method [21] to determine the gray-scale threshold for binarization was also
explored, but k-means generated the best mask (results omitted). The k-means
algorithm in the clustering package of JuliaStats generated identical masks. The
run time of this task is also negligible.

After T1 is calculated, two equations are combined to describe R1 (∝ CA
concentration) as a function of time, T1, and TR:

R1(t) = − 1

TR
· ln(1− S(t)e−TR·R1(0)/S(0)) (2)

As this is a straightforward calculation that takes a negligible amount of time,
we do not parallelize it. At this point, concentration as a function of time is
known —that is, we have solved the non-linear relationship between voxel inten-
sity and CA concentration for both tissue volumes. The reference region model
(RRM) [5] is used to calculate the permeability of the CA, Ktrans, and the
R2 value on a voxel-by-voxel basis for the tumor tissue via a linear least squares
fitting with non-negativity constraints (lsqnonneg). Despite each voxel being in-
dependent, the function runs for a short enough time that overhead costs would
likely outweigh parallelization gains.

2.4 Performance Analysis Summary

To summarize, the tumor and reference region voxels are entirely independent
and are processed identically until the calculation of Ktrans. Additionally, in
all tasks that process the segmented tissue voxels, the calculations performed on
each voxel are independent, and can therefore be computed in an embarrassingly
parallel fashion. Analysis of the computations that occur within these tasks
does not reveal anything inherent to the code that would result in one language
handling the computation preferentially.
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3 MATLAB Implementations

The DCE MRI algorithm was parallelized in MATLAB by a graduate student
who had several years of experience working with MATLAB and the Parallel
Computing Toolbox (PCT) in the biomedical domain. A 2.66x speedup over the
serial code was achieved using the approaches outlined below to perform the T1

calculation using 8-cores of a 12-core machine.

3.1 MATLAB Background

Because most scientists do not receive formal software engineering training [2],
MATLAB’s ease of use (e.g. weak and dynamic typing system, lack of need to
declare dimensions, etc.) and trusted libraries have made it a popular language
for scientific computing applications [9, 23]. Additionally, the core intentions of
MATLAB’s parallel programming model (the PCT) were to extend the afore-
mentioned traditional strengths of MATLAB onto the cluster via first-class lan-
guage constructs to deal with embarrassingly parallel problems [24]. This allows
users to easily utilize multicore processors, GPUs and clusters with minimal
modification of code or impact on readability.

However, MATLAB is not as performant as other programming languages,
especially those used for parallel programming [4]. MATLAB worker threads
that execute concurrent computation are heavyweight, and the PCT is propri-
etary and has limited scalability [14]. Additionally, the dynamic and complex
typing system results in significant overhead [1, 8, 13]. Despite these drawbacks,
in the realm of scientific computing, time to solution, readability, portability,
and maintainability often trump pure performance [2], so MATLAB is utilized
significantly [13].

As a bridge, continuous and significant work has been done on static analysis,
ahead of time speculation, JIT compilation, and automatically porting existing
code to more performant languages [1, 9, 12, 14, 15]. While automatically ported
code makes sacrifices in terms of both the highly human-interpretable syntax
and interactive nature of MATLAB, The MathWorks has adopted some of the
other techniques, and as of release 2015b MATLAB is now entirely JIT com-
piled [29,30]. Based on selected case studies [30] and comparing the benchmarks
performed by the Julia language creators on MATLAB 2011a [4] to MATLAB
2015b (http://julialang.org/), it appears that this has had a generally positive
impact on performance.

3.2 Parallelization using the Parallel Computing Toolbox

For the DCE MRI application, the T1 calculation was rewritten so that every
voxel was fit in parallel, while the tissue was processed serially (version 1). Be-
cause the code was already simplified and optimized, modifications were minimal
—consisting of slicing variables [17] and changing the for to a parfor in the
function shown in Figure 2. As nested parallelism is not supported in MAT-
LAB, restructuring the serial code to process the tissues and voxels in parallel
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required more modifications (version 2). This negatively impacted readability,
but resulted in a small performance improvement.

Table 1 contains the execution time, speedup, and efficiency for the paral-
lelized versions as a function of the number of cores provided to the MATLAB
parallel pool. Unexpectedly, version 1 was the most performant with a 2.66x
speedup at 33.24% efficiency using 8 cores. Version 2 was nearly as fast with a
2.65x speed up at 33.11% efficiency also using 8 cores. It is important to note that
on average, it took 10.27 ± 1.48 seconds to initialize the parallel pool, which is
nearly 47% of the total execution time of the fastest version. Amortizing this cost
over the processing of multiple files would greatly increase MATLAB’s speedup
and efficiency.

Table 1: Summary of Parallel MATLAB implementations
Iteration # cores Execution time (seconds) Speedup Efficiency

Version 1

1 81.00 ± 15.58 0.73x 73.23%
2 44.59 ± 0.15 1.33x 66.52%
4 29.51 ± 0.24 2.01x 50.25%
8 22.31 ± 0.21 2.66x 33.24%
12 22.91 ± 0.41 2.59x 21.58%

Version 2

1 71.54 ± 0.11 0.83x 82.92%
2 44.71 ± 3.87 1.33x 66.33%
4 29.19 ± 0.42 2.03x 50.81%
8 22.40 ± 0.25 2.65x 33.11%
12 23.11 ± 0.86 2.57x 21.39%

4 Julia Implementations

The DCE MRI algorithm was converted from MATLAB to Julia by a graduate
student who had never worked with MATLAB or Julia, had no experience with
medical imaging, and had no prior experience with parallel computing. Thanks to
several features of the two languages, this process was straightforward, as was the
parallelization of the T1 calculation, which ultimately resulted in a 57x speedup
over the serial MATLAB code. Julia v0.4.3 was used and timing information was
obtained using the @time() macro as per the recommended best practices [33].

4.1 Julia Background

Julia was designed specifically for numerical and scientific computing, and has
a syntax similar to languages such as MATLAB and R, but has been shown
to outperform such dynamically-typed languages on microbenchmarks, often
achieving performance comparable to C and Fortran [4]. Julia’s creators have
indicated that the language’s speed is accounted for by its robust type infer-
ence system and high-performance LLVM-based JIT compiler that generates
optimized, on-the-fly native machine code directly [3].



8 Parallel Programming Models for MRI

Julia features built-in parallel capability [3], and although it is still in pre-
release, its user base has created a significant number of native libraries for the
language [25], as well as interfaces to commonly utilized libraries from other
languages such as NLOpt.

4.2 Serial Julia Implementation

The run time of the T1 calculation in the serial Julia implementation was 3.01 ±
0.04 seconds, roughly a 18x speedup over the serial MATLAB version. Because
MATLAB and Julia were designed for programmability and are thoroughly doc-
umented, it was easy to investigate MATLAB functions and determine how to
implement them in Julia. Indeed, Julia seems to liberally “borrow” features from
many other languages, including MATLAB, and we found that many MATLAB
functions, such as the matrix manipulation function reshape, have been imple-
mented in Julia with nearly identical syntax and semantics (Figure 5)

When required MATLAB functions had no equivalent in the Julia standard
library, it was easy to locate third-party, open-source libraries providing the
needed functionality. This occurred in the segmentation task —Julia did not have
a built-in k-means function. However, because Julia features a package manager,
typing the command Pkg.add("Clustering.jl") at the Julia command prompt
immediately downloaded the latest version of the library Clustering.jl from
a github repository (https://github.com/JuliaStats/Clustering.jl), and provided
the use of its kmeans function, which had the same syntax as MATLAB’s imple-
mentation. For the task involving least-squares curve fitting, a function from the
JuliaOpt package LsqFit.jl that appeared to mirror MATLAB’s lsqcurvefit

MATLAB

% Normalize signal
Signal = masked_T1_vTR ./

repmat(max(masked_T1_vTR, [], 2), 1,
numTimePoints);

% Set curve fitting parameters
x0 = [1.2, 3.0];
lb = [1, 1];
ub = [2, 5];

% Define model function
T1vTRfunc = @(pars, xdata) pars(1) .*

(1 - exp(-xdata./pars(2)));

% Do curve fitting on per voxel basis
for q = 1:numSignalPixels

[beta, ~, resid, ~, ~, ~, J] =
lsqcurvefit(T1vTRfunc, x0, TR,
Signal(q, :)’, lb, ub, options);

T1vTR.map(q) = beta(2);
end

Julia

for q in 1:size(indices,1)
Signal = T1vTR_Images[indices[q],:]
Signal ./= maximum(Signal)

# Create solver and set objective function
model = Model(solver=NLoptSolver(

algorithm=:LN_COBYLA))
@defVar(model, beta[1:2])
@setNLObjective(model, Min, sum{(Signal[i]-

beta[1]*(1-exp(-TR[i]/beta[2])))^2, i=1:N})

# add constraints and initial guess
@addNLConstraint(model, beta[1] >= lb[1])
@addNLConstraint(model, beta[1] <= ub[1])
@addNLConstraint(model, beta[2] >= lb[2])
@addNLConstraint(model, beta[2] <= ub[2])
setValue(beta[1], x0[1])
setValue(beta[2], x0[2])

status = solve(model)
T1vTR_Map[indices[q]] = getValue(beta[2])

end

Fig. 2: Curve-fitting function in MATLAB and Julia
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was inadequate, as it did not allow for bounds on the solution. An interface
allowing Julia to call the NLopt library was used instead (NLopt.jl) (Figure 2).

A few MATLAB functions involved in the permeability estimation step, such
as cumtrapz and nans, were not present in Julia, but it was straightforward to
simply implement them.

4.3 Parallelization of Julia Implementation

Julia allows for a variety of approaches to parallel programming [34], but for
the embarrassingly parallel computations required in this application, a simple
shared memory model was sufficient. We utilized a special Julia datatype de-
signed for this purpose, called a SharedArray, which is accessible by multiple
processors. The demonstration code for SharedArrays in the Julia documenta-
tion provided a clear blueprint for our implementation. Following this example,
the key steps were to copy data from several arrays into SharedArrays, and cre-
ate two kernels that: (1) determined which voxels to process on each processor,
and (2) ran the appropriate subset of the least-squares curve-fitting calculations
on each processor.

The first of these (Figure 3a), which was essentially copied from the Julia
documentation [34], partitions a collection of indices into equal-sized groups for
each processor. The second (Figure 3b) merely substitutes an iteration over all
voxel indices for an iteration over the indices assigned to the worker running the
kernel.

Index determination kernel

@everywhere function my_range(shared_indices)
idx = indexpids(shared_indices)
if idx == 0

return 0:1
end
n_chunks = length(procs(shared_indices))
splits = [round(Int, s) for s in linspace(0, size(shared_indices, 1), n_chunks+1)]
return splits[idx]+1 : splits[idx+1]

(a) Kernel to divide indices in SharedArray to be processed on different processors

Serial curve-fitting in Julia

for q in 1:size(indices,1)
Signal = T1vTR_Images[indices[q],:]
Signal ./= maximum(Signal)
T1vTR_Map[indices[q]] =

calculate_T1(Signal, TR)
end

Parallel curve-fitting kernel run on
each worker

for q in my_range
Signal = T1vTR_Images[indices[q],:]
Signal ./= maximum(Signal)
T1vTR_Map[indices[q]] =

calculate_T1(Signal, TR)
end

(b) Serial vs. Parallel curve-fitting function in Julia

Fig. 3: Functions involved in serial and parallel curve fitting in Julia
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As can be seen in Table 2, the parallelization produces gains of up to 3.17x
over the serial Julia implementation, with reasonable efficiency.

Table 2: Summary of Parallel Julia implementations
# Cores Execution time (seconds) Speedup relative to serial Julia Total efficiency

1 3.53 ± 0.04 0.85x 85.47%

2 2.07 ± 0.01 1.46x 72.90%

4 1.39 ± 0.02 2.17x 54.31%

8 1.00 ± 0.01 3.02x 37.76%

12 0.95 ± 0.02 3.17x 26.38%

5 Results

In this section, we evaluate our implementations of the researcher’s algorithm in
terms of performance and reliability, and report on differences in programmabil-
ity between MATLAB and Julia. We find that rewriting the algorithm in Julia
resulted in performance gains exceeding those of using the MATLAB PCT.

5.1 Performance

Quantitative performance metrics were generated for the parallel MATLAB, se-
rial Julia, and parallel Julia implementations. The most performant version of
parallel MATLAB achieved a speedup of 2.66x with 33.11% efficiency. As can
be seen in Figure 4, the serial version of Julia achieved a 18.15x speedup com-
pared to the serial MATLAB version, a 57.45x speedup with parallelism, and a
23.3x speedup when comparing the fastest parallel Julia implementation with the
fastest parallel MATLAB implementation. If we discard the cost of starting the
parallel pool in MATLAB and only compare the running time of the algorithm
itself, the fastest Julia implementation is 2.24x faster than the fastest parallel
MATLAB implementation. Julia exhibits more efficient parallelism compared
to MATLAB, although the differences are far less dramatic than the speedup
(Tables 1 and 2).

5.2 Reliability

The results obtained with Julia were comparable to those obtained with MAT-
LAB. The T1 calculation results obtained from Julia had insignificant numerical
differences compared to the original MATLAB implementation: within the 1,083
signal pixels in the leg, the root mean square error was 7.90e-4 and the maximum
absolute difference was .0108; within the 3,199 signal pixels of the tumor, the
root mean square error was 9.07e-4 and the maximum absolute difference was
.0347. For the final RKtrans calculation, the root mean square error was 2.31e-3
and the maximum absolute difference was 0.0744.
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Fig. 4: Speedup of Julia implementations relative to MATLAB implementations

5.3 Programmability

MATLAB and Julia are similar syntactically (Figure 5) and also in terms of their
expressivity. The serial MATLAB and Julia implementations contain 292 and 244
source lines of code (SLOC) respectively. The fastest parallel implementation in
MATLAB contains 239 SLOC compared to Julia’s 284 SLOC. Productivity was
also comparable after familiarity was gained with Julia —in both languages it
took approximately 1.5 hours to parallelize the algorithm. This was somewhat
surprising given the differences in familiarity with the languages and parallelism.
The graduate student who learned MATLAB and Julia in tandem did not find
either language particularly more difficult to understand than the other —how-
ever, he was simply translating MATLAB code to Julia code, as opposed to
prototyping purely in Julia.

One recurring difficulty that arose when writing code in Julia was that Ju-
lia’s error messages can appear cryptic, often including information about types
that the programmer did not explicitly specify, but were inferred during JIT
compilation. In Figure 6, there is an error because size(out) returns a Tuple

Mask extraction code in MATLAB

[x,y,z] = size(data);
data_mtx = reshape(data, x*y, z);
k = 2
kmeans_group_index = kmeans(data_mtx, k);
group_index_noise = kmeans_group_index(1);
mask = reshape(kmeans_group_index ~=
group_index_noise, x, y);

Mask extraction code in Julia

(x,y,z) = size(data)
data_mtx = reshape(data, x*y, z)
k = 2
kmeans_group_index = kmeans(data_mtx’, 2)
group_index_noise = kmeans_group_index.assignments[1]
mask = reshape([d == group_index_noise ? 0 : 1

for d in kmeans_group_index.assignments], x, y)

Fig. 5: k-means mask extraction code in MATLAB and Julia
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Fig. 6: A typical Julia error message

type, while the colon operator expects the right-hand operand to be an integer.
In MATLAB, comparable code runs with no error, since the colon simply uses
the first element of the 2 × 1 array returned by size. MATLAB was found to
be typically more “forgiving” than Julia.

Moreover, MATLAB’s Code Analyzer will infer and warn the programmer if,
for instance, there is code that would distribute a large array to many parallel
workers, while Julia does not provide warnings of this type. More broadly, the
MATLAB IDE was felt to be more convenient and powerful than using a Julia the
Juno IDE (http://junolab.org/) or a Jupyter Notebook (http://jupyter.org/).

Another difficulty that arose when implementing the algorithm in Julia was
locating a library that would provide the same functionality as MATLAB’s
lsqcurvefit function. The fact that a Julia library function with the same
name had been written, but which used a different algorithm that did not allow
bounds constraints, was troubling.

In spite of these hurdles, our experience suggests that learning Julia is com-
parable to learning a dynamically-typed programming language.

6 Related Work

To the best of our knowledge this is the first comparison of the performance of
two implementations of the linear reference region model (LRRM) for the anal-
ysis of DCE MRI data. Smith et al. [25] recently described DCEMRI.jl, a Julia
implementation of the commonly used Tofts model for DCE MRI, and compared
it briefly against implementations in IDL [20] and R language [28]. DCEMRI.jl
was reported to be 24X faster than DCE@urLAB; both implementations used
the Levenberg–Marquardt algorithm (LMA). Additionally, DCEMRI.jl was re-
ported to be 10X faster than dcemriS4, but this is not a straight comparison
because dcemriS4 uses a Bayesian hierarchical approach for curve fitting that is
more demanding than the LMA.
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Much research has been done on compiling and automatically parallelizing
MATLAB [6,7,11,18]. We did not compare the Julia and MATLAB parallel im-
plementations against what the most active MATLAB compiler project, McLab
at McGill, can perform. This is future work in terms of understanding how much
the type system in Julia helps over the dynamic typing in MATLAB. One im-
portant consideration in the selection of Julia was that it is a programming envi-
ronment that is gaining significant community support. For the medical imaging
research community to switch to a new programming platform, the platform will
need to show signs of significant community support and longevity.

A review of the literature found no references comparing Julia’s performance
to that of other languages for the same algorithm in an authentic parallel pro-
gramming application (i.e. beyond microbenchmarks).

7 Conclusion

Although the initial MATLAB code processed the benchmark data set on the
order of minutes, a typical experiment for a medical imaging researcher often
includes more and larger images, taken from dozens of patients, and may take
weeks to run. The almost 60x speedup achieved using Julia would reduce weeks
to hours, removing a significant constraint on researchers. Based on our expe-
rience while writing this paper, Julia appears to be a very attractive, emergent
programming language for scientific computing.

As a result of our work on the DCE MRI algorithm, and his subsequent inves-
tigations into Julia, the research scientist has adopted the following model: (1)
prototype and validate in MATLAB, (2) use MATLAB to identify bottlenecks,
(3) port performance-critical portions of code to Julia. Taking into account the
results of this case study, we feel that it would not be difficult for other research
groups (who have already navigated the MATLAB learning curve) to similarly
utilize Julia. Furthermore, since none of the performance gains found in this
study resulted directly from the use of MRI data, it seems likely that other sci-
entific computing applications could be prototyped rapidly in MATLAB, then
efficiently ported to Julia for high-throughput applications.
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