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Abstract. This paper presents a system for automatically supporting
the optimization of stencil kernels on emerging Non-Uniform Memory
Access(NUMA) many-core architectures, through a combined compiler
+ runtime approach. In particular, we use a pragma-driven compiler to
recognize the special structures and optimization needs of stencil com-
putations and thereby to automatically generate low-level code that ef-
ficiently utilize the data placement and management support of a C++
runtime on top of NUMA API, a programming interface to the NUMA
policy supported by the Linux kernel. Our results show that through
automated specialization of code generation, this approach provides a
combined benefit of performance, portability, and productivity for de-
velopers.

1 Introduction

Modern architectures increasingly use a large number of cores to boost applica-
tion performance. To reduce the cost of using a global bus to support cache co-
herence, these cores are typically decomposed into a hierarchy of NUMA nodes,
illustrated in Fig. 1(a). Fig. 1(b) shows the widely varying memory latencies
across the eight NUMA cores in a single compute node. To attain high perfor-
mance, applications need to be aware of these different latencies to reduce the
overhead of remote data accesses. In addition to the obvious performance bene-
fit, such a design offers potential portability to future architectures, which may
no longer support cache coherence across different NUMA nodes.

It is well known that significant developer effort is required to decompose an
application into separate memory spaces and then explicitly reference remote
data based on their locations. Instead of burdening developers with the effort,
which degrades their productivity, we propose an automated approach, where
user applications are written using a conventional SMP programming model,
e.g., OpenMP [18], and a compiler is used to automatically translate the high
level specifications down to a lower level implementation that explicitly manages
local and remote memory references and by invoking a runtime library, flexibly
manages the distribution and relocation of data.

This paper presents such a compiler and runtime combination for an im-
portant class of scientific kernels, the stencil computations, which are generally
considered one of the most fundamental kernels of scientific simulations and are
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Fig.1. AMD 6380 CPU: (a) NUMA hier- Fig. 2. Stencil distance in a 2D
archy; (b) latency distance matrix representation

widely used in solving problems such as partial differential equations. As illus-
trated by Fig. 2, a typical stencil kernel iteratively modifies each element of a
regular grid based on values of its neighboring elements. The number of neigh-
bors in the computation can vary significantly depending on the distances of the
neighbors and the dimension of the grid.

The regular structures of the stencils make them ideal candidates for high
performance computing on the latest ccNUMA (cache coherent NUMA) architec-
tures, which use inter-node communication between cache controllers to support
cache coherence across cores. A principle to obtaining high performance on such
systems is to have each core perform local computations most of the time and to
limit cache coherence induced traffic among neighboring nodes, thereby avoiding
traffic congestion. Such constraints are naturally satisfied by decomposing the
underlying grid of a stencil kernel, e.g., the one in Fig. 2, into blocks so that the
composition of the grid matches the underlying topology of the NUMA cores.
Then, each block of data, together with the computation that modifies it, can
be permanently allocated to its corresponding NUMA core, eliminating global
data movements and maintaining a consistent level of locality throughout.

We have developed a pragma-driven compiler and a runtime library to accom-
plish the above for stencil computations. The compiler is designed to recognize
the special structures of stencil computations and thereby to automatically gen-
erate low-level C code that explicitly distinguishes local and remove memory
references to efficiently utilize the underlying data placement and management
scheme supported by a runtime library on top of NUMA APIs (libnuma) [12].
We show that through automated specialized code generation for stencils, our
approach provides a combination of good performance, architecture portability,
and productivity for developers. Our technical contributions include:

— We present how to use specialized code generation to take advantage of
the structures of stencil codes and thereby automatically provide advanced
optimization support for these kernels on NUMA architectures.

— We study the implications of varying optimization schemes for ccNUMA and
demonstrate the importance of coordinated compiler and runtime support.

The rest of the paper is organized as follows. Section 2 presents the programming
interface of our system. Sections 3 and 4 present our stencil compiler and runtime
library. Section 5 presents experimental results. Section 6 discusses related work.
Section 7 summarize our conclusions.
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: #pragma stencil sl time <t> array [X*Y] <AO,Anext>
: for (t = 0; t < timesteps; t++) {

if (t%2 == 0) { old_a = AO; a = Anext; }
else {a = AO; old_a = Anext; }

: #pragma stencil sl data <i,j> array <old_a,a> halo <-1,1> <-1,1> copy_halo

for (int i = 1; i < X-1; i++)
for (int j = 1; j < Y-1; j++)
old_alil[j] = (ali-1]1[jl+ali+1]1[j]) + alil[j-1] + alil[j+11))/4.0;

Fig. 3. Example: 2-D stencil with the optimization pragma

The Programming Interface

The programming interface of our system includes a set of pragma notations,
illustrated by lines 1 and 5 of Fig. 3, to describe various properties of a stencil.
Each pragma identifies an immediately following loop as part of a stencil com-
putation to be optimized, by specifying the following properties of the stencil.

A name that uniquely identifies the stencil kernel, so that multiple pragmas
can be used to collectively define a single stencil. For example, both pragmas
in Fig. 3 use sl as the stencil name, with line 1 specifying the time dimension
of the stencil, and line 5 the data dimensions.

The time dimensions of the stencil, expressed using the notation time<wvg
..U >, where each v;(i = 0, ...,m) specifies the index variable of a loop that
enumerates a time dimension of the stencil. In Fig. 3, the time dimension is
enumerated by the ¢ loop at line 2 and specified inside the pragma at line 1.
The data dimensions of the stencil, expressed using the notation data <wvg
... Up>, where each v;(i = 0, ..., n) specifies the index variable of a loop that
enumerates different elements of a stencil data dimension. In Fig. 3, the data
dimensions are enumerated by the ¢ and j loops at lines 6-7 and are specified
inside the pragma at line 5.

The names and dimension sizes of the arrays used to store the stencil data,
specified using the notation array [dy*...*d,,] <ag,...,a;>, where dy * ... % dy,
defines the dimensionality (m) of the stencil, the size of each dimension,
and the name a;(i = 0,...,1) of each array, as illustrated by the [X*Y]
<A0,Anext> and <old_a,a> declarations at line 1 and line 5 of Fig. 3.
The neighboring references used to update each element of the stencil, speci-
fied using the notation halo <ly,ro>...<l,,r,>, where each <l;,r;> (i=1,...,n)
specifies the neighbors from the left (I;) and right (r;) of data dimension i.
For example, the simple stencil in Fig. 3 uses four neighbors, one from each
side of each dimension, to update each element.

Optimization configurations, e.g., halo_copy or halo-no_copy (the default op-
tion) to indicate whether to pre-copy values of the neighboring references to
local variables before using them to update halo regions of each core.

Each pragma defines the immediately following loops as new components of the
stencil. Pragmas with the same identifier, which can span multiple procedures,
are required to collectively satisfy the following constraints.

If a stencil has multiple pragmas, the data dimensions must be nested in-
side the time dimensions. In particular, when across procedures, each inner



pragma must be inside a procedure invoked by the body of an outer one,
and the function that contains the inner pragma must not be invoked else-
where for other purposes (a function specialization pre-transformation can
be applied by the compiler to automatically support this property).

— Each pragma may introduce a set of arrays used to store the stencil data.
All stencil arrays must have the same size, and when multiple sets of arrays
are introduced, each inner declaration introduces a set of new names aliased
to those introduced by the outer pragmas.

— When modifying each element at subscript (vg, ..., v,) of a stencil array, the
computation only uses elements from the other arrays that are within the
neighborhood of (v + 1, ..., v, + 15,) and (vg + 71, ..., Uy + ), where (I;, 1)
i=0,...,n is the hallo region of each dimension.

The compiler relies on the above properties to ensure safety and profitability
of optimizations. In particular, if the stencil modifies an array a; by reading
only neighbors from the other arrays, no synchronization is needed when using
OpenMP to parallelize the data dimension loops within each time step. On
the other hand, if a; is modified by reading its own neighborhood, additional
synchronizations are needed to make sure up-to-date values of a; are used. Our
system currently support only the first case (a.k.a. the jacobi type of stencils).

3 The Stencil Compiler

Fig. 4 shows the algorithm implemented by our compiler to automatically con-
vert an annotated stencil kernel into its lower level implementation (llustrated
in Fig. 5) through the following three steps inside function transform-stencil.

— Data placement: decompose and copy the data onto the proper NUMA
cores, illustrated by lines 2-7 of Fig. 5, which create two new arrays of type
MulticoreArray<float>, a distributed array type defined in our runtime li-
brary with pre-allocated data on the NUMA cores, and then concurrently
copy the original data into these distributed arrays. The original stencil code
is then modified to use the new arrays, named _Anext and _A0 In Fig. 5.

— Many-core computing: deploy the NUMA cores, which have been pre-allocated
with stencil data in the constructor of the MulticoreArrays at line 2 of Fig. 5,
to each concurrently update their pre-allocated data (lines 14-18 of Fig. 5).

— Data collection: copy the distributed data at each NUMA core back to the
original stencil arrays, illustrated at lines 21-24 of Fig. 5.

The data placement and collection steps serve the purposes of copying data back
and forth between the original and the distributed stencil arrays. They represent
the most significant overhead of the parallelization optimization and are placed
outside of the outermost time loop of the annotated stencil computation, so that
the overhead can be amortized when the computation is repeated many times
(which is typical in practice). As summarized at lines 16-17 of Fig. 5, the many-
core computing step extracts the following two components of the computation
to be performed on each NUMA core.



transform-stencil (p : stencil pragma, input: stencil code to modify)
1: t=time_loop(p); arr=stencil_arrays(p,t); insert gen-distribution(p,arr) before t in input;
for each array a € arr do: replace a with multicore_arr(a) in t; enddo;
for each function g called inside t and parameter x of g s.t. z € stencil_arrays(p) do
replace  with multicore_array(x) in g; enddo
2: d = data_dims(p); local=gen-stencil-local(p, d); edges=gen-stencil-boundaries(p,local,d);
replace outermost_loop(d) with gen_manycore_compute(local, edges) in input;
if configured to do so then apply_aray_copying_opt(input, stencil_arrays(p,d), hallo(p)) endif
3: insert gen-data-collection(p, arr) after t in input;

gen-stencil-local(p: stencil pragma, d: stencil data dimensions)
2.1: res = copy(outermost_loop(d));
2.2: for each loop | € d do:
local; = replace stencil_size(l) with local-size(p, l) in [; replace | with local; in res; enddo
2.3: for each a[sub] € res s.t. a € stencil_arrays(p) do: replace a[sub] with local_ref(a[sub]); enddo
return res;

gen-stencil-boundaries(p: stencil pragma, local: local computation, d: stencil data dimensions)
res—empty; cdims = 0;
for each loop [ : for i = lo,..hi; € d s.t. halo(p,l) = (haloy, halo,) do
2.4: left; = right; = empty;
2.5: for each iteration v of [ s.t. lo; + halo; < v < lo; do
left, = replace ¢ with v in copy(body_of 1); append left, to the end of left;; enddo
for each iteration v of I s.t. hi; < v < hi; + halo, do
right, = replace ¢ with v in copy(body of 1); append right, to the end of right;; enddo
2.6: left_edge=replace | with left; in copy(local); right_edge = replace | with right; in copy(local);
2.7: for each a[sub] in left_edge s.t. a € stencil_arrays(p) and offset(sub,l) < lo; do
replace a[sub] with remote_stencil_from_left(r); enddo
for each a[sub] in right_edge s.t. a € stencil_arrays(p) and offset(sub,l) > hi; do
replace a[sub] with remote_stencil_from_right(r); enddo
2,8: append gen-stencil-boundaries(p,le ft_edge,cdims) with conditional at the end of res;
append gen-stencil-boundaries(p,right_edge,cdims) with conditional at the end of res;
cdims = cdims U {l};
enddo
return res;

Fig. 4. Algorithm: transforming stencil computations

The inner stencil, which modifies and reads only data that are on the local
core, illustrated by lines 3-5 of Fig. 6. The inner stencil is extracted by invoking
the gen-stencil-local algorithm in Fig. 4, which includes three steps: (2.1) make a
copy of the outermost data dimension loop, e.g., loop i in Fig. 3, which represents
a single time step iteration of the stencil; (2.2) modify the copy so that the upper
bound of each data dimension (e.g., X and Y in Fig. 3) is replaced with the size
of the local portion of the dimension (e.g., c.sz0 and c.sz1 in Fig. 6); and (2.3)
replace references to the global stencil arrays (e.g., -old-a and a in Fig. 5) to
instead use their local copies (e.g., -old_a_local and _a_local in Fig. 6).

The stencil boundaries, which modify data located at either end of a data
dimension and need to read data from the neighboring cores to correctly perform
the updates. These boundary computations are extracted by invoking the gen-
stencil-boundaries algorithm in Fig. 4. Since two boundaries at both ends must
be considered for each data dimension, 2" cases are generated for a stencil of n
dimensions. As example, the boundary cases of the two-dimensional stencil in
Fig. 3 are illustrated at lines 6-23 of Fig. 6. The algorithm in Fig. 4 uses a variable
cdims to keep track of all the data dimensions already processed and uses two
variables, left; and right;, to store computations that modify either end (left or



/* initialize local arrays and their dimensions on each corex/
MulticoreArray<float> _Anext(nz,ny,nx,CORE_NUM,0,true), _AO(nz,ny,nx,CORE_NUM,0,true);
int numberOfCores = _A0.get_number0fCores();
#pragma omp parallel for private(i,j,k)
for (int core = 0; core < numberOfCores; core++) {
. copy Anext and AO into _Anext and _AO ...
}
MulticoreArray<float>* _old_a, *_a;
#pragma stencil sl time <t> array <_AO,_Anext>
10: for (t = 0; t < timesteps; t++) {
11: if (t%2 == 0) { _old_a = _AO; _a = _Anext; }
12: else {_a = _AO; _old_a = _Anext; }
13: #pragma stencil sl data<i,j> array<_old_a,_a> halo<-1,1><-1,1> dist<blocked>
14:  #pragma omp parallel for private(i,j,k)

W0 ~NO®U B WN -

15: for (int core = 0; core < numberOfCores; core++) {

16: ...compute 2D stencil on the local arrays of each core ...

17: ...compute boundary values by communicating with the neighbors ...
18: }

19: }

20: #pragma omp parallel for private(i,j,k)

21: for (int core = 0; core < numberOfCores; core++) {

22: ... copy _Anext and _AO back into Anext and AO ...
23: %}

Fig. 5. Example: structure of lower-level implementation of Fig. 3

right) of each data dimension [ (step 2.4). Each boundary case is extracted from
loop [ by removing the loop and replacing its index variable with an iteration
number in the left or right halo region of the dimension (step 2.5). Next, the
original [ loop in the inner stencil is replaced with a corresponding boundary case
to generate left_edge and right_edge, which contain unrolled halo iterations
of I on the left and right boundaries respectively (step 2.6). Then, step 2.7
replaces the stencil array references that are outside the local core with remote
references that explicitly fetch the data from the neighboring cores. Finally, for
each stencil boundary computation already generated and saved in le ft_edge and
right_edge, invoke the gen-manycore-stencil-boundary function again to generate
computations at the corners of multiple distributed data dimensions (step 2.8),
which need to access remote data from two or more neighbors. All boundary
cases are then wrapped inside a sequence of if conditionals, shown at lines 6, 9,
12, 15, 17, 19, 22, and 24 in Fig. 6, before being appended to the result.

The low-level implementation in Fig. 6 is essentially the result of numerous
splitting and unrolling transformations to the nested data dimension loops of the
stencil. Each split loop nest contains a unique combination of local and remote
data references, with each remote reference triggering a data movement between
a pair of neighboring cores. Two benefits are offered by such an implementation.
First, the implementation knows and explicitly enumerates the exact location of
each data item and thus incurs no runtime address translation overhead and re-
quires no cache coherency support from the hardware. Second, the separation of
different combinations of local vs. remote references allows additional optimiza-
tion opportunities, e.g., by prefetching the remote references explicitly, shown
as the last operation of step (2) of the algorithm in Fig. 4. The complexity of
the low-level implementation, while nearly impossible for a developer to manu-
ally manage, is easily managed by compilers by recursively enumerating all the
boundary cases, as demonstrated, enhancing application portability.



float *_a_local = (*_a).arr_ptrs[core], *_old_a_local = (*_old_a).arr_ptrs[core];
Core<float>& ¢ = (*_a).core_info[core];
for (i=1; i<c.sz0-1; i=i+1) /* computation with only local references */
for (j=1; j<c.szl-1; j=j+1)
_old_a_local[i+j*c.sz0] = (-a-local[i-1+j*c.sz0] + _a_local[i+1+j*c.sz0] +
_a_localli+(j-1)*c.sz0] +_a_local[i+(j+1)*c.sz0])/4.0;
if (!c.is_leftmost_core[0]) /* left boundary computation at dimension 0*/
for (j=1; j<c.szl-1; j=j+1)
_old_a_local[j*c.sz0] = ((*.a).arr_ptrs[c.l_neighbor[0]] [(c.l_sz0-1)-+j*c.1_sz0]
+_a_local[(14j*c.sz0]+-a-local[(j-1)*c.sz0] +-_a_local[(j+1)*c.sz0])/4.0;
9: if (!c.is_rightmost_core[0]) /* right boundary computation at dimension 0*/
10:  for (j=1; j<c.szl-1; j=j+1)
11: _old_a_local[c.sz0-1+j*c.sz0] = (-a-local[c.sz0-2+4j*c.sz0]+(*_a).arr_ptrs[c.r_neighbor[0]]
[14j*c.r_sz0] +_a_local[c.sz0-1+(j-1)*c.sz0] +_a_local[c.sz0-1+4(j+1)*c.sz0]) /4.0;
12: if (!c.is_leftmost_core[1]) /* left boundary computation at dimension 1*/
13:: for (i=1; j<c.sz0-1; i=i+1)

g whe

14: _old_a_local[i] = _a_local[i-1] +_a_local[i+1]

+(*_a).arr_ptrs[c.l.neighbor[1]] [i+(c.l-sz0-1)*c.1_sz0]+_a_local[i+c.sz0)/4.0;
15: if (lc.is_leftmost_core[0]) /* if core is additionally on the boundary at dimension 0 */
16: { . left-left corner computation ... }
17: if (!c.is_rightmost_core[0]) /* if core is additionally on the boundary at dimension 0 */
18: { s right-left corner computation ... }

19: if (!c.is_rightmost_core[1]) /* right boundary computation at dimension 1*/
20: for (i=1; i<c.sz0-1; i=i+1)

21: _old-a_local[i+(c.sz1-1)*c.sz0] = (-a_local[i-14(c.sz1-1)*c.sz0]+_a_local[i+14(c.sz1-1)*c.sz0]
+_a_local[i4(c.sz1-2)*c.sz0] 4(*_a).arr_ptrs[c.r_neighbor[1]][i])/4.0;

22: if (lc.is_leftmost_core[0]) /* if core is additionally on the left boundary at dimension 0 */

23: { .. left-right corner computation ... }

24: if (lc.is_rightmost_core[0]) /* if core is additionally on the right oundary at dimension 0 */

25: { . right-right corner computation ... }

Fig. 6. Example: local and boundary computation per core

4 Runtime Support

Our runtime library provides a C++ abstraction, the MulticoreArray tem-
plated class used at line 2 of Fig. 5, to support NUMA-aware stencil com-
putation. The abstraction internally integrates the thread decomposition and
scheduling support in OpenMP with data placement support through libnuma.
Each OpenMP thread is bound to a hardware core, through the system library
sched_setaf finity(). The NUMA topology is referenced by the runtime for the
binding of OpenMP thread and hardware core, and libnuma is invoked in the
constructor of the abstraction to allocate a distributed stencil array of the de-
sired data dimensions, with its internal data placed onto a pre-specified number
of different hardware cores. To minimize remote memory access latency, neigh-
boring stencil data are allocated either on hardware cores located inside the
same NUMA node, or cores that belong to adjacent NUMA nodes. Halo region
copying is supported to help developers manage data movement across cores.

4.1 Thread Decomposition And Management Using OpenMP

Our runtime allows the number of hardware cores to be used for each data
dimension of the stencil to be specified when invoking the constructor of the
MulticoreArray abstraction. If unspecified, the maximal number of cores that
match the underlying system topology is used. and each core is allocated with
blocks of distributed data to be used for later computation. The runtime relies
on libnuma to retrieve NUMA distances, a relative distance in the machine



topology between two NUMA nodes, among all available NUMA nodes. A multi-
dimensional topology can be constructed with the available NUMA information.

Based on the core numbers to be used for each stencil dimension, the run-
time use the omp_set_num_threads() and omp parallel for clause to setup the
parallelization environment. The system call sched_setaffinity() is used to en-
force CPU affinity and bind the CPU core to a designated OpenMP thread. For
example, given a fully parallelized configuration using 64 OpenMP threads on
a 64-core machine, OpenMP threads with ID 0 to 7 will be bound to hardware
cores with ID 0 to 7. These 8 hardware cores reside in NUMA node 0 according to
the NUMA information from the hardware specification. This thread binding is
different from the default OpenMP support, which binds an OpenMP thread to
any available hardware core based on the system status. In contrast, our runtime
exerts full control in the thread scheduling for the many-core hardware.

4.2 NUMA-aware Data Placement

Our runtime uses internal data structures inside the MulticoreArray abstrac-
tion to decompose a stencil array into a collection of sub-arrays. Each sub-array
separately stores the stencil data to be operated in a designated thread and is
stored in a continuous memory space on a hardware core, together with addi-
tional information about the size of the local data and pointers to data that
belong to its neighboring threads. Multi-dimensional distribution is used to dis-
tribute blocked data to the sub-arrays. By default, each sub-array (except the
last one) contains the same number of distributed elements. The runtime then
evenly assigns sub-arrays to OpenMP threads based on the sub-array IDs and
OpenMP thread IDs. Sub-arrays with adjacent ID numbers are assigned to the
same NUMA node or adjacent NUMA nodes when possible. After the assign-
ment, the function numa_alloc_local() from libnuma is called by each thread to
allocate memory space for the distributed data, thereby enforcing all the dis-
tributed data are allocated to their designated OpenMP threads and hardware
cores/NUMA nodes. When the number of sub-arrays is more than the available
hardware cores, our runtime assigns multiple sub-arrays with neighboring IDs
to the same OpenMP thread. This again enforces that adjacent sub-arrays are
allocated to the same or neighboring NUMA nodes to reduce memory references
crossing NUMA nodes. All the threads use the numa_alloc_* functions from
libnuma to allocate local memory for their data.

Data elements inside a MulticoreArray object can be accessed in two differ-
ent ways: (1) through a high-level interface that allows data to be accessed based
on their locations in the original stencil arrays using subscript notations, with
the subscripting operator internally translating the global coordinates to the ap-
propriate sub-arrays and local subscripts within the subarrays; and (2) through
the low-level interface, which directly references the sub-array pointers and their
local elements and is therefore much more efficient. The high-level interface is
provided to the developers for convenience, while the low-level interface is used
by our compiler, illustrated in Fig. 6, to ensure efficiency of the generated code,
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Fig. 7. Halo management Fig. 8. 3D Stencil

Our runtime is specialized for the NUMA architecture and is different from
the default OpenMP runtime in two key aspects: (1) it decomposes data based
on the NUMA topology to minimize exchanges across NUMA nodes, whereas
OpenMP uses the first-touch policy; and (2), it supports multi-dimensional data
decomposition, with data elements in each decomposed sub-array residing in
adjacent memory spaces for better spacial locality. Through the pragma-driven
programming interface, our combined runtime and compiler support allows de-
velopers to inject domain-specific knowledge into the data and computation de-
composition process to maximize application performance.

4.3 Halo data management

As stencil data are distributed onto different cores and updated concurrently,
each thread needs data from its neighbors to update elements on the boundaries
of its local block. These neighboring data are called halo regions of each thread.
Our system supports two approaches to managing halo regions, illustrated in
Fig. 7. The first approach (shown in Fig. 7(a)) keeps the halo regions in the re-
mote memory, and the second (Fig. 7(b)) replicates the remote data on the local
core. The different storage forms impact the performance of the computation
by changing when the remote data is fetched (e.g., just in time before they are
used vs. far ahead of time using detached halo). Further, hardware with small
cache capacity may prefer no local halo storage to save space. The first halo
management approach, with computation fetching halo data remotely from the
neighboring cores, is adopted by the compiler generated code shown in Fig. 6.

5 Experimental Results

We implemented our stencil compiler by combining the POET program trans-
formation language [24] with the ROSE C/C++ compiler [19]. The compiler is
evaluated by using it to automatically generate low-level implementations for
four 3D stencil kernels, with 7-point, 13-point, 19-point, and 25-point updates
respectively. In particular, each kernel repetitively modifies two 3D stencil ar-
rays of the same size, with each element of one array modified using neighboring
elements of the other. The 7-point stencil updates each element using two neigh-
boring elements from each dimension of the other array, as illustrated by the
2D stencil code in Fig. 3. The 13-point stencil updates each element using four



neighboring elements of each dimension, as illustrated in Fig. 8, and so on. Each
kernel has a baseline OpenMP implementation, where a single OpenMP parallel
for pragma is used to parallelize the outermost data dimension loop of each sten-
cil. In contrast, the implementation generated by our compiler (the stencilOpt
version) parallelizes all the data dimensions of the stencil instead of just the out-
ermost one as the preferred configuration. Further, each stencil array is placed
explicitly on the appropriate NUMA cores, and system-level affinity binding is
used to ensure each thread only modifies its local data. The baseline OpenMP
implementations have their data distributed among NUMA nodes following the
first-touch policy. The OpenMP thread affinity is also setup in OpenMP envi-
ronment. In contrast, the stencilOpt implementations use the data distribution
strategy described in Section 4.2.

All kernel implementations are evaluated on a 64-core AMD 6380 workstation
comprised of four sockets (16 cores per socket). Each core has a 16 KB L1 data
cache, and every two cores share a 2 MB L2 cache memory. Every 8 cores form
a NUMA node and share a 8 MB L3 cache. The NUMA distance matrix in
Fig. 1 shows the relative memory latencies among the different NUMA nodes,
and Fig. 1(a) shows the structure of the NUMA hierarchy. All implementations
were compiled on the machine using gee with -O2 option. Each implementation
is evaluated five times, and its average performance is reported. The performance
variations across different runs are generally under 3%.

5.1 The Overall Performance

Speedups Over OpenMP (# of time steps = 8) Speedups Over OpenMP (# of timesteps = 24)
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Fig. 9. Speedups attained by our compiler over baseline OpenMP implementations

Fig. 9 shows the speedups attained by using our compiler to automatically
generate low-level implementations (the stencilOpt implementation) for the four
3D stencil kernels, when the size of each data dimension ranges from 32 to 512
and the number of time iterations from 8 to 24. From these results, when the
number of time iterations is 24, our stencilOpt implementation were able to
perform better than the OpenMP implementation in all cases except for the
7-point stencil, which has the fewest neighboring data references, where the
stencilOpt implementation performed worse than the OpenMP one when the



problem sizes are < 128. When the number of neighboring references increases,
the stencilOpt implementation has uniformly attained a speedup, ranging from
factors of 1.1 to 3.7, over the OpenMP implementation. In most cases when
the problem size or the number of neighboring references increases, so does the
performance speedup over the OpenMP implementation. The overall results in-
dicate that the stencilOpt implementation can manage memory and neighboring
core communications much better than the baseline OpenMP implementation,
indicating the effectiveness of NUMA-aware data placement by our runtime.

When the number of time iterations equals 8, the speedups attained by sten-
cilOpt generally follow a similar pattern but are much worse than the time = 24
cases. This is because when many fewer iterations of the stencil computation are
repeated, there are insufficient reuses of the distributed stencil arrays to com-
pensate for the extra overhead of constructing the distributed stencil arrays and
copying back and forth between the original stencil arrays and the distributed
ones. When amortized at least 24 times, which are much smaller than the number
of time iterations in realistic applications, the overhead is no longer a significant
factor in performance, and significant speedups can be attained.

5.2 Impact of Execution Configurations
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Fig. 10. Impact of thread configurations on 24 time iterations of 256 7-point stencil

Fig. 10 compares the performance of the OpenMP and stencilOpt implemen-
tations when using different numbers of threads for the 7-point stencil kernel
when the array size is 2563 and when the computation is repeated 24 times. The
OpenMP implementations use the default OpenMP policy to schedule these
threads onto different hardware cores. On the other hand, the stencilOpt im-
plementations explicitly bind the threads to individual hardware cores to match
the actual topology of the stencil when possible, e.g., by parallelizing all data
dimensions to form a n X n x n topology. From Fig. 10, the best performance
by OpenMP is attained when using only 8 out of the 64 cores available on the
machine. When more than 8 threads are used, the performance goes down due



to network congestions created by the data exchanges among the randomly as-
signed cores. In contrast, the StencilOpt implementation is able to fully utilize
the 64 cores available on the machine to attain close to a factor of 13 speedup
over the sequential implementation, compared to a factor of 5 by OpenMP at-
tained when using 8 cores. Although the stencilOpt implementation incurs more
significant overhead than the OpenMP baseline, as demonstrated when using
fewer than 16 cores, the benefit of better data placement and communication
management outweighs the cost when using at least 32 cores.

5.3 Implications of Halo Management
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Fig. 11. Impact of halo copying on 24 time iterations of 256 7-point stencil

Fig. 11 compares the performance of stencilOpt implementations when using
detached halo management vs. using no explicit halo management, which is the
default option used in Sections 5.1 and 5.2. In particular, the compiler supports
detached halo management by prefetching all the remote memory references
into local arrays before using the local copies in the actual computation. The
main benefit of pre-fetching halo regions is to enable each core reuse its local
copies within a single time step. However, the more remote memory references
are involved, the larger memory footprint each thread needs to hold all the local
copies, and the large footprints may incur additional cache misses when the
memory demand is high. For the 256 7-point stencil with 24 time iterations,
the performance of stencilOpt either with or without halo copying is similar to
each other for a majority of cases except when using 256 threads, where since
each hardware core needs to host 4 threads, each thread has a smaller cache
allocation which is insufficient to hold all the local copies.

Note that halo copying is often used to simplify the complexity of software
development when manually implementing stencil computations on distributed
memory platforms, as it is impractical to manually enumerate the different com-
binations of local and remote references as shown in the automatically gener-
ated code in Fig. 6. Using a compiler + runtime combined approach make it
unnecessary to hardcode this optimization into the high level source code of the
computation, therefore promoting application productivity and portability.



6 Related Work

Existing work has recognized the importance of extending OpenMP compilers to
support NUMA architectures to attain high performance. For example, Bircsak
et. al [2] investigated user-supplied page migration and data layout directives.
Chapman, Patil, and Prabhakar [6] evaluated various ways that OpenMP may be
used for performance-oriented programming on ccNUMA Architechtures. Huang
et. al [11] worked on enabling locality-aware computing in OpenMP by allow-
ing the developer to manipulate data locations hierarchically. The directives we
propose are specially tailored for using NUMA aware OpenMP to support the
optimization needs of stencil computations and are therefore not intended as
part of the general programming model of OpenMP.

Previous research on optimizing stencil computations have mostly focused
on enhancing their data locality and parallelism in concert [7, 8,13, 20, 22, 23]
for multi-core or GPU platforms. These approaches span both manual and au-
tomatic code optimizations as well as automated performance prediction and
tuning of the optimization configurations (e.g., blocking factors). Bondhugula et
al. [4] developed an automated framework that performs parallelization and lo-
cality optimizations of stencil codes using the polyhedral model. Liu and Li [15]
presented an asynchronous algorithm for reducing synchronization costs and im-
proving locality in stencil computations. Christen et al. [7] presented a strategy
for improving locality and exploiting parallelism in a stencil code appearing in
a Bio-heat equation targeting the Cell BE and Nvidia GPUs. Our work also
includes an automated source-to-source compiler for stencil computations. How-
ever, we target many-core NUMA architectures and aim to provide a directive
driven framework to support the automated cache management for stencil com-
putations on such architectures.

Datta et al. [9,10] presented an auto-tuning approach to search for the best
optimizations for stencil codes, including their data distribution schemes for
NUMA systems, However, their NUMA-aware strategy relies on the first-touch
memory policy to perform a page-based distribution. Shaheen et al. [21] focus
on spatial-temporal data locality, parallelization, regular memory access, and
data-to-core affinity to provide efficient temporal blocking schemes for stencil
computations running on ccNUMA systems. Our NUMA-aware decomposition
and distribution is driven by topological features of both the stencil arrays and
the NUMA hierarchy. In addition to data-to-core affinity, our distribution con-
siders minimizing the overhead by selecting remote access links with the least
memory latencies.

Bolosky et. al [3] explored the relations between kernel-based NUMA manage-
ment policies and multiprocessor memory architectures. Various research efforts
have focused on performance evaluation on NUMA architecture using program-
ming models such as OpenMP [6,17] or MPI [14]. Navarro et al. [16] used Locality
Communication Graph (LCG) to represent the data locality and used compiler
techniques to generate efficient loop iteration/data distribution for NUMA ma-
chines. Other research efforts have focused on thread and memory placement [1],



data distribution, migration, and replication [5]. This paper present a NUMA
study over the latest multi-core NUMA CPUs.

7 Conclusion

This paper presents a pragma-driven special purpose optimizing compiler to au-
tomatically convert stencil computations in scientific applications to low-level
implementations that invoke a runtime library to explicitly manage the data
placement and remote memory references on NUMA many-core architectures.
Our automatically optimized code have consistently outperformed OpenMP im-
plementations that use first-touch policies to schedule the computations. We
show that through automatically specialized code generation for stencils, our
approach provides a combination of good performance, architecture portability,
and productivity for developers.
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