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Abstract. Sparse matrix computations are widely used in iterative solvers;
they are notoriously memory bound and typically yield poor perfor-
mance on modern architectures. A common optimization strategy for
such computations is to rely on specialized representations that exploit
the nonzero structure of the sparse matrix in an application-specific way.
Recent research has developed loop and data transformations for sparse
matrix computations in a polyhedral compilation framework. In this pa-
per, we apply these and additional loop transformations to a real appli-
cation code, the LOBPCG solver, which performs a Sparse Matrix Multi-
Vector (SpMM) computation at each iteration. The paper presents the
transformation derivation for this application code and resulting perfor-
mance. The compiler-generated code attains a speedup of up to 8.26x on
8 threads on an Intel Haswell and 30 GFlops; it outperforms a state-of-
the-art manually-written Fortran implementation by 3%.

1 Introduction

Sparse matrix computations arise in numerous engineering and science applica-
tions. Sparse matrices are represented by data structures that store only nonzero
elements, with additional auxiliary structures to identify the corresponding row
and column of each element [1, 2]. Consider the representative sparse matrix-
vector multiplication (SpMV), a performance bottleneck in solving sparse linear
systems and eigenvalue problems because it is performed hundreds or thousands
of times during a single execution of an application [3]. Frequent indirection
through auxiliary arrays and a lack of data reuse lead to low computational in-
tensity, i.e. number of arithmetic operations per memory reference [4]. There is
extensive prior work dealing with the development, optimization, and improving
the performance of parallel SpMV kernels for both multi-core and many-core ar-
chitectures, e.g. [1, 3, 5–9]. One common strategy is to specialize a sparse matrix
representation to exploit the nonzero structure of the sparse matrix and thus
reduce memory accesses and simplify the generated code. This approach usually
involves using an optimized library that converts to the desired representation
from a standard format such as Compressed Sparse Row (CSR) or Coordinate
(COO).



While ideally a compiler can be used to perform these optimizations and data
transformations, compilers have been severely limited in their ability to optimize
sparse matrix computations due to the indirection that arises in indexing and
looping over just the nonzero elements. This indirection gives rise to non-affine
subscript expressions and loop bounds; i.e., array subscripts and loop bounds
are no longer linear expressions of loop indices. A common way of expressing
such indirection is through index arrays such as, for example, array B in the
expression A[B[i]]. Code generators based on polyhedra scanning are particu-
larly restricted in the presence of non-affine loop bounds or subscripts [10–14].
As a consequence, most parallelizing compilers either give up on optimizing such
computations, or apply optimizations very conservatively.

Recent work has developed non-affine support and loop and data transforma-
tions in a polyhedral transformation and code generation framework and shown
to be effective in optimizing SpMV for multicores and GPUs [15]. In this pa-
per, we demonstrate that such compiler technology can be extended so that
it is suitable for the far more complex support required by real applications.
We apply our compiler transformations to optimize the Locally Optimal Block
Preconditioned Conjugate Gradient (LOBPCG) solver [16]. Specifically, an im-
portant kernel within LOBPCG is the sparse matrix multi-vector multiplication
(SpMM), which is a generalization of the SpMV kernel in which a sparse m-by-n
matrix A is multiplied by a tall and narrow dense n-by-k matrix B (k<<n).
SpMM is used in a variety of sparse matrix computations such as those using
block Krylov subspace methods for solving several linear systems simultaneously
as well as obtaining several eigen pairs of eigenvalue problems, e.g. [17–24]. Other
applications that require SpMM operations include: (i) aerodynamic design op-
timization [25], (i) the search engine PageRank algorithm, and (iii) atmospheric
modeling [24]. A characteristic of SpMM is that arithmetic intensity is signifi-
cantly higher than SpMV if access to the sparse matrix can be reused by the
vectors, as clarified in Table 1. In the table, nnz refers to the number of nonzero
elements and n is the number of columns in the sparse matrix; k is the number
of dense vectors.

Table 1. Arithmetic intensity of SpMV and SpMM.

SpMV k independent SpMV SpMM

Flops 2 * nnz 2k * nnz 2k * nnz

Words moved nnz + 2n k * nnz +2k * n nnz + 2k * n

The remainder of the paper will demonstrate the applicability of prior loop
and data transformations and the new challenges that arise in optimizing LOBPCG
for very large matrices that characterize the application in which it is used [16].
The novel contributions of the paper are as follows: (1) we apply these trans-
formations to automatically generate an inspector that produces a new matrix
representation, compressed sparse block (CSB), starting from a standard com-
pressed sparse row (CSR); (2) we generate an optimized SpMM, implemented



for a symmetric matrix by computing both SpMV and SpMVT (transposed
SpMV) [1]; (3) we identify additional optimizations to reduce the data move-
ment for indexing expressions and optimize AVX SIMD execution; and, (4) we
demonstrate the collection of optimizations that lead to a 3% performance gain
over the manually-written state-of-the-art Fortran implementation [16].

The remainder of the paper is organized as follows. The next two sections
provide background on the CSR, COO and CSB storage formats, inspector/ex-
ecutor, the compiler approach and the LOBPCG solver. Section 4 provides the
compiler derivation of the optimized inspector and executor. We then discuss
the experimental setup and provide a performance comparison of the compiler-
generated code and the manual code. Section 6 discusses related work. Finally,
we conclude this work with a summary of contributions and ideas for possible
future work.

Fig. 1. A 6*6 example sparse matrix.
11 12 13 14 0 0

0 22 23 0 0 0

0 0 33 34 35 36

0 0 0 44 45 0

0 0 0 0 0 56

0 0 0 0 0 66

Fig. 2. The COO representation.
data 11 12 13 14 22 23 33 34 35 36 44 45 56 66

row index 0 0 0 0 1 1 2 2 2 2 3 3 4 5

column index 0 1 2 3 1 2 2 3 4 5 3 4 5 5

Fig. 3. The CSR representation.
data 11 12 13 14 22 23 33 34 35 36

44 45 56 66

row pointer 0 4 6 10 12 13 14

column index 0 1 2 3 1 2 2 3 4 5 3 4 5 5

Fig. 4. The CSB representation.
data 11 12 22 13 14 23 33 34 44 35 36 45 56 66

blkptr 0,0 0,1 1,1 1,2 2,2

row index 0 0 1 0 0 1 0 0 1 0 0 1 0 1

column index 0 1 1 0 1 0 0 1 1 0 1 0 1 1

2 Background

The remainder of the paper relies on understanding sparse matrix storage for-
mats, inspector/executor paradigm and an overview of the compiler approach,
all briefly described in this section.

2.1 Storage Formats

Coordinate Storage Format (COO). COO is often used as the entry format
in sparse matrix packages [1, 26]. In COO, a data vector stores the nonzero
elements of the matrix and two integer vectors, row and column, store the row



and column indices of the corresponding nonzero elements in the data vector.
Although nonzero elements and their corresponding indices can be stored in any
order, they are usually stored by ascending row order.The amount of required
storage is proportional to the number of nonzero elements. Figure 2 shows an
example of storing a matrix using COO.

Compressed Sparse Row (CSR). Like COO, CSR (see Figure 3) stores the
nonzero elements of the matrix in a data array and column indices in an in-
teger array. The third array stores pointers to the beginning of each row of the
matrix in the data and columns arrays. The rowpointers array is of size N+1,
where N is the number of matrix rows. The last element in the rowpointer ar-
ray contains the total number of nonzero elements in the matrix. CSR requires
less storage for row indices. In addition, the rowpointer array allows for easy
computations of some quantities of interest for a matrix such as the number of
nonzero elements in a row i = ptr[i+ 1]−ptr[i] and the total number of nonzero
elements ptr[N + 1].

Compressed Sparse Block (CSB). In the CSB format, matrix A is partitioned
into small blocks and each block is treated as a COO matrix. CSB consists of
three arrays blkptr, indices, and data. Array blkptr is a two-dimensional array
storing the offset of the first nonzero of each block. The indexarray stores the
concatenated row and column indices of nonzeros in a block; in Figure 4, row
and columnindices are shown separately. Array data stores nonzeros. In CSB,
a row (column) of blocks is designated as a blockrow (blockcolumn).

2.2 Inspector/Executor

A general technique to analyze data accesses through index arrays and conse-
quently reschedule or reorder data at run time employs an inspector/executor
paradigm whereby the compiler generates inspector code to be executed at run-
time that can collect the index expressions and then an executor employs specific
optimizations that incorporate the run-time information [27–30]. These inspec-
tor/executor optimizations have targeted parallelization and communication [28,
31] and data reorganization [32–36].

2.3 Overview of Approach

In this paper, we employ an inspector in conjunction with data transformations
to convert a symmetric matrix from CSR to CSB format, and generate an op-
timized, parallel executor for the CSB representation. The generation of both
optimized inspector and executor is performed by the CHiLL polyhedral trans-
formation and code generation framework. CHiLL’s operations are driven by a
transformation recipe which specifies the functions and loops to optimize and
the transformations to apply.



Recent work has extended CHiLL to support non-affine computations that
incorporate indirection through index arrays [37, 15, 38]. CHiLL is able to toler-
ate and maninputate non-affine loop bounds and array access expressions using
the abstraction of uninterpreted function symbols, expanding on their use in
Omega [11]. Data transformations are composed with standard and non-affine
transformations in [15] to convert between matrix formats and realize optimized
executors by introducing transformations used in this paper, described as follows:

– make-dense takes as input a set of non-affine array index expressions and
introduces a guard condition and as many dense loops as necessary to re-
place the non-affine index expressions with affine accesses. The make-dense
transformation enables further affine loop transforamtions such as tiling.

– compact and compact-and-pad are inspector-executor transformations; an
automatically generated inspector gathers the iterations of a dense loop that
are actually executed and the optimized executor only visits those iterations.
The executor represents the transformed code that uses the compacted loop,
which can then be further optimized.

– Using compact-and-pad, the inspector also performs a data transformation,
inserting explicit zeros when necessary to correspond with the optimized
executor. In this paper, compact-and-pad is used to reorder the data, but
does not add zeros.

In the remainder of the paper, we will describe LOBPCG and then present
how these transformations and others are used to derive an optimized imple-
mentation.

3 LOBPCG

LOBPCG is a subspace iteration method which starts with an initial guess about
the eigenvectors and refines the guess at each iteration of the solver [16]. It is used
in the Many-body Fermion Dynamics for nuclei (MFDn) application to study the
structure of light nuclei. At the heart of LOBPCG lies SpMM, which multiplies
a sparse matrix with multiple dense eigenvectors. Due to the very large size of
the input matrix used, the symmetry of the matrix is exploited to store only
half of the matrix entries to optimize for memory footprint. Since the matrix is
symmetric, performing SpMM using the entire matrix is accomplished by SpMM

for(i=0; i<n; i++)

for(j=index[i]; j<index[i+1]; j++)

for(k=0; k<m ; k++)

y[i][k]+= A[j]*x[col[j]][k];

(a) SpMM code using CSR format.

for(i=0; i<n; i++)

for(j=index[i]; j<index[i+1]; j++)

for(k=0; k<m; k++)

y[col[j]][k]+= A[j]*x[i][k];

(b) SpMMT code using CSR format.

Fig. 5. SpMM for symmetric matrix requires a matrix representation suitable for two
separate computations.
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Fig. 6. Parallelization strategy using CSB format. Nonzeros are represented by crosses.
Input matrix is blocked into β × β blocks. Blocks with dotted boundaries represent
symmetric portion of matrix which is not stored. SpMM is parallelized by block rows,
while transposed SpMM is parallelized by block columns.

over half of the symmetric matrix, followed by an additional transposed SpMM
(SpMMT ) over the same half.

SpMM can be trivially parallelized using CSR format by computing each row
computation in parallel. However computing the SpMMT in parallel using the
CSR format is difficult due to write conflicts on the output vector when the row
computations are parallelized. The Compressed Sparse Column (CSC) format
might be ideal for parallelization of SpMMT , but then a similar problem would
arise for computing SpMM using CSC.

The CSB format solves this problem by blocking the actual matrix dimen-
sions into square blocks of β×β. It then determines the nonzeros falling in each
block and stores them in the COO format in addition to storing the start and end
offsets of each block. Now, SpMM can be parallelized by block rows since they
do not have any write conflicts and SpMMT can be parallelized by block column
without conflicts. This strategy is illustrated in Figure 6. Block-column-wise
parallelization for SpMMT is indicated by a vertical line while block-row-wise
parallelization is indicated by a horizontal line. The tiles with dotted bound-
aries are actually not stored but serve to illustrate that the actual matrix is
symmetric.

4 Compiler Approach

This section describes how make-dense and compact-and-pad are used to derive
the parallel SpMM implementation for symmetric matrices using CSB format,



source: csb_v2.c # SpMM 
procedure: csb 
format : rose 
loop: 0 
 
original() 
remove_dep(0,1) 
fuse([0,1], 2) 
split_with_alignment(0,1,4096) 
split_with_alignment(1,1,4096) 
 
make_dense(0,2,k) 
known(lb == 0) 
known(ub == 2412565) 
known(n == 2412469) 
 
#tile outer row and col loops by 4096 
tile(0,2,4096,1,counted) 
tile(0,2,4096,1,counted) 
 
#normalize tiled loops 
shift_to(0,4,0) 
shift_to(0,3,0) 
 

compact(0,[3,4],[A_prime], 0, [A]) 
 
distribute([0,1,2,3], 1) 
permute(1,1,[2,1]) 
 
#OpenMP code generation 
mark_omp_threads(0,[0]) 
mark_omp_threads(1,[0]) 
mark_omp_threads(2,[0]) 
mark_omp_threads(3,[0]) 
 
# simd code generation 
mark_pragma(0,4, simd) 
mark_pragma(1,4, simd) 
mark_pragma(2,3, simd) 
mark_pragma(3,3, simd) 
 
#set number of OpenMP threads 
omp_par_for(1,1,8) 
 
known(index_ < index__) 
known(m > 1) 
 
 

Fig. 7. CHiLL script for SpMM based on the CSB format.

which will be integrated into LOBPCG. The complete CHiLL transformation
recipe is shown in Figure 7. In this section, we focus on the effects of make-dense
and compact-and-pad1, and describe additional optimizations needed to further
reduce the memory footprint and exploit SIMD execution.

4.1 Compiler-Generated Inspector to Derive CSB Representation

To expose the dense loops that correspond to the actual dimensions of the ma-
trix, the make-dense transformation is firstly called on the SpMM code yielding
the intermediate code shown in Figure 8(a). Next, tiling is applied to the two
outermost loops to yield the β × β blocks in CSB. Here β is the tiling factor in
Figure 8(b).

Finally compact-and-pad is applied to the consecutive third and fourth loop
levels(i, l), which are treated as a single logical loop level. The input sparse matrix
is also reorganized by compact-and-pad into a new layout reflecting the updated
traversal order of the nonzeros. Additionally the offset index, expl index 1 and
expl index 2 arrays are populated.

1 Both compact and compact-and-pad use variations of the CHiLL compact command;
a matrix is provided as an argument for compact-and-pad.



for(i=0; i < n; i++)

for(l=0; l < n; l++)

for(j=index[i]; j < index[i+1]; j++)

for(k=0; k < m ; k++)

if(l == col[j])

y[i][k]+= A[j]*x[l][k];

(a) SpMM after make-dense.

for(ii=0; ii < n/beta; ii++)

for(ll=0; ll < n/beta; ll++)

for(i=0; i < beta; i++)

for(l=0; l < beta; l++)

for(j=index[ii*beta + i]; j < index[ii*beta+i+1]; j++)

for(k=0; k < m ; k++)

if(ll*beta + l == col[j])

y[ii*beta + i][k]+= A[j]*x[ll*beta + l][k];

(b) SpMM after tiling.

for (ii = 0; ii <= 587; ii += 1)
for (ll = 0; ll <= 589; ll += 1) {

_P1[590 * ii + ll] = 0;
_P_DATA1[590 * ii + ll + 1] = 0;

}
for (ii = 0; ii <= 587; ii += 1)

for (i = 0; i <= 4095; i += 1)
for (j = index_(4096 * ii + i); j <= index__(4096 * ii + i) - 1; j += 1) {

ll = (col[j] - 0) / 4096;
l = (col[j] - 0) % 4096;
_P_DATA5 = ((struct a_list *)(malloc(sizeof(struct a_list ) * 1)));
_P_DATA5 -> next = _P1[590 * ii + ll];
_P1[590 * ii + ll] = _P_DATA5;
_P1[590 * ii + ll] -> A = 0;
_P1[590 * ii + ll] -> col_[0] = i;
_P1[590 * ii + ll] -> col_[1] = l;
chill_count_1 += 1;
_P_DATA1[590 * ii + ll + 1] += 1;
_P1[590 * ii + ll] -> A = A[j];

}
for (ii = 0; ii <= 587; ii += 1) {

if (ii <= 0) {
_P_DATA2 = ((unsigned short *)(malloc(sizeof(unsigned short ) * chill_count_1)));
_P_DATA3 = ((unsigned short *)(malloc(sizeof(unsigned short ) * chill_count_1)));
A_prime = ((float *)(malloc(sizeof(float ) * chill_count_1)));

}
for (ll = 0; ll <= 589; ll += 1) {

_P_DATA5 = _P1[590 * ii + ll];
for (newVar0 = 1 - _P_DATA1[590 * ii + ll + 1]; newVar0 <= 0; newVar0 += 1) {

_P_DATA2[_P_DATA1[590 * ii + ll] - newVar0] = _P_DATA5 -> col_[0];
_P_DATA3[_P_DATA1[590 * ii + ll] - newVar0] = _P_DATA5 -> col_[1];
A_prime[(_P_DATA1[590 * ii + ll] - newVar0) * 1] = _P_DATA5 -> A;
_P_DATA5 = _P_DATA5 -> next;

}
_P_DATA1[590 * ii + ll + 1] += _P_DATA1[590 * ii + ll];

}
}

(c) SpMM generated inspector code.

Fig. 8. Steps of generating the inspector.



The generated inspector is shown in Figure 8(c). The offset of each β × β
block into the array of nonzeros is stored in P DATA1. Each entry of the array
P1 corresponds to a single block, and the block’s nonzeros are stored as a linked

list because the size of the matrix is unknown. For each nonzero, its block is
identified using the indices ii and ll. These indices specify the entry of P1,
whose linked list is appended with the nonzero. The row and column offsets
within the block correspond to indices i and l and are stored in the linked list
fields col [0] and col [1] respectively. The total count of nonzeros is stored
in chill count 1 and the individual nonzero count of each block is stored in
the corresponding entry in P1. Once all nonzeros have been gathered, the offset
and explicit index arrays are allocated within the memory for the right size. The
data is then copied from the linked list to the arrays and, the offset of each block
is updated using P DATA1.

4.2 Optimized Executor

The effect of compact-and-pad additionally results in an optimized executor.
The generated CSB code was parallelized using OpenMP directives across block
rows for SpMM and block columns for SpMMT . For transposed SpMM, the two
outermost loops were permuted so that the resulting code would be traversed
by block columns. A further optimization that reduced the memory footprint of
index arrays was declaring the row and column index arrays, or expl index 1 and
expl index 2 within a β × β block to be short data type. To detect that the size
of the index array used did not exceed the maximum allocatable size with 16
bits, the loop bounds and array access expressions were queried during compact-
and-pad to verify the maximum possible value of the array index expression.

Also, the innermost loop of SpMM does not carry a dependence, and is data
parallel, and hence is parallelized with the SIMD pragma annotation for further
performance benefits. The pragma annotation is supplied via the transformation
interface with the loop level for the annotation, and the code generator inserts the
pragma at this loop level. The final parallelized codes for SpMM and SpMMT ,
containing SIMD pragmas are shown in Figure 9.

5 Experimental Evaluation

In this section, we measure performance of the generated combined SpMM and
SpMMT executor code, and compare its performance to the manual FORTRAN
implementation in [16].

5.1 Methodology

The experiments were performed on an an Intel i7-4770 (Haswell) CPU with
256KB L1 cache, 1 MB L2 cache, 8MB L3 cache, and 32GB of memory. The
clock rate is 3.40GHz frequency, with 4 physical cpu cores and 8 threads. The



#pragma omp parallel private(ii,ll,i,k)

{

#pragma omp for schedule(dynamic,1)

for(ii=0; ii < n/beta; ii++)

for(ll=0; ll < n/beta; ll++)

for(i=offset_index[ii][ll]; i < offset_index[ii][ll+1]; i++)

#pragma simd

for(k=0; k < m ; k++)

y[ii*beta + expl_index_1[i]][k]+= A[i]*x[ll*beta + expl_index_2[i]][k];

}

(a) Final SpMM parallelized code.

#pragma omp parallel private(ii,ll,i,k)

{

#pragma omp for schedule(dynamic,1)

for(ll=0; ll < n/beta; ll++)

for(ii=0; ii < n/beta; ii++)

for(i=offset_index[ii][ll]; i < offset_index[ii][ll+1]; i++)

#pragma simd

for(k=0; k < m ; k++)

y[ii*beta + expl_index_2[i]][k]+= A[i]*x[ll*beta + expl_index_1[i]][k];

}

(b) Final SpMMT parallelized code.

Fig. 9. Optimized parallel executors.

Intel version 15.0.0 compilers were used: the Fortran compiler for the manual
code and the C compiler for the generated code.

Because our goal is to examine performance in the context of realistic en-
gineering and scientific problems that are used by MFDn, we consider large
matrices arising from the finite element discretization. Half of our application
specific test sparse matrix is generated by the original Fortan code in [16]. The
matrix has 2412469 rows, 2412566 columns and contains 429895762 nonzero el-
ements stored in single precision to reduce the total size of the file, which makes
it easier to handle and less time-consuming to read during program execution.

To obtain reliable timing measurements, each computation is run 100 times,
and the median value is recorded. The initialization of the codes are not included
in the timings as in a real world situation the environment can be set up once
and then reused for a large number of calculations. Performance in GFLOPs can
be calculated using the following equation, where nnz is number of nonzeros,
nvd is the number of dense vectors, and t is execution time in seconds.

GFLOPs = (nnz ∗ 4 ∗ nvd)/(t ∗ 109)



5.2 Performance Measurements

We show the performance in two ways. In Figure 10, we examine performance
as a function of the number of dense vectors and threads using a beta value of
4096. We used a number of different dense vectors = {1, 4, 8, 12, 16, 24, 32,
48, 64, 80, 96} and a number of threads = {1,2,4,6,8,10}. As k increases, we
see a significant performance improvement which benefits from parallelization
up until about k = 16, and then the reuse becomes difficult to fully exploit. For
larger values of k, the best performance is achieved on fewer threads.
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Fig. 10. Performance in GFLOPs of generated implementations for varying numbers
of dense vectors and threads.

Figure 11 shows the increase in speedup due to using each optimization from
the previous section. We used a fixed blocking factor 4096 in this graph and com-
pute an average speedup from the results of the previous section. The baseline
generated code achieves only 0.77x of the performance of the manual Fortran
code. By using 16-bit indices for the row and column index arrays (short vec-
tor), and inserting the SIMD pragma, the compiler is able to achieve even better
performance than the original Fortran code, a speedup of 1.03x. We attribute
this difference to simplifications in the indexing that arise in the compiler im-
plementation.

6 Related Work

The majority of literature describes optimized SpMV implementations and strate-
gies targeting different architectures. However, work on SpMM and SpMMT is
not as prevalent.

6.1 Application-specific Approaches

Applications such as biconjugate and quasi-minimal residual iterative linear
solvers require computing both SpMV and SpMVT (transposed SpMV) [1]. Gen-
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erally this problem is solved by transposing the sparse matrix and then perform-
ing regular SpMV, and, intuitively this is expensive in space and data movement.
Buluc et al. developed the CSB storage format to compute SpMV and SpMVT

at the same time and requires similar storage to CSR or CSC [39]. This repre-
sentation was then used as part of parallel SpMM and SpMMT by Aktulga et
al. [16].

6.2 Compiler Approaches

Some compiler approaches begin with a dense abstraction of a sparse matrix
computation; these compilers then generate sparse data representations during
code generation, placing a burden on the compiler to optimize away the some-
times orders of magnitude difference in performance between dense and sparse
implementations [40–42]. To our knowledge, the only prior compiler approach
that starts with a sparse computation and derives new sparse matrix representa-
tions is that of Wijshoff et al. [43]. They convert code with indirect array accesses
and loop bounds into dense loops that can then be converted into sparse matrix
code using the MT1 compiler [44, 45].

7 Conclusion and Future Work

This paper demonstrated the effectiveness of compiler-generated code for SpMM,
when used in the context of the LOBPCG solver on a real-world scientific appli-
cation at the scale of a problem that fits on a single socket. The key finding is
that compiler-generated C code can outperform manual code written in Fortran.



We discovered the importance of 16-bit index arrays and AVX SIMD execution
to match the manual code’s performance. We found out that the performance
benefits when using multiple vectors trails off when the vector becomes too large.

As a continuation of this work, we are exploring the generation of CUDA
code, which was not attempted by the application developers. Our future work
also includes comparing against the extended CSB implementation for GPUs
described in [46] to our implementation.
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