
Polyhedral Compiler Technology in
Collaboration with Autotuning Important to

Domain-Specific Frameworks for HPC

Mary Hall and Protonu Basu

University of Utah, School of Computing, Salt Lake City, UT 84103
Lawrence Berkeley National Laboratory, Berkeley CA 94721

Abstract. Domain-specific frameworks – including embedded domain-
specific languages and libraries – increase programmer productivity by
encapsulating proven manual optimization strategies into software mod-
ules or (semi-)automated tools. In such frameworks, optimizations and
optimization strategies capitalize on knowledge of the requirements of
a particular application domain to achieve high performance and archi-
tecture portability. While many strategies have been used to develop
domain-specific frameworks, this position paper argues the importance
of polyhedral compiler technology and autotuning for important classes
of high-performance computing domains. Such an approach has the fol-
lowing advantages over other strategies: (1) composability; (2) software
reuse; and, (3) facilitates performance portability.

Keywords: domain-specific frameworks, autotuning, polyhedral com-
piler technology

1 Introduction

The President’s National Strategic Computing Initiative of July 2015 established
as its first objective to accelerate the “...delivery of a capable exascale comput-
ing system that integrates hardware and software capability...” If we look at
the architectural diversity among current supercomputers and also look forward
a few years, it is clear that a variety of specialized accelerators (e.g., Nvidia
Pascal GPUs vs. Intel Knights Landing many-cores) and memory systems (e.g.,
NVRAM and Near-Data Processing) will be developed, and different vendors
will provide dramatically different hardware solutions. Consequently, attaining
high performance of applications across different exascale platforms may re-
quire fundamentally different implementations of software: different algorithms,
strategies for parallelization, loop order, data layout and mapping, and exploiting
SIMD/SIMT. This need for different implementations is at odds with the goal
of performance portability, whereby the same application performs well across
platforms without significant rewriting. A key concern of the organizations tar-
geting future exascale platforms is the high cost of developing and maintaining
performance-portable applications for diverse exascale architectures, including



2 Mary Hall and Protonu Basu

many-core CPUs and GPUs. Thus, by achieving performance portability, we
will also dramatically increase programmer productivity.

Over the last several years, many researchers have addressed performance
portability using two key approaches. First, domain-specific frameworks – in-
cluding embedded domain-specific languages and libraries – encapsulate proven
manual optimization strategies into software modules and (semi-)automated
tools that can produce a collection of architecture-specific implementations. Such
frameworks achieve high performance because the optimizations employed and
the optimization strategy are specialized to the application domain. Second,
autotuning involves empirically exploring a search space of possible implemen-
tations to identify the best implementation for a particular execution context
(e.g., architecture and input data set). By automating the process of evaluating
alternatives, autotuning mitigates the need for extensive manual tuning.

While both concepts are well established in the research community, they are
nevertheless not widely deployed in the development of HPC applications. As
the HPC community prepares for exascale, we must begin now to develop and
harden the underlying software capability to provide performance portability
and increase programmer productivity; this technology must be ready in a few
years to be deployed in exascale applications.

In this position paper, we propose an approach that combines both concepts
and, like several research compilers for HPC, relies on polyhedral transforma-
tion and code generation, which represents loop nest computations mathemati-
cally as integer sets, composes sequences of transformations, and generates code
using polyhedra scanning. Polyhedral compiler technology and autotuning are
well suited to work in collaboration with each other. The mathematical rep-
resentation of polyhedral frameworks allows the compiler to try a variety of
optimization strategies and adjust optimization parameters and still count on
being able to generate correct code. Conversely, autotuning frees the compiler
developer from having to encode the optimization decisions using a one-size-fits-
all algorithm buried inside the compiler implementation. Instead, a variety of
optimization strategies can be explored, permitting more aggressive exploration
of which transformations to apply.

Our approach separates a high-level C/C++/FORTRAN implementation
from architecture-specific implementation (OpenMP, CUDA, etc.), optimization,
and tuning. Such an approach would enable exascale application developers to
express and maintain a single, portable implementation of their computation,
legal code that can be compiled and run using standard tools. An autotun-
ing compiler and search framework, in conjunction with expert programmers
and other tools, transforms the baseline code into a collection or search space
of highly-optimized implementations. Then autotuning is used to explore this
search space and derive final implementations that are best-suited for a specific
execution context. We believe such an approach is reaching a level of maturity
that it could realistically be deployed in the early 2020s timeframe for exascale,
but it will require institutional support and organization of the parallelizing com-
piler community to achieve this goal.



Autotuning Polyhedral Compiler Technology in HPC 3

The remainder of this position paper illustrates this approach to productivity
and performance portability and its advantages over other approaches to domain-
specific frameworks. It concludes by describing the challenges in deploying such
an approach in HPC exascale applications.

2 Overview of Approach

Although most of the domain-specific framework literature is not examining HPC
applications, the use of domain-specific frameworks in HPC dates back multiple
decades, including the Tensor Contraction Engine (a domain-specific compiler),
Chombo (a domain-specific C++ library), and high-performance libraries for
dense linear algebra (BLAS) and sparse solvers (PETSc).

Recent years have seen polyhedral compiler technology maturing and be-
ing applied to code beyond kernels, and deployment in widely-used open source
compilers such as LLVM and gcc. Nevertheless, it is broadly considered by po-
tential HPC users to be a technology that is too limited in applicability and too
hard to understand. Thus, other “simpler” approaches have gained traction in
the HPC application community: (1) specialized manually-written libraries; (2)
automatically-generated libraries like ATLAS, SPIRAL and FFTW; (3) special-
ization through C++ template expansion; (4) single-purpose custom DSLs; and,
(5) eDSL frameworks that rely on rewriting rules. While all of these approaches
have proven useful, they lack the composability and ability to optimize within
context that is afforded from polyhedral frameworks. Therefore, we argue that
polyhedral frameworks (in conjunction with autotuning) should be a building
block for constructing domain-specific optimization frameworks for HPC.

We draw from our experience in working with application developers and
applying the CHiLL autotuning compiler framework to HPC applications across
a variety of application domains over the last several years. When used for HPC
application code, we argue that the following features are valuable.

– Composable transformation and code generation: The importance of having
a general and robust transformation framework, where different collections
of transformations can be optionally used, is that the same tool can be
applied to multiple different application domains. For example, in the last
three years, CHiLL has targeted stencils and geometric multigrid, tensor
contraction, spectral element methods and sparse linear algebra.

– Extensible to new domain-specific transformations: New optimizations that
can be represented as transformations on loop nest iteration spaces can be
added to such a framework and composed with existing transformations. For
example, domain-specific transformations for geometric multigrid including
expanding ghost zones and partial sums for higher-order stencils have been
composed with existing communication-avoiding optimizations such as fu-
sion and parallel wavefront. For sparse matrices, inspector/executor code
generation and support for non-affine transformations are composed with
existing tiling, skew, permute, shift and alignment operations. The tensor
contraction support does not require new transformations, but only a new
tensor-specific decision algorithm.



4 Mary Hall and Protonu Basu

– Optimization strategies and parameters exposed to autotuning: Another re-
quirement is the ability to generate a variety of optimized code that can be
explored for different execution contexts. By exposing high-level expression
of the autotuning search space as transformation recipes, the compiler writer,
an expert programmer or embedded DSL designer can directly express how
to compose transformations that lead to different implementations.

– Search space navigation: The compiler framework described above provides
a way of expressing a search space of different implementations of a com-
putation to target different execution contexts, including architectures, in-
put data sets and phases of a computation. Typically, this search space is
prohibitively large to explore in a brute force manner. Thus, autotuning
incorporates sophisticated external search space navigation tools that use
heuristics and machine learning to accelerate search space exploration and
make it feasible. Examples of search space navigation tools used in the HPC
community include Orio, Active Harmony and OpenTuner.

3 Deployment Challenges and Research Opportunities
There is a long history of parallelizing compiler technology in the HPC commu-
nity, and many promising ideas that never made it into practice. Yet combining
polyhedral frameworks and autotuning technology is well suited for code gener-
ation and optimization required for exascale. There are challenges to make this
vision of practical use to HPC application developers; first consider polyhedral
frameworks:

– The technology must be robust, widely available and with a long-term main-
tenance plan. Thus, incorporation into open source compilers with large de-
velopment teams is needed. There must be a migration path for research
advances to move into practice.

– To extend existing open source polyhedral frameworks to support domain-
specific systems and autotuning, optimization strategies need to be exposed
to the expert programmer and/or domain-specific tool developer.

– The technology must be more broadly applicable. Restricting to loop nest
computations is appropriate for HPC, but we must go beyond affine array-
based codes; e.g., indirection used in sparse, adaptive and unstructured al-
gorithms, C++ iterators, parallel constructs must be supported.

For autotuning, a number of practical barriers remain:
– Search space navigation must be practical, which becomes more complex as

autotuning goals expand.
– Autotuning needs to be part of an application’s build process to truly offer

performance portability and a path forward. By integrating into Makefiles,
autotuning can be repeated after changes to the code or retargeting the
application to new platforms or input data sets.

– Co-tuning of multiple related computations is needed to evaluate global op-
timizations such as data layout.

Acknowledgments. This work has been supported in part by DOE award
DE-SC0008682 and NSF award CCF-1564074.


