
Mapping Medley: Adaptive Parallelism Mapping
with Varying Optimization Goals

Murali Krishna Emani

Lawrence Livermore National Laboratory, USA
emani1@llnl.gov

Abstract. In modern day computing, the performance of parallel pro-
grams is bound by the dynamic execution context that includes inherent
program behavior, resource requirements, co-scheduled programs shar-
ing the system resources, hardware failures and input data. Besides this
dynamic context, the optimization goals are increasingly becoming multi-
objective and dynamic such as minimizing execution time while maxi-
mizing energy efficiency. Efficiently mapping the parallel threads on to
the hardware cores is crucial to achieve these goals. This paper proposes
a novel approach to judiciously map parallel programs to hardware in
dynamic contexts and goals. It uses a simple, yet novel technique by col-
lecting a set of mapping policies to determine best number of threads
that are optimal for specific contexts. It then binds threads to cores
for increased affinity. Besides, this approach also determines the optimal
DVFS levels for these cores to achieve higher energy efficiency. On ex-
tensive evaluation with state-of-art techniques, this scheme outperforms
them in the range 1.08x up to 1.21x and 1.39x over OpenMP default.

1 Introduction

Modern day parallel computing landscape is rapidly evolving in all aspects: right
from applications composed of diverse workloads, middle-ware up to the hard-
ware. The diversity and dynamic nature of all elements in this vertical stack is
becoming more obvious than ever before. Given a parallel application is unlikely
to run on the same platform and the same environment for its lifetime, we need
a way to future-proof application development cost. The mainstream applica-
tions have no longer have the privilege of having exclusive access to hardware
resources; but have to share dynamically with co-executing applications. Simi-
larly, there is no longer a single optimization goal for the parallel applications.
Earlier either it used to be either of latency or throughput or energy efficiency.
However this is no longer the case. Multi-objective optimization is growing as
the ultimate desired goal for parallel applications and systems, such as high
throughput with minimum energy expenditure. Consider the case of software

0 This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-CONF-696003



2

applications on a mobile device or embedded system. In a scenario when it is
connected to external power source, the goal may be more on maximizing ap-
plication performance. But when the power source is disconnected, it no longer
has access to external power supply and has to rely only on its battery. In this
scenario, the goal of maximizing energy efficiency may become as important as
the application performance.

Thus the program performance is bound by the dynamic execution context
which we define as composed of factors such as inherent program behavior, re-
source requirements, co-scheduled programs sharing the system resources, hard-
ware failures, ever-changing software versions, and input data. Over-subscription
with more software threads than the hardware threads may lead to program slow-
down due to delays in threads gaining access to hardware. Under-subscription
may result in poor resource utilization. Hence a judicious parallelism mapping
is crucial to improve program performance. Thread to core affinity also impacts
program performance. Frequent migration of threads and the data in respec-
tive caches drastically degrades the performance. It is also thus important to
minimize thread placements across cores. Tuning CPU core frequencies is one
approach to control the power consumption in the system. The frequencies can
be lowered in many ways to improve power efficiency. Hence reducing power
and the execution time may lead to high energy efficiency. Most of the existing
approaches rely on a single mapping policy which remains the same irrespective
of the current system characteristics. There is no ability to determine if this
mapping is indeed optimal if the execution context changes. Any monitoring
mechanisms if present, are reactive in that they observe the program execution
with a configuration for few cycles. Based on the observed behaviour, the pro-
gram mapping is varied. It is highly unlikely that the mapping determined by
these approaches will be optimal for evolving workloads and hardware. Such
policies cannot be easily advanced as they need radical changes in the policy,
which are expensive to be performed at runtime.

Our idea: In this paper we focus on determining the best thread numbers for
every parallel section of a parallel program and binding them to hardware cores.
This is a key decision on maximizing parallelism with available resources. To
optimize for the energy efficiency, we also determine the optimal frequency level
for each core utilizing Dynamic Voltage Frequency Scaling (DVFS) mechanism.
In the program execution context, we primarily focus on contention due to co-
executing workloads, hardware failures and changes in the external power supply.
We take inspiration from early work [8] which shows that a mixture of specialized
models often outperforms a single policy. It maintains a collection of mixture of
models which can be added to and updated as time goes on, selecting the model
that is best suited to the current context. It avoids over-complex heuristics and
over-fitting training data by allowing different models to be selected based on
their worth. The work closest to our approach is the Ensemble mapping [5]. It
uses predictive modeling that considers different mapping policies called experts
at runtime and selects the one that is determined to be the optimal one at
every parallel loop. As the program execution context changes, different mapping



3

policies will be dynamically selected at runtime. We extend and improve over
the ensemble technique to optimize for both execution time and power and also
consider the case of varying external power supply. We also optimize all executing
programs in the system unlike just the target program in the ensemble method.

Our technique Mapping Medley uses a collection of exclusive mapping
policies where each policy takes as input the execution context i.e. current co-
executing workload, hardware and power supply and then determines the best
threads numbers and optimum frequency levels for all cores. At runtime the
question of which mapping policy to select is crucial for achieving the optimiza-
tion goals. The standard method would be to run each policy for few runs or
cycles and observe the program behaviour, identify and select the best mapping
policy. Policy evaluation in such manner would be prohibitively expensive in
terms of the overhead incurred at runtime. We avoid this overhead by instantly
selecting the best expert based on the context. Our idea is to optimize program
performance and energy by determining best thread numbers, pinning them to
cores and determine optimal frequencies for the cores. Predictive modeling is the
core strategy to our approach.

This paper makes the following contributions:

– First to optimize multi-objective goals in varying execution contexts.
– Propose techniques to optimize execution time and energy efficiency simul-

taneously.
– Outperforms existing state-of-art approaches on extensive evaluation.

2 Related work and Motivation

Related work: The works closest to ours are Ensemble mapping [5] and Feedback-
driven technique [6]. The ensemble mapping approach employs ‘Mixture of Ex-
perts’ concept [8] from machine learning domain. Here multiple specialized map-
ping policies called experts are employed which are offline trained machine learn-
ing models. These individual experts determine thread numbers and future sys-
tem state. An online expert selector chooses the best expert based on what
expert predicted the most accurate system state. This technique aims only at
thread number prediction but does not mention about their placement and run
all cores at maximum frequencies. The feedback driven policy [6] uses control
theory-based techniques to tune different knobs based on feedback from the sys-
tem. It first changes the power control knob to get the power consumption below
a capped value and then tunes a performance knob to extract maximum perfor-
mance possible. It relies on an incremental approach; tune for one goal first and
later tune for another goal. Though this approach may eventually find the opti-
mal configurations, it may take a while to reach which is not desirable at runtime.
Our work directly tackles both execution time and energy efficiency at once, thus
ensuring quick arrival to an optimal configuration. The approach presented in
[14] uses analytic model to determine best number of threads at runtime. It
includes an observe-and-change policy where every parallel loop is run with ran-
dom thread numbers for few cycles. Then based on the observed performance,



4

it builds an online regression model to determine the optimal thread number.
DVFS techniques are employed in solutions proposed in [11] which change the
processor frequencies, according to the code characteristics and runtime infor-
mation. A machine learning mapping policy is proposed in [15]. The policy em-
ploys no way to adjust the policy based on the execution context changes and
no method to measure its efficiency online. Another ensemble search approach
proposed in [2] involves running multiple configurations at the same time on
partitioned system space. Once a best configuration is found, it replaces the
previous best configuration. Multiple policy evaluation at the same time limits
the physical resource availability for the target program. This problem worsens
when the hardware is dynamic with changing number of processors. Energy ef-
ficient parallelism is well studied in embedded systems community dealing with
computing devices with limited power sources in [3]. Adagio [13] is a runtime
system that makes DVFS practical for complex high performance computing
applications. Implications of thread level parallelism on performance and power
are discussed in [9].

Motivation example: In this section, we provide an example to motivate the
goal. The experimental set up is a co-execution of parallel programs with varying
thread numbers and a sudden change in the power supply at runtime. On a two
4-core Intel Xeon machine laptop with 16GB RAM running Ubuntu 3.7 kernel,
we ran a target program pagerank from Green-Marl benchmark [7]. There is a
co-executing workload program cg with 4 threads till time t=25 sec and later
another workload is with 2 threads both from NAS benchmark suite [1]. The
number of processors remains constant throughout. We then simulated a change
in power supply to the system. Till 30sec, external power supply was connected
to this system after which it was disconnected leaving the system to run on its
battery power till the end of program execution. In this set up we evaluated
the target program performance and plotted the number of threads determined
by the OpenMP default scheme, analytic, feedback and ensemble techniques as
described in Section 4. The obtained speedups over default are 1x, 1.21x, 1.32x
and 1.34x. We also then tried running the target exhaustively with all thread
numbers to identify the maximum possible performance (1.6x) and plotted the
optimal threads numbers. The thread numbers are plotted in the second graph
in Fig. 1. We also measured the energy consumption and plotted the energy
efficiency normalized over the default scheme. We observe that the evaluated
techniques fall short of the optimal thread numbers needed for best performance.
They become more unstable after time t=30sec and for poor performance and
energy efficiency.

The figure demonstrates that there still is a large room for improvement
in execution time in terms of better thread numbers and energy efficiency. We
try to tackle this issue of how to quickly and efficiently obtain the best thread
numbers for maximizing speedup and optimal core frequencies for higher energy
efficiency. We discuss our idea in the next section.



5

Fig. 1: Graph showing how #threads and energy efficiencies of different ap-
proaches vary with a change in the power supply. The top graph shows the
number of processors and co-executing workload threads. The second graph
shows the #threads determined by default, analytic, feedback, ensemble and
optimal values. The bottom graph shows energy efficiency values normalized to
the default policy. At time t=30 sec, external power supply is removed to run
rest of the program execution on battery source. It can be observed that all poli-
cies become unstable and move away from the optimal, with a change in power
supply and remain far from the optimal value.



6

3 Mapping Medley

3.1 Optimal thread number

The primary goal of this work is to achieve maximum speedup with minimum
energy expenditure. This goal can be achieved by tuning multiple configurable
parameters or knobs. In this work we limit the tunable parameters to (i) thread
number, (ii) thread placement and (iii) DVFS level of cores. on which the threads
are placed. We try to optimize (a) Execution time: We try to achieve best execu-
tion time by (a) determining the best number of threads for the target program
that minimizes the execution time and (b) setting up threads-to-core affinity
that minimizes data movement across cores. (b) Energy efficiency: Once the op-
timal number of threads are determined and pinned to respective cores, we then
maximize energy efficiency. This can be achieved in multiple ways; here we uti-
lize the most widely used technique: changing the frequency levels of the cores
where the threads are mapped.

We built our approach over the mapping technique in [5].This ensemble tech-
nique is composed of multiple specialized mapping policies called experts. Each
expert is an offline trained linear regression model trained in a specific setting. It
has two predictors that predict (i) best thread number and (ii) expected system
state. The online expert selector evaluates the most appropriate thread-predictor
based on the current system state and determines thread numbers of that predic-
tor to be ideal at that point of time. Each expert is tuned on program scalability
and different hardware. The inputs to the thread predictor are a set of features
that capture both code and system characteristics obtained from the compiler
and the kernel respectively. The set of features are listed in Table 1.

We differ from [5] in the expert selection mechanism. They use a second
machine learning model environment predictor that predicts what the system
should be if the thread number was indeed optimal. This may cause additional
overhead and may not accurately capture the system state specially when the
power supply source varies. We use the four thread predictors or experts as in
[5]. Here each model determines a thread number based on the current paral-
lel section characteristics and execution context that include any co-executing
workloads and hardware changes. Our approach now deploys a simple yet smart
technique where it switches between the largest thread number with external
power supply on and the least thread number when the external power supply is
off. The reason is that large number of threads increase the power consumption
though reduce the execution time. Note that if the power sources from a battery,
the optimization goal now prioritizes energy efficiency to execution time.

3.2 Thread placement

Once the best number of threads are determined, we pin them to the cores to
minimize frequent thread migration. It is widely acknowledged that the place-
ment of parallel threads across cores can greatly affect the program performance.
Migrating a thread from one core to another also involves either moving the data



7

it requires from caches of current core to the caches of the core to which it is
migrated to. Else this thread has to remotely access its data from the caches
of core it was previously running on. Both mechanisms are highly expensive in
terms of the overhead and drastically degrade performance. Ideally threads fin-
ish their computation faster when the data they require is within caches of local
cores. In this approach, once the thread number is determined, these threads are
pinned to the hardware cores to enhance affinity. This reduces the chances of
potential problems with thread migration as discussed above. If the thread num-
ber of a current parallel section is lesser or equal to thread number of previous
parallel section, we do not change the affined cores. Only when the number of
threads are larger, we include more affined cores. The threads are affined using
sched setaffinity system call.

3.3 DVFS level

Dynamic Voltage and Frequency Scaling (DVFS) is one of the methods to alter
the processor frequencies to reduce power consumption of the cores. Each pro-
cessor can be assigned with a set of frequencies that varies with the processor
family and type. In our experiments the list of available frequencies is: (2.3, 1.8,
1.6, 1.4, 1.2, 1.0, 0.8) GHz. The frequency levels of each core can be tuned on-
the-fly, however, in this work we change the frequency levels of only the cores
to which threads are pinned to a single value. It may be noted that an optimal
DVFS level for cores is determined at every parallel section.

3.4 Components

The two components core to our approach are (i) thread predictor and (2) fre-
quency predictor. The thread predictor chooses best expert with its thread num-
ber and pins them to equal number of cores. The frequency predictor determines
the best DVFS level and sets corresponding frequencies to these cores. The idea
of our approach is shown in Fig. 2. We use likwid [10] to set CPU core frequen-
cies and measure the power consumption obtained from from the MSR registers
using likwid-powermeter.

Thread-predictor: Each expert policy takes code and system features as in-
puts to determine a thread number each. Our thread predictor chooses the best
expert and its thread number based on the power supply status. It switches be-
tween the largest thread number with external power supply on and the least
thread number when the external power supply is off. Let E1, E2, E3, E4 be the
four thread mapping policies or experts. Let c be the set of code features, s the
set of system features and p indicates the status of power supply, 0 for full (has
external power supply) or 1 for discharging (runs on battery power). Let t(Ei)
be the thread numbers of ith expert. Then the policy of this thread predictor
‘g’ is to determine the optimal thread number t (1-8) in this work as shown in
Equation 1.



8

Feature E1 E2 E3 E4

memory-accesses 1.05 -0.84 0.14 0.05
instructions -1.52 1.12 0.95 0.03
branches 0.87 0.84 -0.87 -0.57
software-threads -0.62 0.05 -0.48 0.004
processors 0.98 0.98 0.99 0.92
task queue size 0.003 0.02 -0.15 0.22
cpu load-1 0.002 0.03 0.473 0.01
cpu load-2 -0.013 0.227 -1.07 -0.62
cached memory -0.07 0.002 0.007 0.03
pages free list rate 0.004 -0.08 0.01 -0.14

error -1.21 -6.8 -3.03 -2.5

Table 1: List of features and weights used in thread predictor obtained from [5]

Fig. 2: Mapping Medley approach. The input feature vector is passed to two
components (i) thread-predictor that determines the best number of threads
and pins them to equal number of cores (ii) frequency-predictor that determines
the optimal DVFS level and sets its corresponding frequency level to cores.

g(c, s, p) =

{
t|max(t(E1), .., t(E4)), if p = 0

t|min(t(E1), .., t(E4)), if p = 1
(1)

Thread placement: The number of threads are then pinned to cores using 1:1
thread-to-core mapping. For example, if this model outputs 5 threads, then these
threads are affined to 5 cores. The affinity holds till the parallel section execution
is finished. Let Pmax be the maximum number of available processors and cj be
the jth core. The set of cores to pin these threads is (ci, ...ct) for any i, t < Pmax

and i < t chosen from the set of free cores.



9

Frequency-predictor: Let l denote a DVFS level. The frequency predictor
model uses the policy ‘f ’ that takes the combined code, system and power supply
status as input feature vector and outputs the optimal DVFS level (0-6 in this
work) as shown in Equation 2. The corresponding frequency is then set to the
cores using: likwid-setFrequencies -c set-of-cores-to-pin -f predicted-frequency.

f(c, s, p) → l (2)

Machine learning: Both thread predictor and frequency predictor are offline
trained machine learning models. We use linear regression model for the thread-
predictor and a support vector machine (SVM) for the frequency predictor. The
weights for four experts used by our thread predictor are listed in Table 1. These
weights when multiplied with values of the extracted features, yield a thread
number. Our thread predictor determines thread numbers that differ from [5]
as they take the power supply information as one of the input features. SVM
is a supervised classifier that assigns a class (DVFS level from 0-6) for every
given input. We evaluated the frequency predictor using a regression model, but
surprisingly it yielded poorer prediction accuracy of 78% compared to 89% of
SVM. Hence we chose SVM to build the frequency predictor model.

Training data and Features: The training data is generated using the replicated
set up as in [5]. On two different hardware platforms, training programs are run
with co-executing workloads, while collecting all possible features. Two classes
of program scalability on two platforms provides the training data for the four
experts. Thread numbers are varied for each training run to determine the con-
figuration that yields least execution time. In another set of training runs, the
frequency levels are varied to determine the best DVFS level that has the least
energy consumption. These supervised models are cross-validated to avoid over-
fitting the data. They are trained on a set of training programs and evaluated
on new unseen test programs. The set of features are obtained after collect-
ing all possible features and then eliminating those which do not provide any
meaningful hints using entropy estimation.

Portability: It is always ideal to enable portability of the generated models to
avoid extensive retraining on every platform of interest. The thread predictor
captures basic system information as processors and memory in its feature set.
The frequency predictor gets the number of processors from thread predictor and
available set of frequencies from the kernel. It then determines the best frequency
level. Moreover, on a new platform with different hardware, the corresponding
set of available frequencies are known to choose the best one.

4 Experimental Setup

4.1 Platform

The hardware and software platform setup used in the evaluation experiments
is listed in Table 2. Note, we have not evaluated this work on hardware that



10

supports the Intel Turbo Boost Technology in this work and would consider that
as a planned future work. All the programs start execution at the same time and
continue till the other finishes. Each experiment was repeated 10 times and the
geometric mean value of execution time is reported. The energy efficiency is
computed by the product of measured power and the execution time. The power
consumed is obtained from likwid-powermeter [10] that reads power consumption
values from the model specific registers (MSR). Note that the measured speedups
and energy efficiencies are averaged for all co-executing programs.

4.2 Applications

We use a variety of parallel programs from benchmark suites of different compu-
tational behaviours each with largest input data set. These include all OpenMP-
based C programs from NAS [1], Parsec [12] and pagerank from Green-Marl
project [7] benchmark suites. To ensure fair comparison, we replicate a similar
experimental set up and workload applications from [5].

Hardware Laptop with two 4-core Intel Core i3-
2350M, @ 2.30GHz
16GB RAM, 3MB shared LLC

OS 64-bit Ubuntu, 3.7.10 kernel

Compiler gcc 4.6 -O3 optimization

Table 2: Experimental setup

Workload type Programs

light (i) ep, bodytrack

(ii) is, ft

heavy (i) pagerank, blackscholes, bt, sp

(ii) lu, freqmine, bt, freqmine

Table 3: Programs that constitute two types of workloads.

4.3 Competitive Policies

We evaluated our approach against the following state-of-art mapping policies.
The experimental setup along with same set of workload programs are replicated
to ensure fair comparison with the evaluated policies.
Default: OpenMP default policy [4] assigns a thread number equal to the cur-
rent number of available processors.
Analytic: In [14] an analytical model determines the degree of parallelism at
runtime based on observed speedups at fixed time-intervals and estimated using
regression techniques.
Feedback: The feedback driven policy [6] uses techniques to adjust programs
performance and power by tuning different knobs based on feedback based on



11

control theory principles. It first changes the power control knob to get the power
consumption below a capped values and then changes to performance knob to
extract maximum performance possible.
Ensemble: The Ensemble technique [5] uses a mixture of offline trained machine
learning models that predict the best number of threads in dynamic program
environments. The experts are highly specialized based on the executing envi-
ronment and the online expert selector switches between experts choosing the
optimal one as and when required.

4.4 Experimental Scenarios

The dynamic execution context is composed of co-executing workloads and hard-
ware in terms of number of processors and power supply.
(i) Workloads: The external workload consists of multiple parallel programs
selected from the above benchmarks. We vary the number of workload programs
chosen from above programs classified as ‘light’ and ‘heavy’. For each workload
type, we consider different sets of programs as shown in Table 3. All results are
averaged over these different benchmark sets. The same external workload is
reproduced for all evaluated policies in all cases. This ensures a fair comparison
across different mapping policies.
(ii) Hardware: To reflect any change in hardware, we vary the number of avail-
able processors during program execution. Changes in the number of processors
can be due to several factors including hardware failures, assigning more/less
cores for other high/low priority jobs, turning them off for saving power. The
number of available processors is varied in two different frequencies: low and high
where it is changed at every 40 seconds and 10 seconds in low frequency and
high frequency settings respectively. We modify the processor count by switch-
ing ‘online’ values (1 = enable, 0 = disable) for each CPU in /proc file-system.
Disabling a CPU is logically shutting it down on-the-fly. Hence no threads are
scheduled on the disabled cores.
(iii) Power supply: In all experiments, we reflect a change in the power by
starting each run with power supply on and later disconnecting it during program
execution. The status of power source can be observed from observing the battery
status value obtained from the kernel /sys/class/power supply/BAT0/status. If
the status values reads full, it implies that the system has external power supply,
else if it reads discharging, it means that power supply is no longer available and
the system has to utilize its battery power.

5 Evaluation

Here we show the summary of performance results of speedup and energy effi-
ciency of all policies, averaged across all the experimental settings on the eval-
uated scenarios. In all cases, the baseline is OpenMP 3.0 default policy and the
average values (geomean) are geometric means to avoid outliers. The measured
speedups are for both target program and any co-executing workloads and the
energy efficiency is across all cores.



12

(a) Speedup (b) Energy efficiency

Fig. 3: (a) Performance of program speedup all evaluated approaches averaged
across all programs and experimental settings. Our approach outperforms all by
greatly improving speedup by 1.39x over baseline. (b) Performance of energy
efficiency of all evaluated approaches. The medley approach outperforms all by
significantly by achieving 1.44x efficiency.

Speedup: Fig. 3(a) shows the summary of evaluation results for speedups across
all benchmark programs and all experimental scenarios. The x-axis shows each
scenario for workload type and frequency of hardware changes and the geomean.
The analytic, feedback, ensemble improve program speedup by 1.15x, 1.18x,
1.28x over the baseline. Our medley mapping outperforms all these competitive
techniques by recording 1.39x improvement over baseline. It has better speedup
of 21.28% over analytic, 18.19% over feedback and 8.14% over ensemble tech-
niques. The primary reason for these speedups is the optimal determination of
thread numbers along with minimizing frequent thread placements across cores
reducing latencies in data accesses.

OpenMP default policy assigns same number of threads as the number of
available processors. Due to increased resource contention caused by the dynamic
execution context and reduction in power source, it is unable to modify thread
numbers accordingly. The analytic technique sustains workload changes but does
not adjust to varying number of processors. It also suffers from frequent thread
movements across cores. The feedback policy relies on the signal it receives from
the system and changes configurations based on the observed system changes. It
is a reactive policy and tunes the available knobs for execution time and power in
exclusion. The ensemble approach is quick to react to execution context changes
and selects thread numbers owing to the presence of expert mapping policies. It
however does not pin down threads to cores which may lead to frequent changes
in threads to cores placements. Our medley approach utilizes the same number
of threads as the ensemble, but also pins threads to hardware cores to reduce
any chance of thread migration to minimal. Therefore it further improves the
program execution time.



13

Energy efficiency: Overall energy efficiency results. The values reported are
normalized to the OpenMP default baseline. The value more than 1 implies
that the policy achieved better efficient mapping over the baseline, else a poor
mapping in terms of energy consumption.

Fig. 3(b) shows the energy efficiency values averaged across all evaluated
scenarios. It can be observed that our medley approach always achieves bet-
ter efficiency by lowering the power consumption and the execution time. It
improves over 1.44x over the baseline outperforming the compared approaches.
The ensemble technique also improves energy efficiency in a range of 1.12x to
1.55x. The feedback mechanism performs poorer due to the frequent change in
the number of processors where it rapidly changes its configuration leading to
fluctuations in thread numbers and DVFS levels. The analytic approach im-
proves energy in only two scenarios with light workloads, however, with heavy
workloads it significantly drops down below the default baseline. This is due
to the increased execution time due to the enormous time taken to reach the
optimal thread number.

6 Analysis

6.1 Thread number variation with change in power

In this section we analyze the thread number counts averaged across all parallel
sections for all evaluated benchmarks, determined by all evaluated approaches
in two phases: before and after the change in the power supply. This is to un-
derstand how the thread numbers are affected by the changes in optimization
goals and external parameters. It can be observed from Fig. 4 that with exter-
nal power supply on, all policies determine larger thread numbers most of the
time. But when the power supply is removed, the system relies on battery power.
Now all policies try to determine smaller thread numbers to minimize the energy
expenditure.

6.2 DVFS level variation with change in power

Fig. 5 shows how frequently a DVFS level is determined by our approach before
(top) and after (below) the power supply change. The values are normalized
to 100%. It can be observed that with external power supply on, our policy
determines larger frequency levels for all cores to improve the execution time of
all running programs. After the power supply is removed, the goal to minimize
energy expenditure is prioritized and lower frequency levels are determined.

7 Conclusion and Future work

We presented a novel parallelism mapping technique that optimizes execution
time and energy efficiency in dynamic execution contexts. The work is more
relevant in modern day hardware devices where multiple workloads co-execute



14

Fig. 4: Distribution of thread numbers by all evaluated policies before (top) and
after (below) the power supply change. With external power supply on, all poli-
cies determine large thread numbers most of the time and vice-versa.

Fig. 5: Distribution of DVFS levels by our approach before (top) and after (be-
low) the power supply change. With external power supply on, our policy deter-
mines larger frequency levels. After the power supply is removed, lower frequency
levels are determined.



15

with changes in hardware and the source of power supply. Our technique deter-
mines best number of threads at runtime and pins them to underlying hardware
cores and sets optimal core frequencies. As part of future work, we would like to
evaluate on embedded platforms and mobile devices running parallel workloads.
We also would explore changing DVFS levels per-core instead of all cores.

References

1. “NAS 2.3,” http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html.
2. J. Ansel, M. Pacula, Y. L. Wong, C. Chan, M. Olszewski, U.-M. O’Reilly, and

S. Amarasinghe, “Siblingrivalry: Online autotuning through local competitions,”
in Proceedings of the 2012 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, ser. CASES ’12, 2012.

3. M. F. Cloutier, C. Paradis, and V. M. Weaver, “Design and analysis of a 32-bit
embedded high-performance cluster optimized for energy and performance,” in
Proceedings of the 1st International Workshop on Hardware-Software Co-Design
for High Performance Computing, ser. Co-HPC ’14, 2014.

4. L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for Shared-
Memory Programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46–55, Jan.
1998.

5. M. K. Emani and M. F. P. O’Boyle, “Celebrating diversity: a mixture of experts
approach for runtime mapping in dynamic environments,” in Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, Portland, OR, USA, June 15-17, 2015.

6. A. Filieri, H. Hoffmann, and M. Maggio, “Automated multi-objective control for
self-adaptive software design,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015, 2015.

7. “Green-Marl,” https://github.com/stanford-ppl/Green-Marl.
8. R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures

of local experts,” Neural Comput., vol. 3, no. 1, pp. 79–87, Mar. 1991.
9. J. Li and J. F. Martinez, “Power-performance implications of thread-level paral-

lelism on chip multiprocessors,” in Performance Analysis of Systems and Software,
2005. ISPASS 2005. IEEE International Symposium on. IEEE, 2005, pp. 124–134.

10. “likwid,” https://github.com/RRZE-HPC/likwid.
11. A. Merkel and F. Bellosa, “Memory-aware Scheduling for Energy Efficiency on

Multicore Processors,” in Proceedings of the 2008 Conference on Power Aware
Computing and Systems, ser. HotPower’08.

12. “Parsec 2.1,” http://parsec.cs.princeton.edu/.
13. B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W. Freeh,

and T. Bletsch, “Adagio: Making dvs practical for complex hpc applications,”
in Proceedings of the 23rd International Conference on Supercomputing, ser.
ICS ’09. New York, NY, USA: ACM, 2009, pp. 460–469. [Online]. Available:
http://doi.acm.org/10.1145/1542275.1542340

14. S. Sridharan, G. Gupta, and G. S. Sohi, “Adaptive, efficient, parallel execution
of parallel programs,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14, 2014.

15. Z. Wang, M. F. P. O’Boyle, and M. K. Emani, “Smart, adaptive mapping of paral-
lelism in the presence of external workload,” in Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), ser. CGO
’13, 2013.


