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Abstract. The path to exascale computational capabilities in high-
performance computing (HPC) systems is challenged by the evolution of
the architectures of supercomputing systems. The constraints of power
have driven designs to include increasingly heterogeneous architectures
and more complex memory hierarchies. These systems are also expected
to experience in an increased rate of errors, such that the applications will
no longer be able to assume correct behavior of the underlying machine.
To enable the scientific community to succeed in scaling their applica-
tions and harness the capabilities of exascale systems, we need software
strategies that provide mechanisms for explicit management of resilience
to errors in the system, in addition to locality of reference.

In prior work, we introduced the concept of explicitly reliable memory
regions, called havens. Memory management using havens supports se-
lective reliability through a region-based approach to memory allocation.
Havens enable the creation of software-enabled robust memory regions
for which resilient behavior is guaranteed. In this paper, we propose
language support for havens through type annotations that make the
structure of a program’s havens more explicit and convenient for HPC
programmers to use. We describe how the extended haven-based mem-
ory management model is implemented, and demonstrate the use of the
static type annotations to affect the resiliency of a conjugate gradient
application.
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1 Introduction

The high-performance computing (HPC) community has their sights set on
exascale-class computers, but there remain several challenges in designing these
systems and preparing application software to harness the extreme-scale par-
allelism. Due to constraints of power, emerging HPC system architectures will
employ radically different node and system architectures. Future architectures
will emphasize increasing on-chip and node-level parallelism, in addition to scal-
ing the number of nodes in the system, in order to drive performance while
meeting the constraints of power [1]. The technology trends suggest that mem-
ory architectures are expected to have lower memory capacity and bandwidth
per flop of compute performance. Therefore, memory architectures will be more
complex, with denser memory hierarchies and utilize more diverse memory tech-
nologies [2]. The management of resilience to the occurrence of frequent faults
and errors in the system has also been identified as a critical challenge [3]. HPC
applications and their algorithms will need to adapt to these evolving archi-
tectures that will also be increasingly unreliable. These challenges have led to
suggestions that our existing approaches to programming models must change
to complement existing system-level approaches [4]. The demands for massive
concurrency and the emergence of high fault rates require that programming
model features also support the management of resilience and data locality in
order to achieve high performance.

Recent efforts in the HPC community have focused on improvements in the
scalability of numerical libraries and implementations of the MPI libraries for
these to be useful on future extreme-scale machines. However, there is also a
need to develop new abstractions and methods to support fault resilience. In
prior work, we proposed a resilience-driven approach to memory management
using havens [5]. Havens offer an explicit method for affecting resilience in the
context of memory management. In haven-based memory management, each al-
located object is placed in a program-specified haven. The havens guarantee a
specified level of robustness for all the program objects contained in a memory
region. However, the objects contained in havens may not be freed individually;
instead the entire haven is deallocated, leading to the deletion of all the contained
objects. Each haven is protected by a detection/correction mechanism, and dif-
ferent havens in a program may be protected using different resilience schemes.
HPC applications may write their own disciplines to manipulate the resilience
features of arbitrary types of memory. The use of havens provides structure to re-
siliency management of the program memory by grouping related objects based
on the objects’ individual need for robustness and the performance overhead of
the resilience mechanism. While traditional region-based systems [6] statically
assign program objects to regions based on compiler analysis to eliminate the
need for runtime garbage collection, havens provide a scheme for creating regions
within heap-allocated memory with distinct robustness features. In our initial
design, we defined interfaces for the creation and use of havens that were im-
plemented by a library interface. In this paper, we develop language support in



order to make havens in HPC application programs clearer and more convenient
to use, and to support as many C/C++ language constructs as possible.

This paper makes the following contributions:

– We make a realistic proposal for adding language support for havens to
mainstream HPC languages.

– We develop type annotations, which enable static encoding of the program
object’s allocation and deallocation into the robust regions, and optimize the
trade-off between the robustness and performance overhead.

– We investigate how affecting the resilience of the individual program objects
using these static annotations affects their fault coverage and performance
during application execution.

2 Havens: Reliable Memory Regions

The concept of havens [5] supports resilience-driven memory management. The
runtime memory is partitioned into robust regions, called havens, into which
program objects are allocated. Each memory region is protected by a predefined
error detection and/or correction scheme. The robustness scheme is intended to
be agnostic to the algorithm features, or to the structure of the data objects
placed in havens. There is a clear separation between the memory allocation se-
mantics of havens and their implementation of a robustness scheme. Each haven
may be protected using various alternative detection/correction schemes, such
as software-based parity, hashing, replication, etc. Since each of these robustness
schemes carry a different level of performance overhead the program memory is
logically partitioned into regions that each possess a specific level of error re-
silience and performance overhead.
From the perspective of an HPC application program, havens enable applications
to exert fine-grained control on the resilience properties of individual program
objects. Since different havens may have varying guarantees of reliability, based
on the strength of the protection mechanism and its performance overhead, ob-
ject placement in havens may be driven by the trade-off between criticality of the
object to program correctness and the associated overhead. This creates a logical
grouping of objects that require similar resilience characteristics. The objects in
any haven are all freed at once by deleting the entire pool of memory. Therefore,
havens enable the association of lifetime to the reliable memory regions.

3 Using Havens for Resilience-driven Memory
Management

3.1 Basic Operations

While developing the concept of havens, we defined an interface for HPC pro-
grams to effectively use the reliable memory regions in their application codes [5].
The abstract interface is based on the notion of a haven manager, which provides



a set of basic operations that must be implemented to fully support the use of
havens. The operations are summarized below:

1. haven create : The request for the creation of a haven by an application
returns a handle to the memory region, but no memory is allocated. The
specification of the error protection scheme is specified during the haven
create operation.

2. haven alloc : An application requests a specified block of memory within
a haven using this interface. This operation results in the allocation of the
memory and the initialization of state related to the protection scheme.

3. haven delete : The interface indicates intent to delete an object within
the haven, but the memory is not released until the haven is destroyed.

4. haven read and haven write : These interfaces read and update the
program objects contained in the haven; the operations are performed through
these interfaces, rather than directly on the objects, to enable the haven
manager to maintain updated state about the robustness mechanism.

5. haven destroy : The interface requests that the haven is destroyed, which
results in all memory blocks allocated in the region to be deallocated and the
memory is available for reuse. Upon completion of this operation, no further
operation on the haven are permitted. The state related to the robustness
scheme maintained by the haven manager is also destroyed.

6. haven relax and haven robust : These interfaces enable the error
protection scheme applied to a haven to be turned on and off based on the
needs of the application program.

3.2 Haven Library Interface

The implementation of the havens library is similar to the one implemented
in [5], in which the heap is divided into fixed-size pages, and each new haven
creation is aligned on a page-size boundary. The library maintains a linked list
of these pages. We provide the library API functions for each of the primitives
that enable basic haven operations: the haven malloc() and haven new() im-
plement the abstraction haven create for the allocation of objects into the
associated region. The implementation of the haven system imposes no changes
on the representation of pointers and permits the access to individual objects
in the havens using pointer operations. However, we only support per-region
allocation and deallocation, and therefore per-object deallocation is an illegal
operation. The haven release() enables expressing the end of object life. How-
ever, the haven destroy() operation must be invoked to release the memory by
concatenating the haven’s page list to the global list of free pages.

3.3 Protection Schemes for Havens

In our initial implementation of havens, the memory regions are guaranteed
highly-reliable behavior through comprehensive error protection based on a software-
based lightweight parity protection scheme. The haven library maintains a pair



of correction signatures for each memory region, which are of word length and
an additional word length detection signature per 64 words in the memory block
in the region. The detection signature contains one parity bit per word in the
memory region. As memory is allocated for the region and initialized, the correc-
tion signature S1 retains the XOR of all words that are written to the memory
region. We apply an XOR operation on every word that is updated in the mem-
ory region and the correction signature S2. Silent data corruptions or multi-bit
errors are detected based on the state of the detection signature containing a
parity bit for each word contained in the memory region.

When the parity signature for a memory location in the haven detects a
parity violation, the location of the corrupted memory word may be identified.
The value at the corrupted memory location may be recovered using the XOR
signature words. The XOR of the two signatures S1 and S2 equals the XOR of
all the uncorrupted locations in the haven. The corrupted value in the memory
region is recovered by performing an XOR operation on the remaining words
in the haven with the XOR of the two signatures S1 and S2. The recovered
value overwrites the corrupted value, and the detection signature is recomputed.
Using this correction scheme, multibit corruptions may be recovered from unlike
hardware-based ECC, which offers single bit error detection and double bit error
correction. Each of these of detection/recovery operations are transparent to the
application. This parity-based protection is an adaptation of an erasure code
and it maintains very limited state for the detection and correction capabilities
and therefore carries very little space overhead in comparison to other software-
based schemes such as software-based ECC and checksums. The detection is a
constant time operation while the recovery is a O(n) operation based on the size
of the haven.

4 A Haven Type System

In traditional region-based memory management systems, region inference is
used to determine the creation and destruction of regions, as well as the alloca-
tion operations for each region using compiler analysis. With automatic region
inference, the application programmer does not need to include explicit mem-
ory management idioms in the program code. However, from the perspective of
supporting resilient behavior for memory regions, compiler-based analyses pro-
vide little insight into the error sensitivities of the program objects. Therefore,
convenient interfaces are necessary for havens to be adopted in the development
of HPC applications as well as their use in legacy codes. The prototype imple-
mentation contained library interfaces for each of the basic haven operations. In
this paper, we focus on developing language-based annotations with emphasis
on making the use of haven-based memory management convenient, enabling re-
silience and performance overhead to be tuned, and preventing dangling-pointer
dereferences. Our design of the haven type system aims to address the following
seemingly conflicting goals:



– Explicit: HPC programmers control where their program objects are allo-
cated and their robustness characteristic and lifetime.

– Convenient: The need for a minimal set of explicit programmer annotations
while supporting many C/C++ idioms.

– Soundness: The language annotations must prevent dangling-pointer deref-
erences and space leaks.

– Scalable: The havens support various object types and performance overhead
of the resilience scheme scales well.

We develop a typing system that enables HPC programmers to statically
encode memory management decisions on the basis of their understanding of the
resiliency requirements of the various program objects. By making the structure
of the havens and their resilience schemes explicit, the overheads of the schemes
are optimized.

4.1 Type Annotations for Havens

The current implementation of havens is based on a source-to-source compiler
and a runtime library that together support the haven API. The type annotations
that support havens are:

– haven ptr is a type of smart pointer object for a haven. In addition to
the pointer reference of the haven, the haven ptr maintains bookkeeping
information about the objects resident to the haven, including their sizes and
a reference count. The size of individual objects within the haven enables the
library to optimize the parity-based protection scheme that provides error
detection and correction for the memory. Based on the size of the individual
memory objects allocated, the library decides on the number of signatures
per memory object.

– type<haven ptr>: is a subtype for non-pointer variables that guarantees the
allocation of the qualified object within a haven and its protection using a
detection/correction scheme. The qualifier provides a method to qualify local
variables and global variables in C/C++ programs. The qualifier creates a
pointer to the object; the pointer is a class template that is declared on the
stack, and is initialized with a reference that points to the object, which
itself is allocated on the heap.

– type*<haven ptr> subtype may be applied to pointer objects as well. Based
on the included haven ptr, this permits the application to imply locality
for the object whose pointer it qualifies. This is particularly useful for the
allocation of several small objects to a single haven, which helps amortize
the overhead of employing parity signatures for single objects, by sharing
the signatures among multiple separate objects that are resident to a haven.

– haven h{s} enables the creation of dynamic havens that are created with
the construct haven h{s}, where h is a haven handle identifier, and s is a
statement (that may be a compound statement). The haven’s lifetime is the
execution of s. In s, the h is bound to the haven handle, which allocation
primitives may use to allocate objects into the associated reliable region.



– deletehaven operator: provides a static mechanism to deallocate the mem-
ory block corresponding to the haven, and which is pointed to by the haven ptr

type pointer object. If the haven ptr is contains all null object pointers, the
operation results in releasing the storage space for the haven, along with the
program objects contained in the haven.

4.2 Syntax

The declaration of a haven ptr typed pointer leads to the creation of a haven.
The creation, however, does not allocate the vector in the example shown below.
The robust<haven ptr> type qualifier for the declaration of the vector object
associates the object memory with the haven. When the haven alloc allocation
request is made, the runtime library initializes the parity signatures for the vector
object itself.

haven_ptr h1;
double*<h1> vectorA;
vectorA = (double *) haven_malloc(nn*sizeof(double));

for(i=0; i<nn; ++i)
/* initialize vector */

/* vector operations */

haven_release(matrixA);
deletehaven h1;

The deletehaven operation deletes the haven completely and destroys the
state maintained for the parity protection. The safety of this operation is guar-
anteed through the reference counting included in the haven ptr.

4.3 Reference Counting

With the introduction of the haven ptr, we also address one of the major short-
comings of our prior implementation: the lack of safety. In the initial havens
proposal, it was possible to delete a haven without regard for the pointers to ob-
jects allocated inside the region. The deletion of a haven potentially left dangling
pointers. With the use of haven ptr, the pointer maintains a reference count of
the number of external pointers to objects in each haven. The deletehaven

operator placed in an application code is a safe operation that checks for the
presence of valid pointers within the haven. When deleting a haven, there is run-
time check for any active references to the memory objects that are contained
in the haven. The delete operation fails if there are any active references.

5 Experimental Results

To apply the static annotations in an HPC application, we identify program
objects that must be allocated in havens, and annotate their declarations with



Fig. 1. Performance overheads of havens with static annotations



the type qualifiers. For these experiments that evaluate the use of haven-based
memory management using the type qualifiers, we modify a conjugate gradi-
ent code to include the qualifiers on the various application objects. We use a
pre-conditioned iterative CG algorithm and we validate the correctness of the
outcome of the solver with a solution produced using a direct solver. We compare
the evaluation with the results from our previous implementation that required
insertion of raw library interfaces. One of the key advantages of using the static
annotations is that the lines of code change is reduced significantly when com-
pared to the changes required for insertion of library calls in the same application
code.

In the CG algorithm, which solves a system of linear equations A.x = b in
which the algorithm allocates the matrix A, the vector b and the solution vector
x. Additionally, the conjugate vectors p and the residual vector r are referenced
during each iteration of the algorithm. We perform performance evaluation ex-
periments in which the various object in the CG are allocated using havens.
We perform two sets of experiments: (i) we allocate only one structure using
the haven static annotations, while the remaining structures are allocated using
the standard memory allocation interfaces; (ii) we strategically place the data
structures of the CG by allocating structures to havens using this classification.
We compare these strategies with allocations in which havens provide complete
coverage and with experimental runs which do not allocate any structure using
havens. We evaluate the following combinations: (i) allocation of only the static
state, i.e., the matrix A and vector B, the preconditioner M into havens, while
the dynamic state, i.e., all the solution vectors, are allocated using standard
memory allocation functions; (ii) allocation of only matrix A and vector B into
havens; (iii) only the dynamic state is provided fault coverage using havens.

The performance overhead of using havens to the convergence time of the
CG code for the above selection of program objects for allocation into havens is
shown in Figure 1. The annotation of all the program variables to be allocated
into havens provides higher fault coverage, but it results in higher overhead to the
time to solution for the CG application. When the variables are allocated using
raw library interfaces, each program object is protected by a pair of signatures.
When these objects are qualified with the static annotations in the application
code, the compiler and library have a better understanding of the size and struc-
ture of the program objects. Therefore, the larger program objects, notably the
operand matrix A and the preconditioner matrix M, are split and protected by
multiple pairs of parity signatures. This split protection is transparent to the ap-
plication programmer and the application still accesses the matrix elements as
a single data structure. The use of multiple signatures improves the read/write
overhead for the objects and the observed overhead with static annotations for
all program objects is 11% lower than with the library-based allocation, which
provides monolithic protection for the entire data structure. The operand matrix
A occupies a dominant part of the solver’s memory, occupying over 50% of the
active address space, whereas the solution vector x, the conjugate vectors p and
the residual vector r and the preconditioner matrix M account for the remaining



space. Therefore, the annotation of matrix A individually results in 9% lower
overhead than with monolithic parity protection using library interfaces. The
improvement in performance when smaller data objects are annotated is within
2% of the version using library interfaces.

The program objects in the CG application demonstrate different sensitivities
to errors. Errors in the operand matrix A or vector b fundamentally changes the
linear system being solved. For errors in these structures even if the CG solver
converges to a solution, it may be significantly different from a correct solution.
The preconditioner matrix M demonstrates lower sensitivity to the errors, as do
the vectors x, p, r. These features of the CG algorithm form the basis for the
strategic placement of the objects into havens, since the allocation of only sensi-
tive data structures into havens provides a substantially higher resilient behavior
in terms of completion rates of the CG algorithm for reasonable overheads to
performance than a naive placement strategy.

6 Related Work

Much research has been devoted to studies of algorithms for memory manage-
ment based on garbage collection or explicit deallocation. The concept of regions
was implemented in a storage package, in which objects may be allocated in
specific zones [7]. While each zone permitted a different allocation policy, the
deallocation was performed on a per-object basis. The vmalloc library [8] pro-
vides programmers a method to manage memory allocation and impose different
policies on each memory allocation. Region-based systems such as arenas [9] en-
able writing special purpose memory allocators that offer better performance
heap memory allocation for specific applications. Several early implementations
of region-based systems were unsafe; the deletion of regions often left dangling
pointers that were subsequently accessed. Such safety concerns were addressed
through reference counting schemes for the regions [10].

For dynamic heap memory management through static analysis, regions were
proposed [6] as an alternative to garbage collection methods, in order to provide
more predictable and lower memory space. In this proposal, the assignment of
program objects to regions was statically directed by the compiler; this concept
was refined [11] by relaxing the requirement for region lifetimes to be lexical.
Support for regions was implemented in ML [12], Prolog [13]. Cyclone was a
language designed to be syntactically very close to C, and which provided sup-
port for regions through an explicit typing system [14]. While most of these
implementations of the concept were in the context of declarative programming
languages.

Implementations such as vmalloc place the burden of determining policy of
allocation of objects to regions on the programmer [8]. Other schemes have used
profiling to identify allocations that are short-lived and place such allocations
in fixed-size regions [15]. Our previous work on havens [5] provided a reliability-
driven method for memory allocations. Recent efforts seek provide programming
model support for reliability, such as containment domains [16], which offer pro-



gramming constructs that impose transactional semantics for specific computa-
tions. Rolex [17] offers language-based extensions that support various resilience
semantics on application data and computations. Global View Resilience (GVR)
supports reliability of application data by providing an interface for applications
to maintain version-based snapshots of the application data [18]. In support of
fault tolerance of dynamic memory allocation, the malloc failable may be
used by the application to allocate memory on the heap; callback functions are
used to handle error recovery for the memory block [19].

7 Conclusion

With the evolution of HPC architectures, and the emergence of reliability as
a major concern, applications must contend with complex memory hierarchies,
which may possess different levels of hardware-based reliability protection schemes.
Havens provide a software-based approach for HPC applications to manage the
reliability of their programs. Through explicit, robust region-based memory man-
agement, the HPC application programmers may control the level of robustness
and resilience of individual memory regions in their applications. In this paper,
we focused on providing static typing discipline for these robust regions. We
demonstrated that the incorporation of some static information about an appli-
cation program’s region structure makes the structure of the program’s memory
and its robustness requirements more explicit. This enables the resilience of the
associated memory regions to be managed at compile-time and runtime. These
annotations to C/C++ HPC application codes are not required, but they permit
encoding the resilience requirements in heap memory-management idioms. We
also demonstrated how stack-based memory allocation discipline is affected by
the use of type qualifiers.
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