
Evaluating Performance of Task and Data
Coarsening in Concurrent Collections

Chenyang Liu and Milind Kulkarni

Purdue University, West Lafayette IN 47907, USA,
Liu441@purdue.edu, Milind@purdue.edu

Abstract. Programmers are faced with many challenges for obtain-
ing performance on machines with increasingly capable, yet increas-
ingly complex hardware. A trend towards task-parallel and asynchronous
many-task programming models aim to alleviate the burden of parallel
programming on a vast array of current and future platforms. One such
model, Concurrent Collections (CnC), provides a programming paradigm
that emphasizes the separation of the concerns–domain experts concen-
trate on their algorithms and correctness, whereas performance experts
handle mapping and tuning to a target platform. Deep understanding of
parallel constructs and behavior is not necessary to write parallel appli-
cations that will run on various multi-threaded and multi-core platforms
when using the CnC model. However, performance can vary greatly de-
pending on the the granularity of tasks and data declared by the pro-
grammer. These program-specific decisions are not part of the CnC tun-
ing capabilities and must be tuned in the program. We analyze the per-
formance behavior based on tuning various elements in each collection
for the LULESH application using CnC. We demonstrate the effects of
different techniques to modify task and data granularity in CnC col-
lections. Our fully tiled CnC implementation outperforms the OpenMP
counterpart by 3x for 48 processors. Finally, we propose guidelines to em-
ulate the techniques used to obtain high performance while improving
programmability.

Keywords: Concurrent Collections, LULESH, Coarsening, Parallel Pro-
gramming

1 Introduction

Developing scientific applications for high performance computing is no easy
task. Knowledge of the scientific domain is necessary in order to understand
the underlying methods and equations required to solve the problem. Correctly
mapping and distributing that algorithm onto modern parallel architectures is
another task in itself. Modern clusters are increasingly sophisticated, with var-
ious forms of heterogeneous and homogeneous parallelism while sporting com-
plex memory hierarchies. A recent emergence of high-level programming models
aim to alleviate the burden of parallel programming on a vast array of future
platforms. These frameworks, based on the asynchronous many-task model, split
programs into smaller units of computation and associated dependencies, relying



on runtime schedulers to correctly synchronize task execution. The programming
model we explore is Concurrent Collections (CnC), which is a data-driven task-
parallel programming model designed to change the way we approach parallel
programming.

The key motivation for developing in CnC is its separation of concerns philos-
ophy. The concerns of the domain expert, whose knowledge is used to correctly
develop the method and algorithm, is separated from that of the performance
expert, whose strengths are in hardware and software optimization. Programs
using CnC are expressed as a partially-ordered set of computations with ex-
plicitly defined dependencies and seamlessly exploit parallelism by following the
constraints of data dependencies using a data driven approach. The CnC sched-
uler synchronizes data and maps computational tasks to the target hardware at
runtime. However, dynamic runtime mapping does not always yield high perfor-
mance for the following reasons. Excessive fine-grain-parallelism will overburden
the scheduler, while sub-optimal data movement leads to poor memory perfor-
mance. In this paper, we analyze and quantify the effects of high level changes
to the granularity of collection items in CnC programs. We use step fusion and
tag tiling to coarsening task parallelism, while data is tiled to match the larger
computation blocks. We perform these optimizations on the Livermore Unstruc-
tured Lagrange Explicit Shock Hydro (LULESH) mini-app, a hydrodynamics
code created in the DARPA UHPC program [1, 2].

We present the LULESH application, starting from a minimally constrained
implementation, and analyze opportunities to reduce the fine-grained parallelism
through step fusion and tag tiling. Previous work has shown that these high
level techniques improves performance, but does not outperform simple inter-
faces such as OpenMP [3]. However, with homogeneous tiling of the coarsened
execution along with data items, our optimized LULESH implementation out-
performs the LULESH 2.0.3 with OpenMP directives by 3x on 48 cores for a
603 sized problem. Finally, we present a recommended method for writing CnC
programs using automation tools for setting up CnC directives for increased
programming productivity.

2 Concurrent Collections Model

In this section, we provide some background on the Concurrent Collections
(CnC) programming model. We discuss the methodology for writing programs
using CnC and explain how it achieves its philosophy of separation of con-
cerns, making it a compelling model to use for programming applications such as
LULESH. A more in-depth description of CnC can be found in previous works
[4, 5].

Unlike traditional programming approaches, the CnC programming paradigm
avoids expressing control flow or parallelism in its program structure. CnC re-
places the need for threads and locks or parallel regions, instead satisfying de-
pendence constraints using a data-driven execution model to exploit parallelism.
This model is an attractive solution for a domain scientists, whose concern is fo-
cused on algorithmic correctness and stability. In contrast, CnC employs various



tuners for performance experts to best map certain aspects of an application to
target platforms. These tuners are often used for machine-specific optimizations
such as memory locality, thread affinity, and resource mapping for distributed
applications [6]. CnC is also compatible with a number of programming lan-
guages including C/C++, Python, Scala, and Haskell, and also supports various
back-end runtime frameworks such as Intel’s Thread Building Blocks (TBB) li-
brary, Open Community Runtime (OCR), and CnC-HC for GPUs [7, 8, 9]. In
our research, we use the C++ interface along with the Intel runtime and TBB
based work-stealing scheduler for its robustness and tendency to outperform the
other schedulers.

There are three basic building blocks that constitute a CnC program. These
are referred to as the collections, whose purposes are to establish the computation
steps being performed, tag and prescribe those step with unique identifiers, and
express which data are consumed and produced by computation steps. Figure
1 depicts the three collections and their relationships along with a high level
overview of the data-driven execution in CnC.

Fig. 1. CnC Program and Execution

The three types of nodes in Figure 1 correspond to the computation steps
(ovals), data items (rectangles), and control tags (triangles) in CnC. The step
collection contains stateless computation steps of a program which are dynam-
ically instantiated when control tags such as Ta prescribe those steps. This col-
lection of tags usually contains temporal/spacial data to assist with control flow
and proper execution for dynamic steps. Finally, the set of producer/consumer
dependencies comprises the (data) item collection. Data items follow dynamic
single-assignment, meaning they are immutable, but elements in the data (item)
collection may have multiple dynamic instantiations using unique handles, sim-
ilar to hashing key/value pairs.

The step collection contains a program’s computational steps, similar to that
in traditional functions. However, these steps do not modify global data, and in-
put/output dependencies are handled by CnC constructs. Steps routines must
use get constructs to access/consume data (item collection) inputs and put con-
structs to write/produce updated values. Valid steps must perform all get oper-



ations at the start of each step and put operations may only occur after all gets
finish. Additionally, each step may only have a single associated tag, but a single
tag may prescribe multiple steps. Steps will execute when a tag has prescribed
it, and all data dependencies are ready from previous steps or the environment.

While step collections specify the computation on data, control tags dictate
which steps are dynamically created during runtime. Tags can prescribe steps at
any time in the program, whether it be dynamically during runtime or during
program initialization. However, once a step is prescribed, the CnC runtime will
ensure that step executes before program completion. In Figure 1, StepA begins
execution only once tag Ta prescribes it and D is supplied by the environment.
Similarly, StepB will not begin executing until tag Tb prescribes it and StepA
finishes producing the data for E. The CnC program terminates once the last
prescribed step is finished executing.

Conceptually, the CnC model is ideal for programmability on parallel plat-
forms; however, shifting too much burden from the programmers to the runtime
may become prohibitive for performance. After investigation, we find that ex-
pressing algorithms as steps that correspond to equations of a method does not
translate into an efficient CnC program, unless task and data granularity are con-
sidered. Tuners are not sufficient because they mainly focus on machine-specific
optimizations, whereas opportunities to reduce the runtime overheads rely on
coarsening the task and data granularity, which depend on program structure.

3 LULESH Overview

In this section, we describe the LULESH 2.0 application and the details of the
algorithm written in CnC. LULESH is a fully-featured hydrodynamics mini-app
developed by Lawrence Livermore National Laboratory that simulates the effect
of a blast wave in a physical domain by explicit time-stepping [1]. LULESH is a
complex algorithm which performs both computation and communication based
work, and optimizations in its code should apply similarly to other applications
which exhibit stencil-like and/or time-stepping behavior.

The LULESH 2.0 specification is physics code that operates on an unstruc-
tured hexahedral mesh with two centerings. The element centerings (center of the
hexahedral) handles data for thermodynamic and physical properties whereas
the nodal centerings (the corners of each hexahedra) track spatial and kinetic
values such as the position and velocity. The application begins by initializing a
3-dimensional hexahedral mesh and initializing components for each centering.
The time-stepping begins as a force is then applied at the origin, updating the
kinetic values for all the nodal centerings. Once nodal computation completes,
a series of element-centered computations occurs, updating the thermodynamic
variables for all elements. More in-depth papers describing the LULESH algo-
rithm can be found in previous work by Karlin et al. [1, 2].

One key observation is that a great deal of computation is performed each it-
eration for both centerings. Furthermore, several computations are 3-dimensional
stencil calculations that require neighboring communication, which due to the
dual-centered scheme, creates unique challenges for optimization. Additionally,



there are producer/consumer relationships that span across cycles of time-stepping,
making data synchronization a likely bottleneck. These unique characteristics
present more opportunities for optimization unlike those in traditional (AxPy)
matrix computation.

3.1 The LULESH Domain Specification

Following the CnC philosophy of separation of concerns, we map the LULESH
algorithm as a high level graph, with computation steps and producer/consumer
dependencies labeled. This domain specification of LULESH represents how a
domain scientist might describe the algorithm, as seen in Figure 2. Each node in
the graph represents a vital computational required by the algorithm, and the
edges clearly depict from which steps that data is being produced and consumed
for. We list and give a brief description of each computational step.

Fig. 2. High-level LULESH Algorithm

– Compute Delta Time: Prior to every iteration, this checks all element data
from the previous iteration to determine the next time step value. Has a
separate tag space.

– Compute Stress/Hourglass Partial Force: Forces are calculated for each
element using data from the previous iteration’s elements.

– Force Reduction: Partial forces for every node are summed up from 8 neigh-
boring elements.

– Compute Velocity/Position: Kinetic values are computed for each node
using previous nodal forces/positions/velocities.

– Compute Volume/Derivative/Gradient/Characteristic: Physical prop-
erties are computed for each element using kinetic values.

– Compute Viscosity Terms: Previous values and gradient data from 6 ele-
ment neighbors is used to calculate element viscosity terms.

– Compute Energy Terms/Time Constraints: Thermodynamics/Physics
terms are calculated for each element using previous element data.



Using the domain specification, a direct translation is made to the CnC spec-
ification, which is a textual representation describing the step, tag, and data
collections. The CnC specification defines and declares most of the high level in-
formation inside the CnC context required in the program. Whereas step compu-
tation and data are the norm in traditional programming, tags are conceptually
different. In the context, tags are declared along with which steps they prescribe.
The number of prescribed steps and unique tag identifiers are not required for
declaration; this occurs during runtime. In the following sections, we discuss our
approach for optimizing this minimally constrained LULESH implementation.

Our baseline uses a CnC specification identical to that in Figure 2. Three sets
of tags are used: per iteration, per node centering, and per element centering.
Every step computation performs its required computation according to the
hydrodynamics method, but the concerns for task granularity are neglected. In
the following sections, we describe the coarsening techniques for each collection
and its performance impact, with the task coarsening based on previous work
[10]. However, that work was incomplete due to the lack of cohesive tiling with
the data item collection members, which we include.

3.2 Step Fusion

Step fusion is an effective way to serialize multiple steps in a CnC program with-
out altering the underlying computation. The decomposed LULESH algorithm
has steps that operate on node and element centerings. Steps that share the same
tag and operate on the same data can be legally fused, creating a new legal algo-
rithm, as seen in Figure 3. However, this fusion is only legal when dependencies
from previous steps are guaranteed to be ready under serial execution, or if the
resulting fused step would require interleaving with another step (or itself) and
become a coroutine. Therefore, computation requiring updated neighbor data
such as ghost exchanges cannot be fused because the data will likely come from
a step prescribed from a separate tag. When steps are fused, data dependencies
that exist between original steps are serialized in the fused step. The set of pro-
ducer/consumer data dependencies from each step are joined and become the
new set of producer/consumer dependencies for the fused step.

Step fusion is applied to the CnC-LULESH program to reduce the number
of step collection items from 13 down to 5. Figure 3 highlights the step compu-
tations that get fused in the updated algorithm. The leftmost node, Compute
Delta Time requires its own space of tags per iteration due to the delta time
calculation, but the other steps are either in the nodal iteration space (red) or el-
ement iteration space (blue/green), and can be properly fused. We fuse the force
computations (green) which require element-wise computations for all elements,
as well as the spatial/kinetic steps which operate on nodes (red). Fusing the force
computation reduces parallelism, but it is helpful in our case where abundant
parallelism exists. Also, the bottom 6 element computations (blue) can only be
fused into 2 routines, due to ghost exchanges at the viscosity step, requiring data
dependencies computed from the prior gradient step from multiple neighboring
elements, thus preventing legal fusion.



Fig. 3. Fused LULESH Algorithm

3.3 Tag Tiling

Tag tiling is an optimization used to reduce number of step prescriptions dur-
ing execution. While a naive implementation would prescribe every step in the
domain specification for each node and element, such a brute-force distribution
would not scale to larger problem sizes. Tag tiling replaces multiple dynamic
step instances by coalescing those tags into fewer larger step computations that
span multiple tags. Similarly to step fusion, tag tiling serializes the computation
in the new step. The new tiled computation will likely require large temporary
working sets, as well as code modifications to reorder computation and optimize
for potential locality.

In the LULESH code, we successfully tile all steps corresponding to the nodal
and element-wise tags. Each tile contains a 3-dimensional spatial region that
consists of the nodes or elements. Other tile shapes were considered, but we use
hexahedral blocks to minimize the number of ghost regions when performing
stencil updates. Implementing tag tiling involved minor changes to the steps
themselves, as loops were introduced to handle additional work, step prescrip-
tions were reduced, and indices remapped for correctness.

The effects of step fusion and tag tiling extend beyond just coarsening the
task parallelism of the CnC program. The modified collections result in dif-
ferent behavior. Step fusion serializes dependencies between steps, eliminating
synchronization overhead caused from obligatory put and get calls. For steps
with common consumer dependencies, fusing those steps reduces the total mem-
ory bandwidth during runtime. In LULESH, tag tiling also reduces total data
communication required by step computations when neighboring data is local
to a tile, and there is possible data reuse between neighbors. However, these
optimizations require moderate changes to the step routines.

3.4 Data Tiling

Following task coarsening through tag tiling and step fusion, we can perform
data tiling optimizations to coarsen data in the item collection. Although the



total number of algorithmic steps is reduced along with the number of tags pre-
scribing those steps, the data elements are singleton values dynamically assigned
by the CnC runtime, requiring a multitude of gets for each element or node de-
pendency in the tiled step. Although straightforward, revamping the data layout
of a program is a time consuming task, and potentially prohibitive depending on
the specific application. For LULESH, we modify kernel routines and place calls
inside CnC steps which provide flexible parameters and future modifications.

Modifications to core computations aim to take advantage of data locality
and reduce communication using larger block sizes. We create tiled objects and
use pointers to reduce unnecessary data movement. However, the data is treated
as immutable, using get/put clauses to ensure proper synchronization and exe-
cution. During the node-to-element force computation, we overlap node tiles at
element interfaces, propagating communications across tiles in a wave front man-
ner, removing the need for two-way communication to update both tiles. Spatial
stencil computation is also optimized and packed to match tile-size, requiring
additional code changes. Despite underlying code changes, performance benefits
from data tiling cannot be overlooked, especially in LULESH where numerous
data items are used at every node/element and sometimes persist for multiple
iterations.

We note that without first performing tag tiling, and ideally step fusion,
data-tiling is not a viable optimization. Without coarsened tasks, blocked data
is not useful under the strict dynamic-single-assignment properties of CnC item
collections. In our experiments, we compare this final full-tiled implementation
of LULESH to our other progressions as well as OpenMP implementations dis-
tributed by LLNL.

4 Results

In this section, we evaluate the performance of our multiple configurations of
the CnC LULESH application for a problem size of 603. These include the do-
main expert baseline, a fused-only, a tiled-only, a fused&tiled, and a fully-tiled
implementation. Additionally, we benchmark the LLNL LULESH 2.0.3 imple-
mentation with OpenMP directives as a comparison representing a more tradi-
tional parallel programming model. We measure their execution times running
on our shared-memory system running on up to 48 processors. The following
implementations are tested:

Baseline - Our baseline expresses the LULESH application at its most de-
composed level, with minimal dependence constraints. There are 13 steps, 35
data items, and 3 tags which prescribe steps for every iteration, node, and el-
ement in the mesh, requiring dynamic step instances for each, but allow any
order of scheduling. The item collections also correspond to individual nodes
and elements in the mesh. It follows CnCs principles of expressing a program as
partially ordered computations and its dependencies, but excessive fine-grained
parallelism plagues performance.

Fused only - Using step fusion, we reduce the step collection size from 13
to 5. This minimizes the number of prescribed dynamic steps as well as several



consumer/producer data dependencies, reducing the item collection size by 5.
However, communication and scheduling overheads prevent scaling.

Tiled only - Tiling coarsens the tag space by prescribing blocks of work
corresponding to a 3-dimensional spatial block instead of individual element,
improving scalability and performance by reducing scheduling overhead and im-
proving data locality. A tilesize of 10-15 is typically used for a problem size of
60 when running on 48 processors. The CnC specification is identical to the
baseline.

Tiled & Fused - Both step fusion and tag tiling are applied at a high level.
In step routines, we attempt to exploit locality for data that is shared between
common neighbors, as well as reuse common data inputs from fused steps. These
transformations require some coding changes and extra bookkeeping for extra
variables and computation re-ordering to preserve step-like properties required
by every CnC step. The corresponding CnC specification contains 5 steps, 27
data items, and 3 tags which prescribe steps for every tiled block. However, the
data items still pertain to individual elements and nodes.

Data Tiled - The data tiled code incorporates the optimizations from step
fusion and tag tiling, as well as tailoring each task with its working data set. A
single get and put reads or writes a block of variables for each tiled computation
step, albeit most steps still require multiple gets due to needing multiple data
sets from different sources. The underlying computations are rewritten to ac-
commodate the updated data structures. There are still 5 steps, 27 data items,
and 3 tags, but data items are of a tiled construct.

4.1 Evaluation

Experiments were run on mesh sizes up to size 603 for 30 iterations, ten times per
configuration, with minimum and maximum results excluded to reduce variance.
The hardware is a shared memory, AMD Opteron 6176 SE system configured
with four 12-core processors (48 cores total) per socket, each processor running
at 2.3 GHz, with 512 KB per-core level 2 cache, and 12 MB level 3 cache. Table
1 shows the timing results per-iteration for a mesh of dimension 603 for each
configuration.

Figure 4 shows the performance speedups against the sequential baseline for
our 4 benchmarks of LULESH in CnC and the provided OpenMP code from
LLNL. For our CnC baseline, 603 dynamic step instances are created for each
minimally-constrained step, performing and scaling extremely poorly. Applying
step fusion reduces the number of steps by more than half, and results in a 1.6-
2.5x speedup, with some improvement in parallel execution. Fusion by itself does
not impact when compared to tiling, which coarsens the computation to a much
greater extent. Looking at the tiled only implementation, we see speedups of 60x
compared to sequential baseline when running on 48 threads. This improvement
is a result of coarser grained steps, reducing the synchronization required by the
scheduler to instantiate the schedule so many step instances. In our next code
iteration, we combine both step fusion and tag tiling technique, yielding greater



Table 1. LULESH Iteration Runtimes (sec): 603 Sized Mesh

Number of Cores

1 2 4 8 16 32 48

Baseline 148.40 141.68 135.18 154.89 160.27 154.70 158.47

Fused Only 101.36 95.281 72.273 58.508 60.269 59.995 64.056

Tiled Only 19.147 18.919 10.539 5.7492 3.4986 2.4606 2.2643

Tiled&Fused 11.767 11.725 6.5347 3.9041 2.3639 1.6201 1.3920

Data Tiled 0.2268 0.2339 0.1242 0.0644 0.0360 0.0255 0.0277

OpenMp 0.6882 0.3784 0.2167 0.1219 0.0852 0.0814 0.0833

Fig. 4. Performance Speedup

performance, but it still does not surpass the performance from OpenMP. Fi-
nally, our fully tiled LULESH code with step and data tiling gives an additional
order of magnitude of performance improvement over purely task coarsening im-
plementations (note logarithmic axis). Tiling the data collections to correspond
to the step collections When compared to similar processor configurations in
OpenMP, our CnC code outperforms it by 3x for 32 and 48 processor. We rea-
son that the OpenMP implementation has a number of inefficiencies, such as
requiring barriers before each ghost exchange, as well as extra data movement
to temporary buffers when updating data for reduction operators using multiple
threads. Because CnC utilizes an asynchronous task-parallel model, it is more
efficient than synchronous models such as OpenMP. However, both programs
perform the exact same computation—the difference being the scheduling of
work and movement of data.

In Figure 5 we observe almost no scaling from the non-tiled implementations,
whereas the tiled codes exhibit weak scaling, starting at 4 processors. How-



Fig. 5. Scalability Results

ever, CnC dedicates one processor exclusively for scheduling purposes, whereas
OpenMP does not since parallelism must be explicitly expressed by the pro-
grammer. As a result, OpenMP offers an advantage when a few processors are
used, but our fully-tiled code scales more strongly. Scaling beyond 32 processors
should be possible, but we reason our machine configuration skews results at
48 cores. In the next section, we discuss the lessons learned and recommend an
approach for achieving high performance while maintaining programmability.

5 Lessons Learned
In our study, we focus on the LULESH application, starting from the domain ex-
pert’s minimally constrained algorithm, and applied high level fusion and tiling
transformations on the program by altering the step, data, and tag collections
while preserving program semantics. However, the applicability of these coars-
ening techniques are not limited to LULESH. Multiple factors contribute to
performance improvement over the baseline LULESH code. From the perspec-
tive of code modifications, step fusion requires the fewest modifications, while
data tiling requires an overhaul of underlying data structures and computation
code. Both step fusion and tag tiling give substantial speedup, with tag tiling
provides the most benefit, but it was a prerequisite for implementing data tiling
in our application. Once the cohesive tiling implementation was produced, the
performance of LULESH using CnC begins to shine and greatly outperforms the
OpenMP implementation.

In hindsight, the most efficient method would have been to decompose the
algorithm, compose the computation steps for generalized tiled data, and then
map those computations to a high level domain specification that can be mapped
to a valid CnC specification. Such a process would generate similar results to



our final implementation while providing flexibility to apply step fusion and tag
tiling for various tile sizes. We recommend using the CnC translator to gen-
erate source code containing the CnC context and additional scaffolding step
code from the high level specification. This translator was recently developed by
the CnC Habenero research group to assist their work on declarative tuning [6].
However, it is not a tuning mechanism, but an automation tool provided for pro-
gramming portability. Following their syntax to describe the CnC specification,
which include all tags collections, item collections, steps, and their dependencies,
source files will be generated that for the context as well as skeleton code for
each step with predetermined get and put constructs. The programmer’s pri-
mary responsibility is to initialize their problem, set up their work routines, and
insert the proper computation for each step. In our final tiled LULESH imple-
mentation, the CnC code and work routines were decoupled in such a way. Using
this translator along with modular kernel routines, while keeping granularity in
mind, should improve productivity while preserving performance for future CnC
applications.

6 Related Work

Parallelizing applications requires programmers to be keenly aware of a range
of system level as well as algorithmic details in order to achieve performance
speedup. Managing this level of detail remains a difficult task, even for the most
experienced programmers. In addition, determining the best trade-off between
programming portability and performance is an active research area. Concurrent
Collections is just one approach that uses a model that takes advantage of asyn-
chrony and task-based parallelism to efficiently program parallel applications.

Task Parallel Models. Researchers have begun to shift toward task-parallel
and asynchronous many-task models to provide performance portability for high
performance scientific applications. In recent years, programming models such as
CnC, Charm++, Legion, OpenMP 4.0 have began a trend toward programma-
bility with task-parallel support, but none have matured into a one-size-fits all
solution [11, 12, 3]. Legion avoids employing data-drive execution and instead
focuses on controlling execution via mapping interfaces, opposite to the CnC ap-
proach. Charm++ offers similar constructs to CnC, but uses a message passing
interface for driving execution and offers fewer high level abstractions. OpenMP
has long been a recognized for its superior ease of parallel programmability,
but has only recently supported task-based parallelism. In our work, we show
our CnC tuned version of LULESH greatly outperforms older models such as
OpenMP, but we surmise performance would at least rival those of newer task-
based models.

Tiling. Although tiling is a well-known technique, there are few practical ways
to obtain automatically tiled code. Researchers have long tried to obtain coarse
grained task parallelism since the early versions of OpenMP [13]. Other ap-
proaches have employed polyhedral frameworks such as PLuTo to generate tile



loop iterations for matrix based computations, as seen in Kong et al. [14, 15].
However, their approach creates coarsened computation for affine loops con-
tained matrix computations, unlike LULESH, which requires irregular control
flow using data dependencies from various computation methods. Another sim-
ilar work that has connections to both CnC and polyhedral compilation frame-
works is Data Flow Graph Representation (DFGR), an intermediate graph rep-
resentation for macro-dataflow programs [16]. In their work, Sbirlea et al. utilizes
the CnC specification to produce tiled code, but those tiles leverage OpenMP
directives to achieve parallelism.

7 Conclusion

In this paper, we discuss and evaluate the performance impact of coarsening
the step, tag, and data collections of the LULESH written in CnC. Although
Concurrent Collections offers intuitive parallel programming constructs, achiev-
ing good performance requires program tuning that does not directly follow
the separation of concerns philosophy. In our work, we demonstrate the effects
of task and step coarsening to improve the performance and scalability of the
LULESH application. We begin with a decomposed LULESH algorithm con-
sisting of minimally constrained computational steps. Step fusion and tag tiling
optimizations improve performance by coarsening the task-granularity of the
program, and creates the opportunity to additionally tile the data collection to
reduce data synchronization overheads. This fully tiled CnC LULESH code out-
performs OpenMP parallel implementations by 3x for up to 48 processors and
exhibits scalable performance. In our discussion, we present the CnC translator
as a means of generating CnC code to handle control flow and data synchro-
nization between steps. In the future, we hope to extend the functionality of the
translator tool as well as provide better abstractions for handling task and data
coarsening in CnC.

CnC goes beyond just scientific applications. The CnC philosophy to ap-
proach algorithms using collections is aimed to abstract layers of complexity of
hardware mapping and work scheduling at the thread level. Dedicated tuners
exist for that purpose of optimizing platform-specific hardware, but our con-
tribution is to identify the ideal CnC code to run on those machines. Naive
programmers will be quick to discredit the merits of CnC when they believe
the ease of programmability comes at the price of poor performance when their
application is minimally constrained. Instead, using the available CnC transla-
tor and an approach that takes task granularity in mind, one can achieve both
programmability and performance in CnC.

Acknowledgments. This research is supported by the Department of Energy
under contract DE-FC02-12ER26104. We would also like to thank Ellen Porter,
Kath Knobe, Nick Vrvilo, and Zoran Budimlic for their comments and feedback
during discussions regarding CnC.



Bibliography

[1] Karlin, I., Bhatele, A., Chamberlain, B.L., Cohen, J., Devito, Z., Gokhale, M.,
Haque, R., Hornung, R., Keasler, J., Laney, D., et al.: Lulesh programming
model and performance ports overview. Lawrence Livermore National
Laboratory (LLNL), Livermore, CA, Tech. Rep (2012)

[2] Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Livermore,
CAAugust (2013)

[3] OpenMP, C.: C++ application program interface (2002)

[4] Budimlić, Z., Burke, M., Cavé, V., Knobe, K., Lowney, G., Newton, R.,
Palsberg, J., Peixotto, D., Sarkar, V., Schlimbach, F., et al.: Concurrent
collections. Scientific Programming 18(3-4) (2010) 203–217

[5] Burke, M.G., Knobe, K., Newton, R., Sarkar, V.: Concurrent collections
programming model. In: Encyclopedia of Parallel Computing. Springer (2011)
364–371

[6] Chatterjee, S., Vrvilo, N., Budimlić, Z., Knobe, K., Sarkar, V.: Declarative
Tuning for Locality in Parallel Programs. In: Proceedings of the 45th
International Conference on Parallel Processing. ICPP ’16 (August 2016) To
appear.

[7] Sb̂ırlea, A., Zou, Y., Budimĺıc, Z., Cong, J., Sarkar, V.: Mapping a data-flow
programming model onto heterogeneous platforms. In: ACM SIGPLAN Notices.
Volume 47., ACM (2012) 61–70

[8] Habanero-Rice: Concurrent collections on ocr (2015)

[9] Frank Schlimbach, I.C.: Intel concurrent collections for c++ for windows and
linux (2015)

[10] Liu, C., Kulkarni, M.: Optimizing the lulesh stencil code using concurrent
collections. In: Proceedings of the 5th International Workshop on
Domain-Specific Languages and High-Level Frameworks for High Performance
Computing, ACM (2015) 5

[11] Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the international
conference on high performance computing, networking, storage and analysis,
IEEE Computer Society Press (2012) 66

[12] Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented
system based on C++. Volume 28. ACM (1993)

[13] Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel
processing on smp using openmp. In: International Workshop on Languages and
Compilers for Parallel Computing, Springer (2000) 189–207

[14] Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: Pluto: A
practical and fully automatic polyhedral program optimization system. In:
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation (PLDI 08), Tucson, AZ (June 2008), Citeseer (2008)

[15] Kong, M., Pop, A., Pouchet, L.N., Govindarajan, R., Cohen, A., Sadayappan, P.:
Compiler/runtime framework for dynamic dataflow parallelization of tiled



programs. ACM Trans. Archit. Code Optim. 11(4) (January 2015) 61:1–61:30

[16] Sbirlea, A., Pouchet, L.N., Sarkar, V.: Dfgr an intermediate graph representation
for macro-dataflow programs. In: Data-Flow Execution Models for Extreme
Scale Computing (DFM), 2014 Fourth Workshop on, IEEE (2014) 38–45


