
Harnessing Parallelism in Multicore Systems to
Expedite and Improve Function Approximation

Aurangzeb and Rudolf Eigenmann

Purdue University

Abstract. Approximating functions in applications that can tolerate
some inaccuracy in their results can deliver substantial performance
gains. This paper makes a case for harnessing available parallelism in
multicore systems to improve performance as well as the quality of func-
tion approximation. To that end, we discuss a number of tasks that the
function approximation schemes can offload to available parallel cores.
We also discuss how leveraging parallelism can help provide guaran-
tees about results and dynamically improve approximations. Finally, we
present experimental results of a function approximation scheme.

1 Introduction

Many applications from different domains such as audio, video, machine learn-
ing, computer vision, gaming, data analytics, and simulations can tolerate a
certain degree of inaccuracy in their results. Approximate computing aims to in-
crease performance of these applications and/or reduce their power requirement
in exchange for some tolerable loss in accuracy. Applications amenable to ap-
proximation can be concerned with performance, power, or both. In this paper,
our focus is on performance only. The literature mentions a number of software,
hardware, and hybrid techniques that work at different granularities. Applica-
tion functions/procedures that have pure function behavior (i.e. they consistently
produce the same output for a given input and have no side effects) lend them-
selves to approximation. Software function approximation schemes have been
shown to offer significant performance benefits and we focus on black-box tech-
niques [3, 1].

Software black-box function approximation schemes are oblivious to the in-
ternals of the original function and seek to approximate a candidate function
based on its input-output behavior. This behavior is captured during training,
which is a process of obtaining outputs from the original function. The schemes
typically store the training inputs and corresponding outputs in some data-
structure as training history. The schemes draw inferences from the raw history
and prepare approximations by further processing the history and performing
scheme-specific tasks. During production, the schemes choose and execute the
approximations. Some schemes also have the capability to monitor the quality
of approximation results at runtime. If needed, they can update the history and
modify approximations dynamically. Figure 1 (a) depicts these tasks. Section 2



2

Fig. 1: (a) Tasks that black-box function approximation schemes perform. (b) Sequen-
tial execution of the application - all tasks assigned to one core. (c) Most of these tasks
can be executed in parallel on multiple cores, as outlined in the subsequent sections.

describes how the schemes can harness available parallel cores in multicore sys-
tems by offloading some of these tasks to improve their performance and quality
of results. By exploiting parallelism, they can also provide better monitoring
of results and be equipped with the capability of dynamically improving the
quality of results. Section 3 describes our experiments with a black-box func-
tion approximation scheme, called history-based piecewise approximation [1]. It
divides the input range of a function into uniform and non-uniform regions and
applies low-order polynomial approximation in each region.

2 Function Approximation and Available Parallelism

This section describes the tasks that software black-box function approximation
schemes can offload to available parallel cores. In case of sequential applications,
the schemes can freely use the parallel cores, whereas for parallel applications
the cores are employed when idle, using low priority threads. Figure 1 (b) and
(c) compare a scheme that does not exploit parallelism to one that does.

2.1 Building History

Function input-output history provides the basis for approximation to black-
box function approximation schemes. Building a relevant history is important
for accuracy of the approximation. Some schemes build the history offline. Where
inputs during production may be significantly different than those seen during
offline training, online training can improve the results. However, there may
be overheads in such schemes, as the expensive original functions neeed to be
called. Online training schemes can benefit from available parallel cores to build
the history. In the simplest case, for every seen input, the scheme can invoke
the original function in one of the available parallel cores and insert the results
into the history. One drawback is that “cold start” may result in poor approxi-
mation until the history is rich enough. To overcome this problem, the schemes
can speculatively build history. Below we describe some ways a scheme can do
speculative training to build history online, harnessing available parallelism.



3

Around Most Recent Input: For speculative training, a scheme can use arbitrary
inputs that are around the most recent actual input.

In Most Frequent Region: A scheme can divide the seen inputs in different regions
and use arbitrary inputs in the most frequent region for speculative training.

In Most Frequent Region of Higher Output Variation: In addition to forming
regions of seen inputs, a scheme can also track the output variation in those
regions and can use arbitrary inputs in the most frequent region of the highest
output variation.

2.2 Preparing Approximations

The schemes process the raw history, draw inferences, and perform scheme-
specific tasks to prepare approximations for execution during production. For
instance, the history-based piecewise approximation scheme [1] creates regions
of input and computes polynomials for each region. It also considers the output
variation in the regions and decides to use constants for some regions. During
production, the scheme finds the region of the input and evaluates the corre-
sponding polynomial. Offloading the inference and approximation preparation
tasks to idle cores can improve the performance of a scheme.

2.3 Monitoring Quality

Monitoring the quality of approximation requires invoking the original function
during production and comparing the exact result with the output obtained from
executing approximation. Since it is an expensive process, a scheme can only
monitor the output occasionally, which makes it difficult to provide guarantees
for the quality of results. However, offloading the monitoring to available parallel
cores can enable a scheme to potentially monitor the results of every input. It can
also enable a scheme to provide guarantees for the approximations. For instance,
a scheme may guarantee that a certain percentage of function invocation will
result in an output that is within the specified tolerable error. At runtime, for
each input, the scheme will decide whether to invoke the original function or the
approximation, based on the monitoring information. Similarly, a scheme may
offer statistical guarantees within a confidence interval.

2.4 Improving Approximations

The accuracy of approximation depends on many factors, including, the quality
and quantity of training data, ability of drawing inferences, and sophistication
of the approximation scheme. Harnessing idle cores can allow a scheme to dy-
namically improve its capabilities during runtime. It can help a scheme update
its history by doing dynamic online training, draw new inferences, and improve
its approximation strategies, without having any adverse effects on the perfor-
mance. For example, it can allow the history-based piecewise scheme [1] to up-
date history dynamically, adjust regions, compute new polynomials, and change
approximation strategies for regions.



4

3 Experimental Results

This section describes results of our experiments with the history-based piecewise
approximation scheme [1]. Currently, this scheme does not monitor results, offer
guarantees, or dynamically improve results. However, it can be extended to reap
the benefits of harnessing parallelism described in this paper. As for building his-
tory, it performs online training. We present results of testing three variants of
the history-based non-uniform piecewise scheme on top++ application [2]. These
variants are: BSA (binary search over sorted array), BST (binary search tree)
and RBT (red-black tree). We chose the top++ application because the candi-
date function for approximation in this application is quite compute-intensive,
which leads to higher overheads. The overheads of building history and preparing
approximations by the variants of the non-uniform scheme for a training length
of 125 are 60%, 54%, and 54%, respectively. We have extended the scheme to
harness parallelism and used the Around Most Recent Input (AMRI) speculation
described in Section 2.1. For each input, we use six speculative training inputs
that are ±0.04 apart. Table 1 compares the application speedup and percentage
error in results by the current versions of all variants of the non-uniform scheme
that uses single core with ones by the new versions of the extended scheme that
uses available parallel cores, for top++ application. The results show that em-
ploying three idle cores reduces the overhead of the scheme on a 4-core machine,
substantially improving the average application speedup from 1.5x to 2.2x.

4 Conclusion

Software black-box function approximation schemes that aim to increase perfor-
mance of applications amenable to approximation can harness available parallel
cores in multicore systems to improve and expedite function approximation.
They can leverage the idle cores in building history, preparing and improving
approximations, and monitoring quality and offering result guarantees.

BSA BST RBT
Speedup %Error Speedup %Error Speedup %Error

Current Version 1.62x 0.09% 1.52x 0.012% 1.5x 0.012%
AMRI Speculation 2.3x 0.06% 2.14x 0.006% 2.08x 0.006%

Table 1: Effect of harnessing parallelism for building history using AMRI speculation
on application speedup and percentage error of non-uniform piecewise schemes.

References

[1] Aurangzeb and R. Eigenmann. History-based piecewise approximation scheme for
procedures. 2nd Workshop on Approximate Computing (WAPCO), Jan 2016.

[2] M. Czakon and A. Mitov. Top++. http://www.alexandermitov.com/software/115-
top-versions-and-downloads.

[3] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox: Pattern-based ap-
proximation for data parallel applications. In ACM SIGARCH Computer Archi-
tecture News, volume 42, pages 35–50. ACM, 2014.


