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Chapter 1

Introduction

When I teach introductory programming, I tell students that they are learning a
foreign language: the language understood by the computer. The purpose of pro-
gramming is to translate your ideas about how to solve a problem into a language
that the computer understands so that it can follow your instructions.

You are a Java programmer. You are already fluent in the Java programming
language. But now you find that you need to learn a new programming language,
a language called “C.” This is just like learning a second (human) language.

As I’m sure you know, some human languages are more similar than others. If
you know Spanish, you can learn French or Italian relatively easily. Many of the
constructions are the same, although there are some important differences in the
details. On the other hand, if you know English, it’s of relatively little use to you
in learning Chinese or Japanese—they don’t even use the same characters!

Luckily for you, Java and C are closely related. In fact, Java was developed by
starting with C and adding features designed to help programmers develop com-
plex programs more quickly and with fewer errors. Thus you will have no problem
understanding the high-level structure of a C program. There are important differ-
ences that we will point out, starting in the next chapters, but it really is a fairly
easy transition.
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CHAPTER 1. INTRODUCTION 5

Keep in mind as you learn C that you are stepping back in the history of program-
ming. C was developed in the early 1970’s when computers were much simpler
(and less powerful) than today. Java appeared in the mid-1990’s and has been
evolving and expanding ever since. A fundamental thing to realize is that C pro-
vides much less support to the programmer. It is much easier to make mistakes
and very often harder to figure out how to fix them. Using C correctly and effec-
tively requires some discipline.

So why would anyone use C? There are a couple of reasons. First, because as
you will see in Chapter 3, a C program runs in a much smaller memory footprint.
This makes C the choice for embedded systems and other environments where
memory is at a premium. Second, because C programs run with less support, they
may also run faster. Although higher-level languages like Java and C# have gotten
faster, it is still probably the case that tightly coded C is as fast as you can get
without writing assembly code, which is not only much harder but by definition
not portable across platforms. If speed is important, C is often the choice.1 A
third reason to use C is that it is kind of the universal interchange language. Many
other languages interoperate with C, allowing you to connect components written
in different languages into one application using C. Finally, because C is more
minimalist than many of its successors, it forces the programmer to confront some
illuminating design and implementation questions and really think about what
their code is doing.

Please note that this guide is not a definitive manual for the C programming lan-
guage. For that, you should get a copy of The C Programming Language, Second
Edition by Brian Kernighan and Dennis Ritchie. I will refer to this as “K&R” in
the rest of this document. Not only is it the definitive specification of the language,
it’s one of the clearest, most useful books you will ever read. You will learn things
about programming and programming languages that you can apply to any lan-
guage, including Java. Knowing C will make you a better Java programmer, as
well as having an additional very useful tool in your programming toolbox.

1On the flip side, for many, possibly even most, programs, speed is not that important, and
certainly much less important than correctness.



Chapter 2

Overview of Java and C

Let’s start with a quick overview of the similarities and differences between Java
and C.

2.1 What’s The Same?

Since Java is derived from C, you will find many things that are familiar:

• Values, types (more or less), literals, expressions

• Variables (more or less)

• Conditionals: if, switch

• Iteration: while, for, do-while, but not for-in-collection (“colon”
syntax)

• Call-return (methods in Java, functions in C): parameters/arguments, return
values

• Arrays (with one big difference)

• Primitive and reference types

• Typecasts

• Libraries that extend the core language (although the mechanisms differ
somewhat)

6



CHAPTER 2. OVERVIEW OF JAVA AND C 7

2.2 What’s Different?

On the other hand, C differs from Java in some important ways. This section gives
you a quick heads-up on the most important of these.

• No classes or objects: C is not an object-oriented language, although it has
structured types (struct and union) and there are ways of doing things
like inheritance, abstraction, and composition. C also has a mechanism for
extending its type system (typedef).

• Arrays are simpler: there is no bounds checking (your program just dies if
you access a bad index), and arrays don’t even know their own size!

• Strings are much more limited, although the C standard library helps.

• No collections (lists, hashtables, etc.), exceptions, or generics.

• No memory management: You must explicitly allocate (malloc) and re-
lease (free) memory to use dynamic data structures like lists, trees, and
so on. C does almost nothing to prevent you from messing up the memory
used by your program. This is the number one cause of problems for new
C programmers (and old ones also).

• Pointer arithmetic: You can, and often have to, use addresses of items in
memory (called pointers). C allows you to change the contents of memory
almost arbitrarily. This is powerful magic, but also sometimes dangerous
magic.

Bottom line: When you program in C you are closer to the machine. This gives
you more flexibility but less protection. The next chapter explains this in more
detail by comparing the development and execution models of Java and C.



Chapter 3

Development and Execution

3.1 Development and Execution in Java and C

Figure 3.1 (page 9) shows the basic components involving in developing and exe-
cuting a Java program. You should already be familiar with this process, so I will
describe it only briefly.

• You write your program (source code) as a text file using the Java program-
ming language. The name of your source file ends in “.java”.

• You compile your source code using the javac command (“Java com-
piler”) to create a Java class file containing “bytecode” (.class file).

• Bytecode does not use the native instruction set of any real computer. In-
stead, it uses an abstract instruction set designed for an abstract computer
called the “Java Virtual Machine” or “JVM.”

• To run your program, you run the java command, which simulates the
JVM running on your actual computer. You tell it to load and run your class
file (bytecode), which results in your code being executed.

• That is, you have a “real” program, java, running on your computer, and
it is simulating the execution of the bytecode of your program on the “not-
real” JVM. This is slower than running native code directly on the computer,
but also safer and better for development.

• Java programs can use other classes and libraries of other classes (jars) to
provide additional functionality. In fact, most of Java is library classes.

8
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• To partially compensate for the slowdown due to interpreting bytecode, Java
includes a feature called a “Just In Time” or “JIT” compiler. This part of
the java runtime system detects pieces of Java code that are executed fre-
quently and compiles them into the real instruction set of the host computer
(native code). This is faster than interpreted bytecode, but usually not quite
as fast a native code.

• Finally, note that the Java compiler, javac, is itself a Java program, written
in Java! That is, running javac means running java (the Java runtime)
and telling it to run the class for the Java compiler. I’ll let you think about
how the first Java compiler was written. . .

By comparison, Figure 3.2 shows a similar component diagram for development
and execution in C. I’ll point out the main differences briefly.

• In C, you write your program as a text file using the C programming lan-
guage. The name of your source file ends in “.c”.

• You then compile your code into processor-specific object code (“.o”) us-
ing the cc command (for “C compiler”).

• The C compiler actually consists of two phases. The first is a “pre-processing”
phase which can transform the text of your program in various useful ways.
Then the compiler phase translates the resulting C program text into native
object code. Although it is technically possible to run just one or the other
phase of the C compiler, you will never do that in practice.

• Before your code can be run, it needs to be “linked” with any libraries that
it uses, including the C runtime. The result is an executable file containing
native object code.

• You can run your executable directly from the command line. If it crashes,
your program dies. Sometimes this happens without even a message unless
you are using a debugger. In the not-so-good old days, you might even crash
the entire machine.

• A compiled C program runs at full speed on the processor for which it was
compiled.



CHAPTER 3. DEVELOPMENT AND EXECUTION 11

In general, the key difference between Java and C is that in C you are running
much closer to the machine. When computers were less powerful and had less
memory, it was vital to squeeze out every drop of performance in order to do
even simple computing tasks. The history of programming languages is a contin-
ual evolution from low-level object code and assembly language to higher-level
languages like Fortran, Algol, Lisp, Smalltalk, Java, Javascript, and all the other
modern languages. C sits somewhere in the middle, not as low-level as assembly
language, but without too many of the powerful (but possibly slow) features of
higher-level languages. Interestingly, C was actually predated by some higher-
level languages. And some of the earliest languages had features that have only
recently been rediscovered.

But as a Java programmer coming over to C, your development and execution
process should be quite familiar. You write your code as one or more text files.
You compile your code until the compiler is happy with it. There are IDEs for C
as for Java should you want to use them (see next section). There are libraries that
make your life easier, and you can develop your own libraries and reusable code.
Then you run your program and see if it works. If you need to debug it, there are
debugging tools for C as for Java. In C as in Java, these can catch fatal errors and
allow you to post-mortem the execution rather than simply crashing.

3.2 Setting Up Your Development Environment

Development environments, whether for Java or for C, are a deeply religious topic.
You can opt to use an “Integrated Development Environment” (IDE), like Eclipse
(cross-platform), Visual Studio (Windows), or XCode (Mac). Or you can work
like the pioneers did, using separate tools that they could combine in ingenious
ways. For simple projects, an IDE is fine. For complicated projects that include
some amount of automated compilation or testing, it helps to know how things
work under the hood so that you can build your own tools.

I have collected some tips on getting setup to program in C: C Programming
Resources (for CSC173 and beyond). Depending on when you are reading this, it
might be very out-of-date.

In any case, most Computer Science students should become comfortable working
from the terminal (command shell). If that’s not yet you, then this is your chance

https://www.cs.rochester.edu/u/ferguson/csc/c
https://www.cs.rochester.edu/u/ferguson/csc/c
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to learn something new. Here are some things to look for:

• You’ll need an editor for writing your C programs: vim, Emacs, NotePad,
TextEdit, BBEdit, . . . Text editors are another subject on which program-
mers have deeply-held religious views.

• You’ll need a C compiler and linker. The standard open-source tool is the
“GNU Compiler Collection”, better known as gcc.

– On Linux distributions, gcc is standard or can be easily installed using
a package manager.

– On Apple platforms, you need either XCode or the Apple Developer
Command Line Tools (CLT). Apple originally used gcc, but now
prefers a compiler suite called clang/llvm (although the command
gcc still works, although it invokes llvm).

– On Windows, it is possible to get gcc working, but it’s a bit tricky.
Microsoft expects its developers to use Visual Studio. Check out the
MinGW or Cygwin projects if you want an alternative.

• You’ll probably want a debugger. I’m a big believer in print statements for
debugging, but sometimes you do need to watch a program as it breaks. The
GNU debugger is gdb, for llvm the debugger is lldb, and on Windows
it’s Visual Studio or gdb.

• For anything but the simplest projects, you will need some kind of build
system to automate compilation and testing. The classic tool is make, and
it is still frequently used for C development. More modern (but also much
more complicated) tools include cmake, ant, and gradle (the latter two
are more commonly used for Java development than for C).

Finally, whether you use an IDE or a separate toolchain, you should learn to
love some kind of version control system. The original tools on UNIX were
SCCS (“Source Code Control System”) and CVS (“Concurrent Versions Sys-
tem”). These were replaced by Subversion (svn), which is still popular. More
modern version control systems include Git, Mercurial (hg), and Bazaar (bzr).
Note that you don’t have to store your files “in the cloud” (e.g., on GitHub) to ben-
efit from a version control system. You can use it locally to track changes, make
branches, and revert to a prior state if you break your code five minutes before
it’s due. Of course, you should also be sure to backup your files, but you already
know that. . .

https://gcc.gnu.org/
https://developer.apple.com/xcode/
https://developer.apple.com/downloads
https://developer.apple.com/downloads
https://clang.llvm.org
https://www.llvm.org/
http://mingw.org/
https://www.cygwin.com/
https://www.gnu.org/software/make/
https://cmake.org
https://ant.apache.org/
https://gradle.org/
https://subversion.apache.org/
https://git-scm.com/
https://www.mercurial-scm.org/
http://bazaar.canonical.com/
https://github.com/
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/*
* File: hello.c

*/
#include <stdio.h>

int main(int argc, char* argv[]) {
printf("Hello world!\n");

}

Figure 3.3: “Hello World” Program in C

3.3 Writing Your First C Program

Figure 3.3 shows the classic “Hello World” program which, by the way, first ap-
peared to my knowledge in The C Programming Language. Let’s break it down
by comparing it to the Java equivalent with which I’m sure you’re already familiar
(otherwise check out “Hello World” Program at Wikipedia).

First the comment at the top: block comment just like in Java.

Next: #include: Semantically, this is like an import statement in Java, mak-
ing some library functionality available to your program. In C, it is implemented
quite differently, as described more fully in Chapter 10. In this case, we are in-
cluding the definitions of the C “Standard Input/Output” (stdio) library so that
we can use the printf function to produce output later in the program.

Now, notice that there is no “main class.” Indeed, there are no classes at all in C.
Instead, functions are defined at the toplevel of the file, as can be done in Python,
for example, and are visible to any following code.

The next block of code is the definition of the function main. Just like in Java,
each program needs a main function and this is the function that is called when
the program starts (Java inherited this from C, as a matter of fact).

The function definition should look familar. It says that main is a function that
returns an int (Java uses a static void method) and has two parameters.
In Java you get an array of Strings passed to your program containing any
arguments specified on the command-line. In C, as you’ll see in Section 4.6,
arrays don’t know their length, so the first parameter will be set to the number of

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
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arguments (traditionally named argc for “argument count”). Strings are defined
as char* (“pointer to char”, see Section 4.7), and the parameter argv (for
“argument vector”) is an array of these. So this looks a bit different but it means
exactly the same thing as in Java.

And finally, the one-line body of the main function in curly brackets. Instead
of calling System.out.println (or format), we are calling the function
printf, which is part of the C Standard input/output (I/O) library and defined in
stdio.h. But the function call itself is the same in C as in Java: the name of the
function, followed by comma-separated values for the arguments in parentheses.

There is only one argument in this call to printf: a string literal containing the
text we want to print. String literals use double quotes just like Java. The “\n”
at end of the string might be new to you. It indicates a “newline” character, since
printf in C behaves like print in Java and does not print a newline the way
println does. There is no println in C. Furthermore, printf in C can
take additional arguments, and substitutes them for placeholders in the first string
argument, just like Java’s format methods. You will use this often since, unlike
Java, there is no string concatenation (+ for strings) and there are no toString
methods.

And finally, a semi-colon at the end of every statement, just like Java.

That’s the whole program. Just like Java, the program exits (stops running) when
the main function is done. That is, just like Java unless you’re using multithread-
ing either explicitly or implicitly, as with Swing graphics. And those things are
not so easy to do in C.

This C program should be understandable to any Java programmer. The family
resemblance between the languages is very strong. Yes there are some important
differences, but you are not starting from scratch.

3.4 Compiling Your First C Program

So you’ve written your first C program, now you want to compile and run it. If
you’re using an IDE, it may have already done part of this for you. Different
IDEs work differently. Some compile constantly in the background to warn you
of errors; with others you need to tell it to compile. Either way, you edit your
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source code until it compiles successfully.

If you are not using an IDE, you need to be comfortable working with a terminal
window and command interpreter (or “shell”). To compile your C program, you
need to invoke the C compiler and tell it to compile your file. The simplest form
of this is something like the following, which you would type at your command
shell prompt:

cc hello.c

This assumes that your source file is named “hello.c” and that it is in the
“current working directory” of the terminal (shell). It also assumes that your C
compiler is named “cc”, which is traditional. You might need to try gcc or
clang or whatever is right for your platform and development environment.

When you run the C compiler, you will either get error messages or perhaps no
output. If there is no output, you should be left with an executable program file in
the current working directory. For historical reasons, this file is called “a.out”
regardless of what the source file was named. That isn’t usually so helpful, so you
can tell the C compiler to call the executable something else with the “-o” option:

cc -o hello hello.c

Now your executable will be called “hello” (on Windows it’s traditional to name
executables with names that end in “.exe”, but not on Unix-like platforms). You
should see your new file if you type ls on Unix platforms, dir on Windows, or
find it in a window showing the directory (folder) with your source file in it.

Now you need to run your program. With an IDE, this usually means some kind of
“Go” button. Without an IDE, you need to tell your terminal command interpreter
(shell) to run the newly-created executable file. For reasons that don’t concern
us now, you probably can’t just type its name the way you did the cc command.
Instead you probably have to give the pathname of the executable file. The easiest
way to do this is:

./hello

The “dot” (“.”) means “the current working directory, whatever it is,” so this
pathname refers to the file named “hello” in the current working directory.
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Either way, your program should run and you should see its output printed either
to the console of your IDE or to your terminal. Congratulations! You are now a C
programmer.

The rest of this document builds on this basic program. You can use it as a tem-
plate for trying the code examples. Try different variations and find out what
works and what doesn’t. There’s only one way to learn a foreign language, and
that’s to get out there and use it to communicate. For learning programming
languages, this means getting onto a computer and writing programs.



Chapter 4

Basic Expressions and
Statements

Let’s dive a bit deeper into the C programming language, emphasizing similarities
to and differences from Java. As always, you’ll want to consult K&R for the final
word on C.

As you already know from your prior programming experience:

• Comments are a crucial part of any program.

• All computer programs compute values.

• Values come in several types.

• Values can be written as literals (“literally this value”) or as expressions that
use operators to combine values into new values.

Java’s comments, values, types, and expressions are derived from C’s, so they are
very similar. Let’s take a look at each of these in a bit more detail.

4.1 Comments

The syntax for comments in Java was taken from that for C. Text enclosed between
/* and */ is ignored by the compiler. Modern C compilers also understand the
// syntax that was introduced in C++ and is also used in Java.

17
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4.2 Primitive Types

Table 4.1 shows the primitive types in both Java and C. As you can see, all the
basic numeric types in Java are inherited from C.

Java C

int int

short short

long long

float float

double double

char char (see text)

byte N/A

boolean N/A

Table 4.1: Comparison of Java and C primitive types

Historically these types were specified with somewhat less precision than in Java.
For example, int was whatever was most natural for a given machine, and could
be 16 bits, 32 bits, or something else. I’m not going to dwell on these details. If
you need to know how many bits are in an int, you can lookup how to do that.

Two of Java’s primitive types do not exist in C: byte and boolean. That’s ok.
Most people don’t use byte anyway. In C, use an int (or a short if you’re
really concerned about memory usage) and just don’t assign it a value less than
-128 or greater than 127. I told you C gave you less protection than Java.

Now booleans are genuinely useful, but if you think about it, they simply rep-
resent a true-false, yes-no, 1-0 value. So again, in C, use an int. C uses the
convention that 0 means “false” and any non-zero value means “true.” Boolean
variables and functions that return Boolean values are traditionally declared int.
The stdbool library provides support for more explicit booleans in modern C
compilers (see Section 10.3.5).
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In Java, a char represents a 16-bit Unicode character (a “code point”). In C, a
char is an 8-bit byte representing an ASCII character. The difference matters
if you’re working with modern text sources which can include foreign characters,
accents, math symbols, and, yes, emoji. There is some library support for handling
Unicode in C, but it is not a strength of the language. On the other hand, a C
char is exactly a byte, so it is often used for that (there are some signed/unsigned
math considerations, and C has unsigned numeric types, including unsigned
char).

Literals for primitive types are just like in Java. Numeric representations for in-
teger and floating point numbers. Character (char) literals in single-quotes (').
String literals enclosed in double-quotes ("). Inside a character or string literal,
use backslash for escapes, including \', \", \n, and \\.

4.3 Producing Output

We’ve already seen the printf method to produce output in our “Hello World”
program. In that example, we passed in the string that we wanted to print. This
makes it seem like the Java method println from the java.io.PrintStream
class. In fact though, it’s more like the Java method format which uses the class
java.util.Formatter. Python 2 (and 3) has the “%” operator, and Python
3 has the function format. All of these are derived from C’s printf.

The printf function always takes at least one argument. That first argument to
printf is called the format string because it controls the format of the output.
Any character in the format string other than a percent sign (“%”) or backslash
(“\”) is simply printed as is.

We’ve already seen that the backslash (“\”) is used to introduce characters that
can’t be easily typed in a string, such as the newline \n. A backslash in front of
a percent sign “escapes” its special meaning (described next), meaning that \%
prints as just “%”.

An unescaped percent sign indicates that the value of the next argument to the
function call is to be converted to text and printed at that point in the output.
Unlike in Java, there is no automatic conversion of values to strings. Instead, the
character following the percent sign says what type of thing it is. For example
“%d” indicates an integer (“decimal”) number, “%f” a floating-point number, and

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/ASCII
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“%s” a string. For a quick example:

printf("%d %f %s\n", 123, 3.14159, "abc");

will print

123 3.14159 abc

We will see more examples when we look at expressions and variables.

Another thing we will see shortly is that there is no string concatention in C. If
you are used to writing println statements using “+”, you will need to break
that habit and get used to specifying a format string and the arguments that fill the
% specifiers.

FYI: Wikipedia has an extensive description of printf format strings.

4.4 Operators and Expressions

Most of the operators in Java were also derived from C, so they will be familiar
to you. The basic C operators are shown in Figure 4.1. Note that Java took
“==” for “equals” comparison from C. Pascal (which came after C), used “:=”
for assigment and plain “=” for “equals”, which actually makes more sense, but
unfortunately never caught on.

Precedence rules (order of operations) for the operators are as in Java, and paren-
theses can be used to group sub-expressions.

As noted above regarding the Java boolean type, comparison and logical oper-
ators in C use the assumption that 0 means “false” and any non-zero value means
“true.” You can check the examples shown in Figure 4.2 in your own program.

There is one important difference regarding Java and C operators: there is no
string concatenation using the + operator. Strings are not primitive types in C or
in Java. We discuss this further in Section 4.7.

https://en.wikipedia.org/wiki/Printf_format_string
https://en.wikipedia.org/wiki/Pascal_(programming_language)
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Arithmetic +, -, *, /, %

Comparison ==, !=, <, <=, >, >=

Logical !, &&, ||

Increment/Decrement ++, -- (pre- and post-fix)

Bitwise &, |, ˆ, <<, >>, ˜

Figure 4.1: Basic C operators

printf("%d\n", 3 < 2); // 0
printf("%d\n", 2 < 3); // 1
printf("%d\n", 1 && 0); // 0
printf("%d\n", 1 || 0); // 1
printf("%d\n", 0 && 123); // 0
printf("%d\n", 0 || 123); // 1
printf("%d\n", 1 < 2 && 2 < 3); // 1

Figure 4.2: Comparison and logical operators in C and the zero/non-zero conven-
tion.
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4.5 Variables and Assigment

As in Java, variables in C must be declared before they are used. A variable
declaration includes declaring the type of the variable:

int x;
float f;

Historically, variables could only be declared in certain contexts, such as at the
start of a function. This has gradually been relaxed and is now very similar to
Java.

Also as in Java, in C you assign a value to a variable using an assignment statement
and the “=” (single equals sign) operator:

x = 1;
f = 3.14159;

Of course the value assigned to the variable need not be a literal, as above, but can
be any expression that computes a value of the appropriate type. There are also
the shortcut assignment statements +=, -=, and so on, just like in Java.

Finally, again as in Java, in C you may combine declaration and initialization in
one statement:

int x = 1;
float f = 3.14159;

The value must be “compile-time evaluable” meaning either a literal or an expres-
sion that uses only values known at compile-time (including literals).

In Java, you can declare a variable final, meaning that its value cannot change
after it has been initialized. This allows the Java compiler to optimize the use of
the variable and it will flag as an error any attempt to change a final variable. In
C, you can declare a variable const (for “constant”). This has the same meaning,
and the C compiler will detect any attempt to change a const variable. Unfortu-
nately, it cannot prevent you from doing it in all cases. K&R (p. 40) says that “the
result is implementation-dependent if an attempt is made to change a const.” So
don’t do that.



CHAPTER 4. BASIC EXPRESSIONS AND STATEMENTS 23

4.6 Arrays

Arrays are contiguous blocks of elements of some specific type.1 Java took its
array concept from C, so both the syntax and the semantics of arrays are very
similar in the two languages, although there are several important differences.

In both languages, square brackets ([]) indicate arrays.

In Java, you usually create an array type by adding [] to a type:

int[] numbers = { 1, 2, 3 };
char[] letters = { ’a’, ’b’, ’c’, ’d’, ’z’ };

The type specifier “int[]” is read as “array of ints.”

In C, the only difference is that you put the square brackets after the variable
name:

int numbers[] = { 1, 2, 3 };
char letters[] = { ’a’, ’b’, ’c’, ’d’, ’z’ };

You can think of “int a[]” as saying “a[] is an array, in this case an array of
ints.” In fact, you may use this form in Java also (yet another thing that Java
inherited from C) but it is usually considered less readable.

In C, you can declare an array variable and allocate space for it without using an
initializer. For example:

char digits[10];

This says that digits is an array with room for ten ints stored contiguously.
In this case, the values of the ten elements are undefined until you set them (more
or less; see K&R Sec. 4.9, 5.8, and A8.7 for the details).

In both Java and C, if you need to create an array whose size you don’t know
at compile-time, or if you don’t want it allocated automatically for some other
reason, you will need to allocate it dynamically, as discussed in Chapter 8, Sec-
tion 8.6.

1contiguous (adjective) Arranged one after the other with nothing else in between.
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Once you have an array variable, you get or set its elements using the same square-
bracket syntax in Java and in C (and the first element of an array is at index 0 in
both languages):

printf("%d\n", numbers[0]); // 1
printf("%c\n", letters[1]); // b
numbers[1] = 99; // { 1, 99, 3 }
numbers[2] += 1; // { 1, 99, 4 }
letters[0] = ’z’; // { ’z’, ’b’, ’c’, ’d’, ’z’ }

Like in Java, the length of an array cannot be changed after it has been created. If
you want more (or fewer) elements, you must allocate a new array and then copy
elements from the old one to the new one.

Finally, in both C and in Java, arrays are reference types. That is, the value of an
array variable is a reference to where the element values are stored. In fact, as
we will see, the value of an array variable in C is the address in memory of the
first element in the array, with the rest of the elements occupying the subsequent
contiguous memory locations. Arrays and other reference types are often called
pointers in C since they “point” to the data in memory. We will discuss them
further in Chapter 8.

4.6.1 Things Missing from Arrays in C

Here’s a super-important fact about C: unlike in Java, there is no way to get the
length of an array. Seriously. So either you keep track of how many elements
are in it, or you mark the last entry in some way.

This is one of the most common sources of bugs, crashes, and security holes in C
programs, which is why Java looks after it for you (at some cost, of course).

There is also no built-in support for printing the contents of arrays (which is also
the case in Java). To see what’s in an array, you will need to write a function
(Chapter 6) that takes an array and its length as arguments and iterates over the
elements (Section 5.2) printing them out. This is a good simple exercise in C
programming. Spoiler: It will look almost identical to its Java equivalent.
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4.6.2 Multi-dimensional Arrays

C also has multi-dimensional arrays. In fact it has two ways of defining multi-
dimensional arrays. The simpler one is what K&R Sec. 5.7 calls “rectangular”
arrays.

Recall that arrays are contiguous ranges of elements. This means that the elements
are stored in memory one after the other immediately next to each other. The
following declaration defines variable a to be a rectangular two-dimensional array
containing three rows of four ints each:

int a[3][4]; // [rows][cols]

In memory, this will be 3 × 4 = 12 ints arranged contiguously. The same idea
applies to any number of dimensions.

Accessing the element at the r’th row and c’th column is exactly like in Java:

int i = a[r][c]; // [row][col]
a[r][c] = 456;

Multi-dimensional rectangular arrays can be initialized using lists of initializers
in parentheses. For example:

int a[3][4] = {
{ 0, 1, 2, 3 }, { 4, 5, 6, 7 }, { 8, 9 , 10, 11 }

};

In this example, the value of a[1][2] is 6.

The other form of multi-dimensional array in C corresponds to how arrays work
in Java. It is called a “pointer array” and we will describe it in Chapter 8.

4.7 Strings

In Java, strings (sequences of characters) are full-featured objects, with construc-
tors and methods and runtime checking and all that. Java also provides special



CHAPTER 4. BASIC EXPRESSIONS AND STATEMENTS 26

support for strings through the string literal syntax and the overloading of “+” to
mean string concatention.

In C, strings are simply arrays of chars. That’s it. The following allocates a
string that can hold 32 characters:

char name[32];

You can use the string literal syntax to initialize a character array, and if you do,
the C compiler is smart enough to figure out the length for itself:

char name[] = "George";

In Java, strings are immutable (cannot be changed), although you can create new
strings from them or pieces of them. In C, you can get and set individual elements
of character arrays, so they are most definitely mutable. Whether this is a good
thing or not depends on the application.

Since there is no way to get the length of an array from the array, it also isn’t
possible to get the length of a string from the character array, or to know when
you’ve reached the end of the string (the last character in the array). By convention
(that is, since the dawn of C), the last character in a string is indicated by the value
0 (the ASCII character NUL). This convention means that a character array holding
a string must always be one element longer than the number of (real) characters
in the string, in order to hold the NUL character at the end.

Many of the methods of Java’s String class are provided by functions in the C
standard library (see Chapter 10). Almost all of these methods rely on the NUL-
terminated string convention. Furthermore, when a character array is initialized
from a string literal, the compiler allocates one element more than the number of
characters in the literal and puts a NUL (0) in there to terminate the string. If you
construct strings and manipulate character arrays manually, you need to look after
preserving the NUL at the end of the string.

Messing with strings and messing up the NUL at the end of them is the cause
of many bugs and security holes in C programs which, again, is why Java does
significantly more for you regarding strings (at some cost).
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Control Flow

So far we’ve seen enough to write basic straight-line programs in C. Next let’s
look at control statements. The good news is that they’re almost exactly the same
as in Java.

5.1 Conditional Statements

The basic conditional statement is the if statement:

if (x != 0) {
// Do something...

}

As in Java, the condition must be in parentheses and the “then” clause (nested
statement or block) is executed if the condition is true (that is, evaluates to a
non-zero value; see Section 4.4). Because there is no true boolean type, only
the zero/non-zero convention, you will often see conditionals like the following,
which tests whether the variable x is non-zero:

if (x) {
// Do something...

}

Also as in Java, the “then” clause can be a single statement or a compound state-
ment (block) in curly brackets. In both languages, I highly recommend using
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curly brackets for all control statements. Lookup the “dangling else” problem if
you don’t already understand why this is good practice.

Multi-conditional statements in C are identical to Java’s:

if (x < 0) {
// Do something when x is negative

} else if (x > 0) {
// Do something else when x is positive

} else {
// Otherwise do something when x is 0

}

Java also inherited its multi-way conditional switch statement from C, so they
are identical:

switch (i) {
case 0: // Do something

break;
case 1: // Do something

break;
// ....
default:

// Do something
}

In C, execution falls through into subsequent cases unless prevented by an explicit
break statement. This is because the switch statement was originally designed
to mimic a common assembly language programming idiom. Unfortunately, Java
kept this behavior, but at least you’re already used to it. (Swift has finally broken
with the past on this point.)

5.2 Iteration Statements

Java’s iteration statements are derived from C’s. The while statement, including
the do-while form, is identical (with C using the zero/non-zero convention to
represent false and true in the condition).

https://en.wikipedia.org/wiki/Dangling_else
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while (x != 0) { // or perhaps ‘‘while (x)’’
// Do something

}

The “original” form of the for loop is identical in C and in Java:

for (int i=0; i < 10; i++) {
// Do something

}

Historically you couldn’t declare the variable inside the for statement, you had
to do it at the start of the enclosing block. But now life is easier, and identical to
Java, although of course you can declare the loop variable earlier if you need to.

C does not provide any kind of built-in Collection classes (see below). Thus
the “colon” form of the for loop (“for element in collection”) is not available.
To iterate over the elements of an array, use the array index as loop variable.
Iterating over the elements of a list or other dynamic collection is part of the fun
of programming in C (see Section 8.7).

5.3 Other Control Flow Statements

C has break and continue statments for use in iteration constructs. These
behave the same as in Java, terminating the loop or moving immediately to the
next iteration of the loop, respectively.

C’s return statement is identical to Java’s and used to return a value from a
function (see Chapter 6).

C also provides an arbitrary branching construct, leftover from the early days of
assembly language and other “unstructured” programming. Here’s what K&R has
to say about it:

“C provides the infinitely-abusable goto statement, and labels to
branch to. Formally, the goto is never necessary, and in practice
it is almost always easy to write code without it.” (p. 65)
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You will almost certainly not need to use goto statements in your own programs,
and you are unlikely to even come across them in code written since the 1990’s.
Nonetheless, the history of “structured” programming and Edsger Dijkstra’s fa-
mous letter to Communications of the ACM entitled “Go-to statement considered
harmful” make good reading for a student of Computer Science.

https://en.wikipedia.org/wiki/Structured_programming
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947


Chapter 6

Functions

All but the earliest programming languages had the idea of subroutines: reusable
pieces of code that do something or compute something (or both). In Java, sub-
routines are called methods and are always part of a class. In C, they are called
functions. In Python, you can have both standalone functions and methods in
classes. In C there are only standalone functions.

I assume that you understand how functions and methods work: calling a function
and returning from it (“call-return” flow of control), passing values (arguments)
to functions (“parameter binding”), and returning values from functions.

As we saw in the “Hello World” program definition of the main function, a func-
tion definition in C is very similar to a method definition in Java: return type, func-
tion name, parameters in parentheses separated by commas, body of the function
in a block. C supports void functions that don’t return a value, just like Java.

Here’s another example of a function definition. This one returns the integer value
that is two times the value that it is given:

int times2(int x) {
return x * 2;

}
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6.1 Function Parameters and Arguments

As in Java, arguments to functions are passed by value. Consider the following
code, which is similar to the previous function:

int times2(int x) {
x = x * 2;
return x;

}

int main(int argc, char* argv[]) {
int i = 10;
int j = times2(i);
printf("i=%d, j=%d\n", i, j);

}

The value of the variable i is assigned to the parameter x when function tunes2
is called in main, and x behaves like a variable within the body of the function.
Thus the assignment to x within the function does not affect the value of i in the
main function. You should already be comfortable with this from Java.

C does provide a form of parameter passing that allows a function to change vari-
ables passed in as arguments (“pass-by-reference”, not available in Java, called an
inout parameter in Swift). In C, this is better thought of as passing a pointer
(reference) to the original variable, so we will describe it further in Chapter 8
when we discuss pointers.

Historically only primitive values (including pointers) could be passed to func-
tions as arguments. More modern C compilers also allow structured types to be
passed although it is much more common to pass a pointer to the structured object.

Function parameters may be marked const, meaning that the function promises
not to change them. This is only really relevant for reference types (pointers).
And anyway, K&R says it isn’t always enforced. But you will often see this done
in library functions to make clear to programmers which things may or may not
be changed by the function call.
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6.2 Function Declarations

Once you start writing in functions in C, you may be surprised to discover that
they must be declared before they can be used.

In Java, the order that methods are defined in a class does not matter. Method a
can call method b even if method b appears later in the program. No problem.
The Java compiler looks after it for you.

In C: no such luck. If you need to define a function after its first use, you must
use a forward declaration. This declaration tells the compiler what arguments the
function takes and what it returns—in other words, everything the compiler needs
to know to make sure that you’re using the function corrrectly. Here’s an example:

int f(int x);
...
void g(int x, int y) {

int z = f(y);
...

}
...
int f(int x) {

...
}

The first line is a forward declaration of the function f which says that it takes a
single int parameter and returns an int value. We can then use (call) f in the
body of function g even though f hasn’t been defined. And then at some point
elsewhere in the program, we need to define f and its definition must match its
declaration or the compiler will complain. Try it.

Forward declarations are also used for declaring functions defined in other files or
libraries. See Chapter 10 for more on that.
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Structured Types

We’ve said several times already that C does not have classes and objects. Instead,
there are two ways of defining structured types—types that are composed of other
types.

By far the most common form of structured type is called a “structure” or struct:

struct point {
int x;
int y;

};

This means that every instance of the type struct point includes two mem-
bers: x and y, both ints in this example. A struct is therefore like the part of
a Java class definition that specifies the instance variables for the class.

Incidentally, the name point is not itself a type. Rather, it is called a “tag,” which
combines with the keyword struct to specify the type, as in struct point.
This is discussed further in Chapter 9.

As with Java instance variables, you access the members of a struct using “dot”
syntax:

struct point origin;
origin.x = 0;
origin.y = 0;

Structured types can be composed just like in Java:
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struct line {
struct point start;
struct point end;

}

As with Java, you can chain the accessors using dot syntax:

struct line line1;
line1.start.x = 1;
line1.start.y = 2;
line1.end.x = 3;
line1.end.y = 4;

Note that there are no “getters” and “setters” since there are no classes, although
it is common to define functions to do those things; see Chapter 8.

In C, structs are the building blocks of data structures, just like classes are in
Java. Any time you think “this should be a class,” use a struct. We’ll see more
about how structs work like classes when we look at dynamic data structures
in Section 8.7.

The much, much less common C structured type is called a union:

union value {
int i;
float f;

};

The difference is that the members of a union share the same memory. That is,
in our example, allocating a union value allocates enough memory for either
an int or a float, whichever is bigger. The choice of which member to access
determines how the value (the bits) stored in the union is interpreted:

union value v;
v.i = 123; // Set v to bits of integer 123
printf("%f\n", v.f); // Interpret bits of 123 as float

There are some unions used in common Unix system libraries, and they can be
used to implement some features of object-oriented programming. But you will
rarely need to use them yourself outside of low-level systems programming.
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Memory Management

With functions and structured types in hand, it’s time to deal with one of the few
really significant differences between C and Java. This is the question of how C
programs manage the memory that they use to store values. This includes refer-
ence types, also known as “pointers,” and how you use these to develop complex,
dynamic data structures. There are several aspects of this, all intertwined, and I
will do my best to spell them out for you. But be warned: This is where you will
need to spend time becoming familar with C’s practices and idioms.

8.1 Variables, Addresses, and Pointers

Let’s start at the beginning. You already know that a variable is a name associated
with a piece of memory somewhere in your program’s total memory space. As-
signing a value to a variable copies that value to the place in memory associated
with the variable. Using the value of variable retrieves the value from the piece
of memory. In fact, named variables were developed to free programmers from
needing to keep track of all the chunks of memory that their programs were using
to store values.

In Java, you cannot do anything to a variable other than get or set its value. The
details of storage in memory are completely hidden from you. In C, however, you
can retrieve the address of the location in memory where the variable is stored.
This is called a “pointer.” If the variable is, say, an int, then the type of its
address is “pointer to int”, written “int*” (and sometimes pronounced “int
pointer”).
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You use the “&” (ampersand) operator, also called the “address-of” operator, to
get the address of a variable. For example:

int i = 123;
int* ip = &i;

Here the first variable is an int, the second one is a pointer to an int. By the
way, you can write int* as the type, which is more readable, or do it the K&R
way, with the * on the variable name separated by whitespace (as in “int *ip”).

When the C compiler compiles the first line of this code, it produces machine in-
structions to find and use an int-sized chunk of memory to store the value of the
variable i (more on this below). It also produces code to store the representation
of 123 as an int in that chunk of memory.

For the second line, the C compiler produces code to find and use a chunk of
memory suitable for holding the address of a chunk of memory. Exactly how big
this is depends on the platform, but 32 and now 64 bits (four and eight bytes,
respectively) are common. The initialization code for initializing the variable ip
(“i pointer”) copies the address of the memory chunk storing i into the memory
chunk storing ip. Figure 8.1 illustrates this situation. Note that the value of the
pointer variable (1108) is the address in memory of the original variable.

Now that we can get a pointer to a variable, what can we do with it? The main
operations on pointers are getting and setting the value “pointed to,” meaning the
value stored at the address given by the value of the pointer variable. This is
called dereferencing the pointer. A pointer variable refers to some other value.
Dereferencing the pointer gets you that other value.

The dereferencing operator in C is the same “*” (asterisk) character used to indi-
cate pointer types. This can get confusing, but you just have to read carefully and
keep all the “*”s straight. For example:

int i = 123;
int* ip = &i;
printf("%d, %d\n", i, *ip);

The printf statement will print two values. The first value is the integer value
of the variable i. You know that it will be 123. The second is the integer value
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Program Memory

1136
1132
1128
1124
1120
1116
1112
1108
1104
1100

Address

int i = 123;

int* ip = &i;

123

1108

Program Code

Figure 8.1: Variable and pointer in memory

resulting from deferencing the int pointer ip, written *ip. Since we set the
value of the pointer ip to be the address of i, this will also be 123. The *
operator on a variable being used in an expression (an “rvalue”) dereferences the
pointer and returns the pointed-to value.

Now add the following line and print again:

*ip = 987;
printf("%d, %d\n", i, *ip);

The * operator on a variable being assigned to (an “lvalue”) says assign not to the
pointer variable itself, but to the location pointed to by the pointer. Since ip is the
address of i, this puts 987 into the memory locations storing the value of i. Thus
it changes the value of i without assigning to that variable directly! You should
be at least moderately surprised to find that the code prints 987 twice.

https://en.wikipedia.org/wiki/Value_(computer_science)#R-values_and_addresses
https://en.wikipedia.org/wiki/Value_(computer_science)#Assignment:_l-values_and_r-values
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There are many legitimate uses of pointers, which is why they are part of the
language. We’ll see examples of these uses shortly. But clearly pointers are po-
tentially very dangerous since they let you change memory in non-obvious ways.
If the pointer ip had somehow been reassigned to point to somewhere other than
the location of i, then assigning a new value to *ip would not change the value
of i. This would probably be a mistake given the variables’ names, but the C
compiler can’t tell and so can’t help you avoid it.

8.2 Passing Arguments by Reference

In Section 6, we described how arguments to function calls are passed by value.
That is, when you use a variable to specify the value passed as argument to a func-
tion, the current value of the variable is assigned to the parameter. But changes to
the value of the parameter do not affect the value of the original variable.

But what if you want to pass a variable to a function and allow the function to
change its value? But first: why would you ever want to do that? The most
common reason is that your function needs to return more than one value. In Java
you might consider returning an instance of a “Tuple” or “Pair” class, or perhaps a
list (like in Python). That is possible in C also, but it requires allocating memory,
and that’s more trouble in C. Another way to do it is to pass variables by reference
using pointers. Understanding how that works can help you understand pointers
in general.

As an example, suppose that we want to write a function that takes an integer
amount of time (in seconds) as parameter and return that amount of time in hours,
minutes, and seconds. We’ll need one parameter for the input and three for the
output. If I tell you that the output parameters will all be pointers to integers, can
you write the function?

Try it, then look at my code:
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cha

void time2hms(int time, int* hp, int* mp, int* sp) {

*hp = time / (60*60);
time -= *hp * 60*60;

*mp = time / 60;
time -= *mp * 60;

*sp = time;
}

Let’s see how it works. The first parameter is the integer amount of time (in sec-
onds). Then we expect to be given three pointers to integers (that is, the addresses
in memory of three integer variables) in which to store the results. I have named
them with “p” on the end to emphasize they are not themselves the numbers of
hours, minutes, and seconds, but rather pointers to those numbers.

The first line of the body of the function stores the number of hours in the location
pointed to by the hp pointer. That is, it dereferences the pointer to get the location
of an int, and assigns a value to it. Note that this is integer division, just like
in Java. The second line decrements the amount of time by the (integer) number
of hours expressed in seconds. Again, since the previous step was integer divi-
sion, there may be seconds remaining in time, which will be the minutes and/or
seconds. The next two lines do the same thing for the integer number of minutes
using the mp pointer. Whatever amount of time is left is the remaining seconds so
we store it in the location pointed to by the sp pointer.

Somewhere else in our program, we can use this function as follows:

int time = ...;
...
int hours, minutes, seconds;
time2hms(time, &hours, &minutes, &seconds);

You can confirm for yourself with printf that the values of the integer variables
hours, minutes, and seconds are correct for whatever value of time in
seconds you use. The function has dereferenced the pointers to change the values
of variables defined elsewhere in the program. Such a change is called a side-
effect, and it should both fascinate and terrify you.

https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
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One reason for talking about pass-by-reference parameters is C’s scanf function,
used to read input from the terminal. Like printf, scanf takes a format (or
control) string that in this case specifies how to read the input, followed by a series
of parameters. For printf, the additional parameters are constants, variables, or
expressions whose values are printed. For scanf, they need to be references to
variables so that scanf can set their values as it reads the input. For example:

int i;
float f;
char name[50];
scanf("%d %f %s", &i, &f, name);

The control string tells scanf to read an integer (%d), a floating-point value (%f),
and a sequence of characters (a string, %s), each separated by whitespace. Since
ints and floats are primitive types, we must pass a reference to them. As we
will see in the next section, arrays are reference types, so we can pass the array
variable name directly and scanf will change the contents of the array rather
than the value of the variable itself.

There is a lot more one could say about scanf. For example, it will read char-
acters up to a newline when reading a %s value. But what if there are more than
50 characters (or whatever the length of the array is)? The answer is a “buffer
overflow,” which is the source of many dangerous and pernicious bugs. So you
should always specify the maximum field width for strings, as in “%49s”. Any-
way, scanf is ok for simple, non-critical input. But real programs that do serious
input processing generally write their own code using more primitive functions.

We will see further examples of passing parameters by reference when we look at
dynamic data structures and pointers to structured types in subsequent sections.

8.3 Memory Allocation

Now let’s look at how C uses pointers for dynamic memory allocation where you
don’t know at compile-time exactly what memory you will need. Classic exam-
ples of this are dynamic data structures like lists, trees, and other “collections,” as
well as objects in object-oriented languages like Java. We’ll get to those shortly.
But first, we need to understand a bit more about memory allocation in general.

https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Buffer_overflow
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In C, as in Java (although you don’t often think about it in Java), there are three
ways for your program to allocate memory to store values:

1. Automatic: This is the easiest to understand. When you define a local vari-
able or function parameter (which is effectively a local variable), the com-
piler arranges for the necessary memory to be allocated and initialized when
the enclosing scope is entered.

2. Static: In C, memory for static variables is allocated once when the program
starts. This is similar to class variables in Java, which is why Java uses the
static keyword borrowed from C. In C, all global variables are static in
terms of memory allocation, and other variables can be explicitly marked
static if needed (this is fairly rare and often indicates a bad design).

3. Dynamic: Both automatic and static variables are defined at the time the
program is compiled. If you don’t know until run-time that you need to
store something, or what or how many you need to store, then you need
to use dynamic allocation to allocate memory on the fly. This is also called
“allocating from the heap,” as opposed to “allocating on the stack,” which is
used for automatic variables where the memory is part of the “stack frames”
that are pushed and popped as functions/methods are called and return.

Most of the rest of this chapter is concerned with dynamic memory allocation.

It is worth making one note about the different allocation classes and the relation-
ship to pointers. The lifetime of a static variable is the lifetime of the program. So
it is always safe to take its address and use it as a pointer.

The lifetime of an automatic variable, on the other hand, is the enclosing scope
(typically a block or function definition). When an automatic variable goes out
of scope, the memory it uses is reclaimed by the memory system. If in some
other scope you have a pointer to an automatic variable, you may inadvertently
dereference it after it is no longer valid. This will cause a nasty crash if you’re
lucky, or it may not crash but will just use whatever bits happen to be at that
address now. Yowza!

Dynamically-allocated memory has to be managed explicitly by the programmer,
as we shall see next.
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8.4 Dynamic Memory Allocation in Java

Before we look at dynamic memory allocation in C, let’s look at how it works
in Java. In Java, if you want to create a new instance of a class, you use new to
invoke the class’ constructor:

Person p = new Person("Alan", "Turing");

You should know by now that doing this first allocates a chunk of memory of a
size suitable for storing a Person, as determined by its class definition. That
chunk of memory is passed to the class constructor along with any arguments,
and the constructor is responsible for initializing the newly-allocated chunk of
memory (which is why it is called init in some languages, such as Smalltalk,
Objective-C, and Swift).

In Java, the variable p contains a reference to the object, or if you think about
it, the “address” of the chunk of memory storing the Person instance. I put
“address” in scare quotes because it may not be exactly the in-memory address
since Java runs in a virtual machine environment (see Section 3), but it means the
same thing. This is why we say that, in Java, classes define reference types.

In Java, when there are no more active references to an object, the chunk of mem-
ory containing the object is returned to the system for reuse. This is called garbage
collection. Simple cases are easy for the Java system to handle. In the example
above, if we never assign the value of p to any other variable, then when p goes
out of scope there can be no other references to the Person instance so it can
be garbage-collected. But what if you assign the value to another variable with a
different scope? Or what if you return it as the value of a method? Tricky. But
Java looks after it for you, at some cost.1

1In fact, adding garbage collection to Java was one of the most dramatic design decisions made
by the original Java designers. Other languages, like Lisp, had used garbage collection for decades,
but it was still considered too expensive for “real” code. Java’s design decision emphasized that the
true cost of almost all software is in the development time, not the run time, and garbage collection
makes the developer’s job much, much easier (at some runtime cost). Apple’s Objective-C and
Swift languages use something called “Automatic Reference Counting,” which is less powerful
but also less expensive than true garbage collection. Cleaning up allocated memory remains a
challenge for large, long-running programs.



CHAPTER 8. MEMORY MANAGEMENT 44

8.5 Dynamic Memory Allocation in C

In C, you have all the same pieces but you have to look after almost everything
by yourself. Sorry. But as a Java programmer, you don’t need to be intimidated.
Everything you already know about dynamic data structures still applies, you just
have to spell things out somewhat painfully. And you can appreciate why lan-
guages like C++ and Java were developed to spare programmers all that spelling
out over and over again.

For starters, in C, there are no classes so there are no constructors. Instead there
is a single library function, malloc, for memory allocation. You give it a size in
bytes, and it returns a pointer to a chunk of memory of that size. For example:

#include <stdlib.h>
...
void* p = malloc(100);

Note that malloc returns a value of type void*. This is C’s somewhat strange
way of saying “pointer to unknown type.” After all, it doesn’t know what you plan
to do with that chunk of memory.2

If malloc fails, usually because your program’s memory space is exhausted, it
returns the special value NULL. Like an OutOfMemory exception in Java, there
is usually not much you can do about this situation. For simple programs, it
almost always implies a programming error and terminating the program is the
only reasonable thing to do. For complex, long-running software, you might need
to be more careful. Either way you should always test that the return value of
malloc is not NULL, although I will not do this in my examples to save space.

But if malloc doesn’t return NULL, then we have a pointer to a chunk of bytes.
What can we do with it? The answer is: not much. The C compiler will not let
you dereference a void pointer because it doesn’t know what type is on the other
end of the pointer.

The solution is that you can typecast (or just “cast”) the pointer to a different type.
As in Java, a cast is you telling the compiler “I know what type this thing is—trust

2K&R says of malloc: “The space is uninitialized.” Meaning you must initialize it. Do not
count on it being all zeroes or anything else.
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me.” In Java, casts are almost never necessary and usually indicate lazy program-
ming and poor design decisions. But in C with dynamic memory allocation, they
are always necessary. For example:

void* p = malloc(100);
int* ip = (int*)p; // <- cast is here

*ip = 98765;
printf("%d\n", *ip);

Here we declare a pointer to int and initialize it with the address of our chunk
of memory, which is the value of the variable p. To satisfy the compiler’s type
checking, we need to cast the value of p, which is a void*, to an int*. Once
we’ve done that, we can dereference our int pointer and store an int value
at that location in memory. When we dereference and retrieve the value at the
location stored in ip, it is an int.

Typically the two steps, allocation and casting, are done together in one very com-
mon idiom:

int* ip = (int*)malloc(100);

You should confirm that this behaves the same as the first two lines of the previous
program.

Now you may have noticed something a bit funny with my example. I allocated
100 bytes of memory, and then used it to store an int. But ints are generally
four or eight bytes these days. What gives?

Well, in one sense nothing gives. You asked for 100 bytes and malloc gave them
to you. If you only want to use four or eight bytes of it, the C compiler and the C
runtime don’t care.

While this is true, it’s not really ok to be deliberately wasteful and furthermore
it’s bad programming practice. If you want to allocate an int dynamically, your
code should make it clear that that’s what’s happening. So how do we know how
many bytes we need to store an int? It turns out that C has a built-in operator for
just this purpose:

int* ip = (int*)malloc(sizeof(int));
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The sizeof operator takes a type and returns the number of bytes required to
store a value of that type. Just what we need. The C compiler is happy and our
code is nice and clear. We can allocate memory to store any type of value and get
a properly-typed pointer to access it. You will use this idiom often.

Now, the memory available to your program is finite. It makes sense to return
memory to the system when you are done with it. Unfortunately, in C it is all up
to you to determine when a chunk of memory is no longer needed. And when it is,
you call the standard library function free and hand it the pointer to the chunk
you want to return:

int* ip = (int*)malloc(sizeof(int));
...
free(ip);

Note that the value of the variable ip is not changed by the call to free. Yes, the
system has made note that the chunk of memory at that address is now available
for reuse, but the value of the variable ip is still the address of the chunk. If you
try to deference the pointer after freeing it, one of three things will happen:

1. Your program will crash with some kind of memory error; or

2. The dereference may find a value, but it isn’t the value you expected since
the chunk of memory has been reused by a subsequent call to malloc; or

3. Nothing funny will happen and you will happily get the value you expected
to find on the other end of the pointer.

Assuming that you were really done with the chunk of memory, the first alternative
is in fact best. Your program has a bug and you need to fix it. The second situation
typically happens when the pointer has also been stored in some other variable
with a longer lifetime, and the code that uses that variable is not aware that it has
been freed. The third situation may happen if you access the pointer very soon
after freeing it, and in particular before your program allocates any more memory
(including in library functions, which may allocate memory to do their job).
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To help avoid these so-called “dangling pointer” bugs, you should set the value of
the pointer to NULL immediately after freeing it.

int* ip = (int*)malloc(sizeof(int));
...
free(ip);
ip = NULL;

Attempting to dereference a NULL pointer will cause a crash (usually a “seg-
mentation violation,” SIGSEGV, or a “bus error,” SIGBUS). This is your cue that
your program needs fixing. This technique certainly does not prevent all problems
with using freed memory (there could be other references to the chunk of mem-
ory stored in other pointer variables), but it can be generalized to more complex
situations where pointers are shared within a program.

8.6 Dynamic Arrays

Now that we can allocate and free memory, let’s look at the relationship between
pointers and arrays in C. This is crucial to understanding how strings work, as
well as more generally how C handles memory management.

In Java, to allocate storage for an array whose size is not known at compile-time,
you call new on an array type:

numbers = new int[3];
letters = new char[5];

You can do this any time in your program, not just when a variable is first initial-
ized as part of its declaration. Thus, for example, it’s easy to read an integer from
the user or from a file and then allocate an array of that size.

In C, you use a variant of malloc called calloc to allocate a chunk of memory
suitable for storing some number of elements of a given size contiguously:

int* numbers = (int*)calloc(3, sizeof(int));
char* letters = (char*)calloc(5, sizeof(char));

https://en.wikipedia.org/wiki/Dangling_pointer
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We’ve used the typecast and sizeof idiom just like for malloc.

But wait a minute. Here we have the type int*, but previously we said that an
array of ints had type int[]. What’s up?

The fact is that, in C, the value of an array variable is the address of its first
element. Thus every int[] variable is also an int* variable. By and large,
you can use an array-of-type variable anywhere that you can use a pointer-to-type
variable, and vice-versa (there are some restrictions).

So for example, given the above code, you can do the following to access the
elements of the array just like our earlier array variable examples:

numbers[0] = 99;
letters[0] = ’x’;
...
printf("%d\n", numbers[0]);
printf("%c\n", letters[0]);

You can also pass an array variable as the value of a pointer parameter, and vice-
versa:

int firsti(int* numbers) {
return numbers[0];

}

char firstc(char letters[]) {
return letters[0];

}

int main(int argc, char* argv[]) {
int numbers[] = { 1, 2, 3 };
char* letters = (char*)calloc(5, sizeof(char));
letters[0] = ’x’;
// ...
printf("%d %c\n", firsti(numbers), firstc(letters));

}
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One last thing: strings and arrays of strings. We already know that, in C, strings
are simply arrays of chars. You can allocate a string dynamically just like any
array:

char* str = (char*)calloc(length, sizeof(char));

This explains why we said at the very outset that the “string” type was char* in
C. And remember that when you allocate strings dynamically, it is up to you to
ensure that your string ends with a NUL (value zero) character.

If a char* is a string, then what’s the type of an array of strings? Well, it’s
an array, each of whose elements is a char*. Since arrays are themselves just
pointers, an array of strings is type char**. That is, it’s a pointer to pointer to
char, or pointer to string. To allocate an array of strings dynamically, you have
to allocate the array, and then the individual strings that are the contents of the
array:

char** s_array = (char**)calloc(array_len, sizeof(char*));
for (int i=0; i < length; i++) {

s_array[i] = (char*)calloc(this_str_len, sizeof(char));
}

This is a very common idiom, and in fact you need to do this for any dynamically-
allocated array containing elements of a reference (non-primitive) type, not just
arrays of strings. Don’t forget that you eventually need to free all these dynam-
ically allocated strings, not just the main array. Of course that is also true for
dynamically allocated arrays of any type of non-primitive element.

This “pointer-to-pointer” interpretation explains why you will often see the main
function declared as:

int main(int argc, char** argv)

This is equivalent to using char* argv[], although less clear in my opinion.

My recommendation is that you use the [] form when dealing with true arrays,
and save the * form for general dynamically-allocated objects, as we’ll see in
Section 8.7. The exception is strings, which are almost always referred to as
char*. It’s all just bits and bytes in memory anyway. . .
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8.6.1 Pointers vs. Multi-dimensional Arrays

K&R Sec. 5.9: “Newcomers to C are sometimes confused about the difference be-
tween a two-dimensional array and an array of pointers.” They give the following
example:

int a[10][20];
int* b[10];

They say: “a is a true two-dimensional array array: 200 int-sized locations
have been set aside and the conventional rectangular array subscript calculation
20× row + col is used to find the element a[row][col].” In other words, there
are ten rows of twenty ints each, all laid out contiguously. The first twenty ints
are the first row (index 0). The next twenty ints are the second row (index 1).
And so on. The code a[3][4] refers to the 64’th int in the contiguous block
of 200.

For b however: “the definition only allocates ten pointers and does not initialize
them.” However you can initialize them, for example:

for (int i=0; i < 10; i++) {
b[i] = (int*)calloc(20, sizeof(int));

}

And then b[3][4] again refers to the element in the fourth row (index 3) and
fifth column (index 4). The total memory used for this 2D array is the ten pointers
in the original (1D) array b plus the two hundred ints allocated using calloc.

Why would you ever do it that way? Well perhaps you don’t know the bounds of
the array until run-time. More interestingly, unlike a rectangular array, the rows
of a pointer array are not required to have the same length.
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(b) Rectangular array

Consider the following examples from K&R for converting a month number (1–
12) to the month’s name, and remember that strings are arrays of chars:

char *name[] = {
"Illegal month", // 0
"January", "February", March", "April", "May", "June",
"July", "August", "September", "October", "November",
"December"

};

The storage for this pointer array is shown in Figure 8.2(a).

The following code uses a rectangular array for the same information:

char name[][14] = {
"Illegal month", // 0
"January", "February", March", "April", "May", "June",
"July", "August", "September", "October", "November",
"December"

};

Note that although the compiler can figure out the number of “rows” (strings)
from the initializer, we need to specify the “width” of the array (the number of
columns) to be the length of the longest string (plus one for the NUL). The storage
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for the rectangular array is shown in Figure 8.2(b). Note that a lot of the allocated
memory is unused (all those extra NULs).

And by the way: Multi-dimensional arrays are always pointer arrays in Java.
There is no way in Java to allocate a block of contiguous storage and use it as
a multi-dimensional array (well, other than allocating a one-dimensional array
and doing all of the index calculations yourself).

8.7 Dynamic Data Structures

We’re now comfortable with the general idea of pointers, of dereferencing pointers
to get and set the pointed-to value, and of arrays as more or less synonymous with
pointers to continguously-allocated sets of elements. Let’s look at dynamically
allocating structured types, which is as close as you get in C to creating objects.

Suppose that we have the definition of a structured type representing points in two
dimensional space from earlier:

struct point {
int x;
int y;

};

To dynamically allocate an instance of this structure, we just use the standard
malloc idiom,3 only with the type struct point:

struct point* p = (struct point*)malloc(sizeof(struct point));

3If this idiom seems like repetitive boilerplate for allocating structured objects, you would be
right. Now you know why C++ was created (and before that, people used C preprocessor macros
for this, which you can check out).

Also, be careful not to write sizeof(struct point *). That will allocate only enough
space for a pointer (probably four or eight bytes), but tell the compiler that it is a pointer to a struct,
which is probably larger. This mistake can be very tricky to track down.
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To access the members of our newly allocated structure, we need to dereference
the pointer to get to the struct and then pick out the member. You might try the
following:

*p.x = 1;

*p.y = 99;

Unfortunately, because of the precedence of the dereference (*) and member se-
lection (.) operators, you will get a compiler error. You can fix it with some
parentheses:

(*p).x = 1;
(*p).y = 99;

First dereference the variable. Then, with the value you have there (which is
the struct itself), select the x or y member. This is a bit unwieldy and is so
incredibly common that there is a special syntax for it in C:

p->x = 1;
p->y = 99;

It means exactly what it says: follow the pointer which is the value of the pointer
variable p, and then access the appropriate member from the pointed-to structure.
(Java should have kept this syntax, but I digress.)

Now, what about our struct line example from before, which used two struct
points as its members?

struct line {
struct point start;
struct point end;

}

If we use our standard idiom, we will get a pointer to a struct line:

struct line* line1 = (struct line*)malloc(sizeof(struct line));
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Each instance of a struct line contains within it, that is, within the block of
memory allocated for it, the memory for two struct point instances. So to
access the members of the points, we must first derefence the pointer and then
chain the member accessors:

line1->start.x = 667;
line1->start.y = 668;
line2->start.x = -123;
line2->start.y = 0;

This situation is illustrated in Figure 8.2.

Or we could change our definition of a struct line so that rather than having
struct points as members, it has pointers to struct points as members:

struct line {
struct point *start;
struct point *end;

}

And then, in order to allocate a struct line, we have to also allocate the two
struct points and save them in the struct line:

struct line* line1 = (struct line*)malloc(sizeof(struct line));
line1->start = (struct point*)malloc(sizeof(struct point));
line1->end = (struct point*)malloc(sizeof(struct point));

Why would you do this? Well, perhaps the points are really the important things,
for example in a graphical drawing program. The lines are defined in terms of the
points, but if a point changes location, all the lines that include that point ought to
change also. If there’s only one instance of the point and all the lines that include
it refer to that instance, then this is easy. If each line has its own instances of its
points, then it’s probably harder. Of course you’d have the same design issue if
you were using Java, so let’s get back to C.
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Now that a struct line stores references to struct points, we need to
chain through the pointers to access the members of the struct points:

line1->start->x = 667;
line1->start->y = 668;
line2->start->x = -123;
line2->start->y = 0;

Figure 8.3 illustrates the contents of memory after this code has run. You should
be able to understand why the contents of memory are what they are and how to
follow the pointers to the various elements of the data structure.

Don’t forget that you need to free the reference type members of a dynamically
allocated struct before you free the struct itself:

free(line1->start);
free(line1->end);
free(line1);

You can use references to structured types to implement getters and getters in C.
For example:

int point_get_x(struct point* p) {
return p->x;

}

void point_set_x(struct point* p, int x) {
p->x = x;

}

The pointer itself, p, is passed by value, so its value cannot be changed in the func-
tion. However by dereferencing the pointer the function can change the members
of the pointed-to struct. Very cool.

You can’t (easily) make the members of a struct private or protected like in
Java, but you can use functions like we’ve just seen to clarify your code. Note
that you probably need to include the type of structure in the name of the function
(“point get x” in our example). Why? Because you may well have several
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structures with a member named “x” but in C you can only have one function
named get x and one named set x.

Finally, you can define structured types that contain members that are references
(pointers) to that same type. Just like in Java, these recursive types are used in
many common data structures including lists and trees. Here’s an example of a
simple linked list of integers with three elements:

struct node {
int value;
struct node* next;

};

struct node* new_node(int value) {
struct node* this = (struct node*)malloc(sizeof(struct node));
this->value = value;
this->next = NULL;
return this;

}

struct node* head = new_node(0);
head->next = new_node(99);
head->next->next = new_node(-13);

The memory layout for this data structure is illustrated in Figure 8.4.

Traversing a dynamic data structure like this can be done quite elegantly in C, as
in Java:

for (struct node *p=head; p != NULL; p=p->next) {
printf("%d\n", p->value);

}

You could use similar structures and pointer traversal code to implement doubly-
linked lists, trees, graphs, and so on.

In summary, creating dynamic data structures in C is no harder than creating them
in Java once you master the basic idioms that we’ve described in this section.
Freeing them, however, is a bit more challenging, and of course you don’t have to
do that in Java since the garbage collector will do it for you (at some cost).
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8.8 Function Pointers

Thus far we have seen pointers to data: chunks of memory allocated on the stack
or from the heap. C is interesting in that it also allows you to have pointers to
functions, which are executable code, not data. This allows you to save references
to functions in variables and pass them as parameters to functions. C was not the
first language to support these features, and certainly it was a common assem-
bly language idiom. But it is powerful and you will see it quite often in more
sophisticated code, so it is worth understanding.

In C, although a function is not a variable, you can get a pointer to a function by
using the “address-of” (&) operator on a function name just like you get a pointer
to a variable by using & on a variable. And in fact, since a function name that is
not followed by parentheses and arguments is not a function call, the bare function
name can be used without the & operator.

For example, consider the following simple function that returns twice the value
of its one int parameter:

int times2(int x) {
return x * 2;

}

The name times2 (or the expression &times2) can be used to get a pointer to
this function and assign it to a variable. The type of such a pointer is “pointer to a
function that takes one int parameter and returns an int.” This is written as:

int (*fp)(int) = times2; // or &times2

This defines the variable fp to be a pointer to a function of one int returning
int. The extra parentheses around *fp are required to get the “pointer to func-
tion” meaning right.
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Now that we have a function pointer, there is really only one thing we can do with
it. We can call the function, or more precisely, we can apply it to an int and get
an int back. To do this, we dereference the function pointer to get “the function
being pointed to,” pass it its parameter(s), and use its result:

int i = 999;
int j = (*fp)(i); // 1998

As with pointers to structures, the extra parentheses are needed to force the deref-
erencing before the function application.

In this example, there is no reason to use the variable fp since we could just as
easily have called times2 directly in our code. Let’s see a quick example that
requires the use of function pointers.

First, suppose we have a function that takes an array of ints and applies our
times2 function to each element. Think about how you would do this, then look
at my code:

void array_times2(int a[], int alen) {
for (int i=0; i < alen; i++) {

a[i] = times2(a[i]);
}

}

Not rocket science. Note that we have to pass the length of the array since in C
arrays don’t know their own length (see Section 4.6).

The cool thing is that by using function pointers we can generalize this function
so that it can apply any function of one int that returns an int to each element
of the array.

To do this, we need to do two things: (1) The array function needs a parameter
telling it which int function to use; and (2) When we call the function, we need
to be able to pass a pointer telling it which function to use.
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Here’s the code:

void array_apply(int a[], int alen, int (*fp)(int)) {
for (int i=0; i < alen; i++) {

a[i] = (*fp)(a[i]);
}

}

The first two parameters are the same as before. The third parameter, fp, is
declared to be a “pointer to a function that takes one int parameter and returns
int,” which we also saw earlier. And we apply that function to each element of
the array.

When we use this array function, we can pass the name of any function of that type
(or the expression “&name”) as the third parameter. For example, the following
is the same as our original array times2:

int numbers[] = { 1, 2, 3 };
array_apply(numbers, 3, times2); // 2, 4, 6

But suppose that we also have the following simple function:

int square(int x) {
return x * x;

}

Then we can apply it to the array also:

array_apply(numbers, 3, square); // 4, 16, 36

You can use your array printing function described in Section 4.6 to verify this
code for yourself. The values shown assume that you first apply times2 and
then apply square. You should try other arrangements to confirm your under-
standing.
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K&R Sec. 5.11 includes a more complicated example of passing a comparison
function to a sort function. You can compare this to Java’s use of interfaces (for
example, Comparable) and Python’s function objects (for example, the key
parameter to list.sort).

Finally, one other sophisticated use of function pointers is to store them as mem-
bers of a struct. For example:

struct dog {
char* name;
void (*bark)();

};

struct dog* new_dog(char* name, void (bark)()) {
struct dog *this = (struct dog *)malloc(sizeof(struct dog));
this->name = name;
this->bark = bark;

}

void arf() { printf("arf\n"); }
void woof() { printf("woof\n"); }

int
main(int argc, char** argv) {

struct dog *fido = new_dog("fido", arf);
struct dog *snoopy = new_dog("snoopy", woof);
// ...
fido->bark(); // prints "arf"
snoopy->bark(); // prints "woof"

}

Just like structs in C are the ancestors of objects in object-oriented languages
like Java, function pointers are the ancestors of methods.

There are differences. For example, in C, each instance has a separate reference
to the “method” (function), and instances can change the value of these function
pointers, which is equivalent to redefining the method for that instance. And each
instance can do that separately from the other instances of its “class” (which is
possible in some languages, for example Javascript, but not in Java). And so on.
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C clearly isn’t an object-oriented language, but you can see the way object-oriented
capabilities can be implemented using pointers. You just have to be very, very
careful (for example, my “constructor” function new dog).



Chapter 9

Defining New Types

In Java and other object-oriented languages, when you define a class it becomes
a type that you can use for variables and function declarations, thereby extending
the type system. C has a different mechanism that you will certainly see used and
may want to use yourself. It’s called typedef, and it allows you to define a new
type name. For example:

typedef int Distance;

This makes Distance a synonym for int. Note the somewhat awkward order
of the original and new types (like declaring a variable, think of Distance as
the thing being defined and its “type” being int).

You can then use the new type name anywhere you could use an int. For exam-
ple:

Distance d;
Distance *dp;
Distance distances[100];

One common usage, from K&R, is:

typedef char* String;

Defining more specific type names can make your code clearer. Rather than a
bunch of floats, you can have Distances, Areas, Volumes, and so on. But
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those are all primitive types under the hood, and most programmers use variable
names to make their intent clear. C programmers don’t generally appreciate seeing
String rather than char*, especially since you don’t have nearly the same level
of builtin support for strings in C as in other languages.

It is quite a bit more useful when you use typedefwith structured types (structs).
For example, using our dynamically allocated linked list example from the last
section, we could write:

typedef struct node {
int value;
struct node* next;

} Node;

And then we can use the type Node rather than struct node. For example:

Node* head = (Node*)malloc(sizeof(Node));

This idiom makes C structured types look more like object classes and makes your
code significantly more readable.

You could also typedef the pointer to a struct, as in:

typedef struct node* Node;
struct node {

int value;
Node next;

};
// ...
Node head = (Node)malloc(sizeof(struct node));

The first declaration uses what’s called a partial structure definition. It says that
struct node is a kind of struct, which is enough to define a pointer to it.
Then the full structure definition follows, and can use the Node type.1 This is
pretty close to looking like Java.

1Note that you have to use struct node, the structure type, in the call to malloc. If you
use Node, that’s a pointer type, and you’ll only allocate enough memory for a pointer, not for the
structure (see Section 8.7).
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Finally, K&R has a nice example of using typedef with function pointer types.
Recall from the previous chapter that these are awkward things like “pointer to
function of one int returning int.” You can define a type for such pointers as
follows:

typedef int (*PFII)(int);
PFII the_func = times2;

Here PFII stands for “Pointer to Function”, then the first “I” for the int pa-
rameter and the second “I” for the int return value. Another example, adapted
from K&R, is a pointer to a function of two strings (char*) that returns int:

typedef int (*PFSSI)(char*, char*);
PFSSI strcmp, numcmp;

This form of typedef is often used for the types of callback functions, whose
meaning might otherwise get lost in all the parentheses and asterisks.



Chapter 10

Sharing Code: Files and
Libraries

In our “Hello World” program, the first line after the comment was

#include <stdio.h>

We commented that this was similar to an import statement in Java in that it
made some library functionality available to your program. Now it’s time to ex-
plain this in more detail, since it is used in every program and is crucial when
developing larger projects.

10.1 The C Preprocessor

The #include statement, and indeed any statement that starts with “#”, is a
preprocessor directive. Recall from Chapter 3 and Figure 3.2 that the C prepro-
cessor processes your source code before it is seen by the C compiler. There are
many preprocessor directives but I will discuss only two them in this document:
#include and #define.

When the C preprocessor sees a #include directive, it will process the entire
contents of the given file at that point in processing your source code. Thus the
C compiler will see whatever of your program came before #include, then
contents of the included file, then whatever of yours came after. If the given

68



CHAPTER 10. SHARING CODE: FILES AND LIBRARIES 69

filename is enclosed in regular double-quotes, then the preprocessor looks in the
current directory for the file. If the filename is enclosed in angle brackets, as in
our stdio example, then the preprocessor looks for it in the standard system
directories.

In our example, we want to use the function printf from the stdio (Standard
input/output) library. We could #include the source code for the function itself.
The C compiler would compile it in addition to compiling our code. However it
doesn’t really make sense for us to recompile printf every time we compile
my program since we know printf hasn’t changed. In the first place, it might
be large and slow to compile. Its code might be complicated, including variables
and other functions. This code might conflict with our own code when literally
included by the preprocessor. And finally, someone might want to provide access
to a library function without making its source code available.

So what happens instead is that the included file typically contains only the decla-
rations of the variables and functions provided by the library. This is enough for
the C compiler to check that you are using them properly, for example, that argu-
ments are of the correct types and that return values are being used correctly. By
convention, these definitions are provided in a file whose name ends with “.h”,
called a “header” file. The actual source code for the implementation of the library
functions is in a separate C source file, which incidentally also #includes the
header file to keep its declarations in sync.

The following are typical contents of header files:

• Function declarations, but not their implementations. This is a bit like an
interface declaration in Java:

int printf(char*, ...);
int strcmp(char*, char*);

• Variable declarations marked with the extern keyword:

extern int errno;
extern FILE *stdin, *stdout, *stderr;

The extern keyword tells the compiler not to generate code to allocate
space for storing the variable. Rather, the name will be “linked” with its
storage later (see below).
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• Macros defined using the #define directive. Simple macros simply tell
the preprocessor to replace a name with some other text. For example:

#define MAXLEN 255
// ...
char buffer[MAXLEN];

While this example could also be done with a const int variable, much
more complicated macros are possible, including macros with parameters
that take arguments. Also note that because the preprocessor literally re-
places occurrences of MAXLEN with 255, there is no variable with that
name and no storage allocated for it. It literally doesn’t exist at run-time.

• Other #include directives, which are themselves included inline before
the preprocessor resumes processing the original header file.

10.2 Separate Compilation, Libraries, and Link-
ing

So you have your program source code, say hello.c, and you understand that it
uses the preprocessor #include directive to include definitions of library func-
tions like printf. This is enough for the C compiler to compile your C code to
object code (executable instructions). But before the program can be run, it needs
the object code for printf. This will have been separately compiled from the
printf source code and is stored in a system library.

Recall from Chapter 3 and Figure 3.2 that the process of combining several object
code files into an executable program is called linking and is performed by the sys-
tem linker. For historical reasons, the linker is usually named ld, which comes
from “loader,” which meant loading a program into memory for execution. Usu-
ally the linker is invoked automatically by the C compiler cc to put together the
final program, although some dynamic linking typically occurs when the program
is run.

The details vary, but one of the main jobs of the linker is to resolve references to
variables and functions defined in header files. That is, for every use of printf
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in your program, the linker must substitute code to invoke the actual implemen-
tation of the function in the library’s object code. Most C compiler toolchains
automatically link your code against the C standard library. For other libraries,
you may need to tell the linker which library to use and possibly where to find it.

10.3 Standard System Libraries

The following is a very brief description of some of the more commonly-used
C standard library functions, grouped by header file. You can find more docu-
mentation online or often by using the man command from your command shell
(terminal).

10.3.1 stdlib.h: The C Standard Library

The C standard library provides memory management functions including malloc,
calloc, and free, and other very fundamental functions like exit and abort.
It also includes random number functions random and srandom (now preferred
over rand and srand).

10.3.2 stdio.h: The Standard Input/Output (I/O) Library

The standard input/output (I/O) library, provides the printf and scanf fami-
lies of functions as well as the FILE type and functions that involve files such as
fopen, fclose, fread, and fwrite. It also defines the “standard” streams:
stdin, stdout, and stderr.

Reading input from the user

Reading input from the user almost always means reading from the “standard
input” (stdin).

And almost always you will be reading a “line” of input, meaning all the charac-
ters up to and including a “newline” character (’\n’), which is usually generated
by pressing the “Return” key on the keyboard.
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If you know the maximum length of an input line, the recommended way to read
a line from the user is by using fgets:

#define MAXLEN 255 // maximum number of chars in line
char buffer[MAXLEN+1];
char* result = fgets(buffer, MAXLEN+1, stdin);
if (result == NULL) {

// Error or EOF while reading
}

Here is the description of fgets from the C99 and C11 standards:

char* fgets(char* s, int n, FILE* stream)
The fgets function reads at most one less than the number of

characters specified by n from the stream pointed to by stream into
the array pointed to by s. No additional characters are read after
a newline character (which is retained) or after end-of-file. A null
character is written immediately after the last character read into the
array.

The fgets function returns s if successful. If end-of-file is en-
countered and no characters have been read into the array, the contents
of the array remain unchanged and a NULL pointer is returned. If a
read error occurs during the operation, the array contents are indeter-
minate and a NULL pointer is returned.

In old versions of C there was a function gets in the standard I/O library, but
it was deprecated in C99 and removed from the language in C11 so you should
not use it: “The gets() function cannot be used securely. Because of its lack
of bounds checking, and the inability for the calling program to reliably deter-
mine the length of the next incoming line, the use of this function enables ma-
licious users to arbitrarily change a running program’s functionality through a
buffer overflow attack. It is strongly suggested that the fgets() function be
used in all cases.” [macOS manpage]

There is also a function scanf that reads from stdin. It has somewhat com-
plicated behavior regarding whitespace, including skipping newlines. It also must
be used with care when reading strings, to avoid buffer overflows. And it requires
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passing pointers to numeric variables to receive the read items. But it will convert
sequences of digits to numbers, which may be useful. Use with caution.

If you don’t know the maximum length of a line, you will need to read incre-
mentally (one or more characters at a time, using fgetc or fread) and allocate
space to hold them incrementally (malloc and realloc). In Java, the standard
BufferedReader class looks after that for you.

10.3.3 math.h: The C Math library

The C math library provides mathematical functions corresponding to Java’s Math
class: sin, cos, tan, log, pow, and so on. Now you know where Java got its
math functions.

10.3.4 string.h: The C String library

The C string library provides string functions such as strlen, strcmp, and
strcpy. Be sure that you understand how these work based on C’s convention
that strings are simply arrays of char with a NUL character indicating the end of
the string.

10.3.5 stdbool.h: The C Boolean library

The C boolean library defines the type bool and the constants true and false.
It is strongly recommended to use these for representing Boolean values rather
than relying on the C convention that zero means false and any non-zero value
means true.

10.3.6 Functionality NOT in the C standard library

As we have already mentioned, there is no standard library support for any of what
Java calls “Collections”: lists, trees, sets, hashtables, and so on. Luckily these are
easy enough to build yourself if you need them.



CHAPTER 10. SHARING CODE: FILES AND LIBRARIES 74

Neither does C support “generic” functions, which can be applied to different
types of arguments in a type-safe way. You can accomplish some of the same
things using macros if you have to, which after all is how C++ got started. These
days there are probably better tools for that job than C.

10.4 Project Development

Separate complication and linking aren’t just for system libraries. You can use
them yourself for larger programs and projects.

You can break your code into separate files that are re-compiled only when they
change. Back in the day when there was no such thing as an IDE and compiling
a file took significant time, this was absolutely necessary. These days, IDEs often
look after this for you and anyway, the compiler is now generally pretty fast. Still,
large projects such as you may find in the open source community may involve
hundreds of thousands of lines of code. These will be broken into separate files to
speed compilation and allow different developers to work on different parts of the
codebase. By the way, this history is the reason Java requires each public class to
be defined in its own source file (other object-oriented languages do not require
this, and some people hate it).

If your different source files need to share definitions, you can write header files
that can be included where necessary. If you develop useful macros, data struc-
tures, and functions, you can share them between projects. You can even build
your own libraries and link against them if you like.

Here’s a quick example of this, for a data strucure representing a point in 2D space.
I assume that you’ve read Section 8.7 on dynamic data structures and Chapter 9
on defining new types using typedef.
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The header file Point.h defines the type Point and two getter functions related
to points:

/* File: Point.h */

typedef struct point *Point;

extern Point new_Point(int x, int y);

extern int Point_getX(Point this);
extern int Point_getY(Point this);

The implementation file Point.c (Figure 10.1) provides the definition of the
struct point behind the type Point, and the implementations of the func-
tions related to points. Note that it includes Point.h since it needs the definition
of type Point and it needs to be consistent with the function definitions.
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/* File: Point.c */

#include <stdlib.h>
#include "Point.h"

struct point {
int x;
int y;

};

Point new_Point(int x, int y) {
/* Note: Do not use sizeof(Point) for the size

* requested from malloc. The type ‘Point’ is a

* pointer, you need space for a ‘struct point’.

*/
Point this = (Point)malloc(sizeof(struct point));
this->x = x;
this->y = y;
return this;

}

int Point_getX(Point this) {
return this->x;

}

int Point_getY(Point this) {
return this->y;

}

Figure 10.1: Implementation file Point.c
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Finally, our program that uses points is in pointprog.c. It has the code for a
main function that allocates an instance of a point, gets its properties using its
accessors, and prints them out. Note that it also needs to include Point.h (but
not Point.c—it just needs the definitions, not the implementations).

/* File: pointprog.c */

#include <stdio.h>
#include "Point.h"

int main(int argc, char* argv[]) {
Point p = new_Point(123, 456);
int px = Point_getX(p);
int py = Point_getY(p);
printf("px=%d, py=%d\n", px, py);

}

Any source file that needs to know about points must include Point.h. But
Point.c only needs to be compiled once.

The following command will compile both of the C implementation files and link
them together into an executable named pointprog:

gcc -o pointprog Point.c pointprog.c

Run the executable and it will print out the coordinates of the point that it created.

The next section describes some tools for automating separate compilation and
linking the resulting object code files into an executable.
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10.5 Building Larger C Programs

This section describes very briefly how to use the make command to automate
the compilation and linking of your programs. Even if you prefer to use an IDE,
I think it’s useful to know how make works since it shows you what’s going on
under the hood.

The make command looks for a file named Makefile in the current directory.
This Makefile provides variable definitions and rules for “making” targets from
their dependencies. For C program development, this is primarily making exe-
cutable programs from C program source files.

The key to using make is knowing what to put in your Makefile. Here’s a
simple example:

hello: hello.c
cc -o hello hello.c

This is an example of a single make rule. It says that the target hello, which
is the name of our executable program, depends on the file hello.c. If the
target does not exist or is older than any of its dependencies, then make will use
the given command(s) to try to rebuild it. So in this case, make will run the cc
(“compile C”) command to recompile hello.c whenever necessary.

A couple of things to note:

• make will test that dependencies are up to date and attempt to re-make
them if neccessary before deciding about a target. In this example, the ex-
ecutable file hello depends on the source file hello.c, but hello.c
itself doesn’t depend on anything.

• The lines of the rule after the first one are the body of the rule. These are the
commands that make should invoke to remake the target. They are indented
with a single TAB character. The rule ends at the first non-indented line.

• In the example, note the use of the -o option to cc to set the name of the
resulting executable.

When you invoke make, it will try to build the first target defined in the Makefile,
or you can tell make which target to build on the command-line. To see what
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make will do without actually doing it, you can add the option -n before any
target names.

make comes with many built-in (“implicit”) rules. In particular, it knows how to
make a .o file from the corresponding .c file and it even knows how to make
a program that comes from a single correspondingly-named .c file. This means
that our very simple Makefile really only has to say what the target is:

hello:

That’s right—just one line. Try it in a Makefile. By default, make prints the
commands as it executes them, and you will see that it executes some default rule
involving cc to re-compile your program (or it will report that it is up-to-date, in
which case delete the executable and try again).

Let’s see a slightly more complicated example. Suppose you’ve split your source
code into two C files, scanner.c and util.c. We want to build these into an
executable named scanner.

PROG = scanner
SRCS = scanner.c util.c
OBJS = ${SRCS:%.c=%.o}

$(PROG): $(OBJS)
$(CC) -o $(PROG) $(OBJS)

This example illustrates several additional features of make:

• Variables: PROG, SRCS, and OBJS. Set a make variable with =. Get its
value using a $ and the name in parentheses (or curly brackets). All make
variables are string-valued.

• A substitution pattern which initializes the value of the variable OBJS to
be the value of the variable SRCS with any occurrence of “.c” replaced by
“.o”. There are many other ways to manipulate text in make.
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• The variables are used in the Makefile’s one rule. Variable names must
be in parentheses or curly backets if they are longer than one character. So
this rule expands to:

scanner: scanner.o util.o
$(CC) -o scanner scanner.o util.o

• Built-in variables, like $(CC), which are pre-defined to reasonable values
for the platform, or you can redefine them.

This Makefile therefore says that the executable scanner depends on two
object files: scanner.o and util.o. make already knows how to build those
two files from their corresponding .c files, so it will do that first if necessary.
Then it will link the two object files using the cc command to produce the exe-
cutable scanner.

This is will leave the object files lying around. If you don’t like that, add another
rule to the Makefile:

clean:
-rm $(OBJS)

This says that the target “clean” depends on nothing, so make will always run
the rule’s body in order to build the target. The body is the rm command to
remove the object files. The “-” in front of the command tells make not to exit
if the command fails, which it might if, for example, the object files haven’t been
made yet. To run this, just type “make clean” (or “make -n clean” to
check your Makefile).

There is much, much more to make. See the manpage or, probably better, the
online GNU Project document for it: https://www.gnu.org/software/
make/.

https://www.gnu.org/software/make/
https://www.gnu.org/software/make/


Chapter 11

Debugging a C Program

Debugging is a crucial skill for any programmer. Most aspects are not specific to
any programming language (for example, the practice of test-driven development).
In this chapter I’ll mention just a few tips about debugging C programs.

I’m a big believer in “print statement” debugging. That is, print the values you
have and maybe what you expect and watch the output go by. This is generally
easier and more informative than working with a debugger, but opinions differ.

To print out a pointer, modern C compilers provide the “p” format specifier for
printf:

printf("pointer is %p\n", ptr);

The traditional way of doing this was to print the pointer in “long hexadecimal”
(base 16) prefixed by “0x” (which is traditional but optional):

printf("pointer is 0x%lx\n", ptr);

You can use decimal if you like (format letter d rather than x), but hex is shorter
and usually all you want to know is whether two pointers are the same or not. With
modern C compilers and restrictive settings, you may need to cast the pointers you
are printing, or just use “%p”.
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11.1 Debuggers

If you need a debugger and are not using an IDE, you would use gdb to go with
gcc (and lldb to go with llvm/clang). The debugger generally has a complex
command shell syntax. Some useful commands for you to investigate are run,
break, backtrace (bt), step, continue (c), and quit.

Remember that there are no exceptions in C. The analogue (sort of) is something
called “signals.” Especially for beginners, most signals that your program might
receive are due to fatal errors. You can register signal handlers and this can some-
times be useful or even necessary. But I don’t think you’ll run into it until you’re
a C expert. A debugger will catch the signal and let you investigate the state of
your program.

Full documentation of gdb is at the GNU Project website: https://www.
gnu.org/software/gdb/. For lldb, it’s at the llvm website: http:
//lldb.llvm.org.

You usually need to give the -g option to the compiler when compiling in order
for it to include the symbol information required for symbolic debugging. If you
get no variable names in the output, just octal or hex addresses, that’s probably
the problem.

11.2 Compiler Options

While I’m mentioning compiler options, let me suggest that you also always use
the options “-Wall -Werror” with gcc or clang. These mean, respectively,
to report all possible warnings, and to make all warnings into errors so that the
program will not compile with any warnings. At least for beginning C program-
mers, warnings indicate that you are doing something that is not recommended
but technically not forbidden (usually for historical reasons). You shouldn’t have
to do that. I’ll also mention the option “-std=c11” which causes the compiler to
use the C11 language standard. I strongly recommend that you stick with the C11
core as you’re getting started. There are other possibilities that you can investigate
as your C skills improve.

https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
http://lldb.llvm.org
http://lldb.llvm.org
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11.3 Debugging Memory Problems

The biggest source of problems for Java programmers programming in C, and
indeed for C programmers in general, is memory management. As you program
in C, you quickly appreciate why more recent languages include some form of
automated memory management. But in C, you’re on your own. I have two
suggestions.

First: Design your dynamic data structures carefully. As a Java programmer, you
understand about things like constructors, getters and setters, and the safety of a
strongly typed language. So write your C code that way. For a structured type
(a struct) named “Thing,” have a “constructor” function new Thing, a “de-
structor” free Thing, use getters and setters (e.g., Thing get x, Thing set x),
and avoid casts outside constructors unless absolutely necessary (e.g., to mimic
generics). Together with strong compiler options, this will prevent many prob-
lems and will help you track down the problems that sneak through.

Second: Use the valgrind program from valgrind.org. Among other
things, valgrind tools “can automatically detect many memory management
and threading bugs, and profile your programs in detail.” Valgrind will swap out
your platform’s implementation of malloc, free, and the rest and substitute its
own versions. These run much more slowly than the originals, but they track every
piece of memory that you allocate and/or free. You get a report including memory
leaks (memory that you allocated but forgot to free), as well as places where you
wrote to memory improperly (for example, off the end of an array). You then fix
those issues until valgrind reports no errors.

NOTE: Valgrind does not always run on the most recent versions of macOS or on
Windows at all. For those, you can use Docker to setup and run a virtual Linux
machine, then install and use valgrind under Linux. Any errors that it catches
will also be errors on macOS or Windows, although they may or may not crash
your program on those platforms. CSC173 students can find more information
and resources on the instructor’s school website.

Alternatives to valgrind include Dr. Memory, leaks and heap on Apple plat-
forms (see Apple’s Memory Usage Guide), and on Windows there are some memory-
related tools in Visual Studio (for example: “Measure memory usage in Visual
Studio,” although perhaps not in C programs).

http://valgrind.org
https://www.docker.com
https://drmemory.org
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/FindingPatterns.html
https://learn.microsoft.com/en-us/visualstudio/profiling/memory-usage?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/profiling/memory-usage?view=vs-2022
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Final Thoughts

We’ve covered a lot of ground. Let me leave you with a few thoughts.

First: Don’t freak out. C is really very similar to Java.

Ok. You’re not freaking out. Where to start? You should start any project with a
design phase. What information does my program need to keep track of? What
kinds of things is it dealing with? How are those things related?

As an example that I use in my intro programming classes, think about a pro-
gram that lets a user manage their financial information. What does it need to
keep track of? Answer: how much money you have (or owe) and where it is. So
I would probably start with financial accounts. There are different kinds of ac-
counts, for example bank accounts, credit card accounts, brokerage accounts, and
so on. Sounds like the start of a class hierarchy. Or maybe just do bank accounts
first and make notes for later generalization.

What else? People hold (own) the accounts. The accounts are with institutions
like banks and brokerages. The accounts have transactions (of various types),
they have a balance (which is a function of the transactions), and so on. You get
the idea. You’re designing the model of the world that you will build inside the
computer so that it can solve problems for you.

In Java, you would take your design and write some classes. Classes define ref-
erence types and values of the type refer to instances of the class. In C, you will
write some structures, and pointers to instances of your structures are references.
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In place of constructors, write a function to allocate, initialize, and return an in-
stance of each kind of structure. Don’t call malloc or calloc outside of these
“constructors.”

Next, write functions that get and set the members of the structure (properties of
the object). These functions should be named as described earlier in this document
to avoid conflicts over member names. These will be quite repetitive, just like Java
getters and setters. Of course you don’t have to have getters and setters (just like
Java), but it does help you focus and allows you to change the implementation of
the data structure later without having to change the code that uses it.

That will actually get you pretty far. Now you have to write the code that actually
solves whatever problem it is you’re working on. But there’s nothing specific to
C about that. In fact, you could do it in Java and almost copy the code into your
C program with only fairly minor changes.

One last suggestion: Don’t call free unless or until you have to. If you don’t
call free, you can’t have dangling pointer bugs. Of course you could still have
bugs with your pointers. But these are the exact same bugs that would show up in
Java as NullPointerExceptions or incorrect performance. For many small,
course-sized projects, you may not ever run out of memory (except perhaps for AI
classes). Of course as a Computer Scientist you should probably understand how
to manage the memory used by your programs. But it wouldn’t be the first thing I
worried about on a project.

Bottom line: Start with a design. Build something simple that works and incre-
mentally make it better. Just like you would if you were programming in Java. . .



Chapter 13

References

Kernighan, Brian W., and Ritchie, Dennis M. (1988). The C Programming Lan-
guage, 2nd Edition. Prentice Hall. ISBN: 978-0131103627

https://en.wikipedia.org/wiki/C_(programming_language)

https://en.wikipedia.org/wiki/Java_(programming_language)

86

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)

	Introduction
	Overview of Java and C
	What's The Same?
	What's Different?

	Development and Execution
	Development and Execution in Java and C
	Setting Up Your Development Environment
	Writing Your First C Program
	Compiling Your First C Program

	Basic Expressions and Statements
	Comments
	Primitive Types
	Producing Output
	Operators and Expressions
	Variables and Assigment
	Arrays
	Things Missing from Arrays in C
	Multi-dimensional Arrays

	Strings

	Control Flow
	Conditional Statements
	Iteration Statements
	Other Control Flow Statements

	Functions
	Function Parameters and Arguments
	Function Declarations

	Structured Types
	Memory Management
	Variables, Addresses, and Pointers
	Passing Arguments by Reference
	Memory Allocation
	Dynamic Memory Allocation in Java
	Dynamic Memory Allocation in C
	Dynamic Arrays
	Pointers vs. Multi-dimensional Arrays

	Dynamic Data Structures
	Function Pointers

	Defining New Types
	Sharing Code: Files and Libraries
	The C Preprocessor
	Separate Compilation, Libraries, and Linking
	Standard System Libraries
	stdlib.h: The C Standard Library
	stdio.h: The Standard Input/Output (I/O) Library
	Reading input from the user

	math.h: The C Math library
	string.h: The C String library
	stdbool.h: The C Boolean library
	Functionality NOT in the C standard library

	Project Development
	Building Larger C Programs

	Debugging a C Program
	Debuggers
	Compiler Options
	Debugging Memory Problems

	Final Thoughts
	References

