
Quagents: A Game Platform for Intelligent Agents

Chris Brown and George Ferguson and Peter Barnum and Bo Hu and David Costello
University of Rochester
Rochester, NY 14627

Abstract

The Quagents system provides a flexible interface to the func-
tionality of a game engine. The goal is to make interactive
games a useful research and teaching vehicle for academics.
Quagents is freely available, and runs under Unix/Linux and
Windows. Intelligent agent controllers may be programmed
in any language that supports sockets. A communications
protocol between the controller and the bot resembles that
between the high-level software and low-level controller of
a mobile robot. More complex APIs may be built on the
protocol that support complex interactions like trading. We
describe the Quagent architecture and research and teaching
applications.

Motivation
Interactive Digital Entertainment (IDE) will increasingly in-
volve artificial, intelligent agents and related technology.
Some of the agents will be managing things behind the
scene, while others will be represented explicitly by graphic
renditions. Ultimately, hardware embodiments are possible
as well. Games and entertainment agents will soon hit a
ceiling of performance possible with ad hoc approaches to
intelligence and will need to incorporate state-of-the-art AI.
Luckily future hardware can support the increased demands.
Our goal in creating Quagents was to give researchers ac-
cess to an entertainment-style simulated universe, and thus
for IDE to reap the benefits of research carried out in rele-
vant domains.

The Quagents system reported here is meant to help
bridge the gap between the concepts and interfaces of com-
mercial products and the typically unconstrained approach
of academic AI research. It is designed for use in research
and teaching. It smoothly supports multiple agents. It is
a robotic simulator that uses the underlying physical and
graphical capabilities of a commercial game engine. The
result is a system that is freely distributable, runs in UNIX
and Windows environments, has the look and feel of a first-
person game, and in which AI algorithms written in any lan-
guage that supports sockets can control the agents through
a protocol or user-written APIs. One is not restricted to the
game-supplied “mods”, so any research-grade software can
be used for agent control.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This work is inspired by many pioneers who have used
and are using computer games to support AI research, and
working to import AI into games (e.g. (Buckland 2002)).
Quagents are a form of animat: that is, a simulated organism
(e.g., (Terzopoulos & Rabie 1997)). Quake III has been used
as a testbed for neural models (Noelle & Fakhouri 2004).

The main animat advantages are: no hardware, quick pro-
totyping, known ground truth, ability to create wide variety
of (physically possible or not) agents, sensors and environ-
ments. Laird and co-workers have used the Soar production
system to simulate various human reasoning characteristics
and skills in a Quake “game AI” (e.g., (Laird 2004)): au-
tomating opponents to the human player.

Our system uses the freely-available Quake II engine,
which handles all the details of collision detection and envi-
ronment management so researchers can concentrate on ex-
ploring agent behaviors and interactions in a fairly complex
world. We had two basic requirements: The ”agent” code
should build and run under the Linux/Unix operating sys-
tem regardless of where the game server was running. There
must exist a mechanism to build ”agents” (that is, their intel-
ligent controllers) external to the game itself so that external
resources of the agents would not have to be linked directly
into the game. This is a brief version of a technical report
(Suppressed 200Xc). which has many more details and ref-
erences.

Quake II Basics
UR-Quake is a modified version of Id Software’s Quake II
(Id 2004). Dynamically, Quake II is divided into a server and
a client. Statically, Quake II consists of an executable and
two DLLs. The game engine executable has both the server
and client code. The client part is connected to the server
over a network, or locally if on the same machine. The
server updates the world state and sends state update net-
work messages to the clients at about 10Hz; The client up-
dates, interpolates fast event effects, renders, tells the server
what the player is up to, and manages the user interface (key-
board, mouse, game pad, etc.). A video refresh library pro-
vides basic graphics abilities. The game library has various
monsters, whose innate behaviors we have replaced with our
Quagent control protocol. Thus they become bots.

Quake II is accompanied by PAK-files, which contain one
or several maps that define the Quake II world, including



View, Controls
Game Console,

Client Code
Quagent Proxy

Quagent Bots

Game Server Engine

Protocol
Quagent

Controllers

Quagent Protocol Handlers

Quagent API

Quagent Controller

Other

Experimenter

AI Techniques, Libraries, Support

Bots
Quake

Figure 1: Basic Quagent Architecture

information about where entities are placed (spawned) in the
world.

All entities in the game use a ”think” function to execute
calculations or behavior. The server loop, which is single
threaded, provides each entity a slice of time to execute in-
structions from its current ”think” function. The monsters
in Quake II “think” with limited, game-inspired hacks; e.g.,
they often navigate by following invisible breadcrumb-like
paths. Our modification is that Quagents “think” by follow-
ing orders from a user-written controller distinct from the
game.

We considered other game platforms for Quagents, such
as Quake 3 and DI-Guys. Our reasoning is reported in detail
in (Suppressed 200Xc), but source-code accessibility and
operating system independence figured largely.

Quagent Architecture
The Quagent code and the communications protocol are a
kind of specialized proxy server (Fig. 1). The user calls
upon whichever AI disciplines are relevant, uses whatever
language is best, and writes a Quagent controller. Via a
socket connection this exterior controller substitutes for the
original “game AI” of the erstwhile monster.

Quagents and Bots
In our ontology, the bots in the Quake II world are strictly
hardware. They are controllable with a finite set of com-
mands and they have reflexes that prompt them to inform the
controller about certain events. All the intelligence therefore
is off-board, outside the game, in user-written programs,
which communicate with the game and vice versa through
the protocol or user-written APIs using the protocol. The
Quagent is thus the combination of the bot in the game and
the user-written controlling software. If multiple bots are
spawned, each has its own ”private line” to its controller.

Quagent Ontology
Time: the quagent’s world advances in 1/10 second inter-
vals called ”ticks”. The Client (the erstwhile first-person
shooter): the user controls this entity and sees through his
eyes. He can move around and interact with bots. Walls and

windows: things the quagent cannot walk through. Items:
box, gold, tofu, battery, data, kryptonite, head. User can
spawn these things at specified locations. Other quagents:
perhaps controlled by other controllers. A Quagent has an
internal state influenced by the world and its actions. Posi-
tion: (X,Y,Z, Roll, Pitch, Yaw), Inventory: (Items in qua-
gent’s possession), Wellbeing: Health, Wealth, Wisdom,
Energy, Age.

Quagent Physics and Biology

Something like normal physical laws apply in Quake II, but
there are many tricks being used so some information one
thinks should be available is either not there or hard to get.
Default Quagents obey certain mechanical and biological
laws (which are very easy to eliminate, change, or extend.)
We present here a representative subset of current default
Quagent characteristics. Presently we provide about a dozen
different bot choices (corresponding to different monsters in
the original game), so there is a fairly wide choice of appear-
ances and certain hard-wired innate characteristics. We have
removed violence from the bots’ behavioral repertoire.

A bot is spawned upon connection to the game. Often
this happens in the bot constructor function. Disconnect-
ing kills the bot. All items but boxes can be walked over;
boxes block walking. All items can be picked up. Picking
up (Dropping) Tofu increases (decreases) Health. There are
similar laws for picking up other items, and kryptonite is
dangerous to pick up or even be near. Increased Wisdom in-
creases perceptual abilities. Age increases every tick. When
lifetime is exceeded or health drops to zero, the bot dies.
Energy decreases by a small amount at every tick. When
energy goes to zero, bot stops moving (everything else still
works, including Pickup, so another bot could give it batter-
ies.) There are several parameters settable by the user or the
system that govern the physical and physiological constants
in the Quagent world.

Usually the user sets up an experimental situation with
two types of configuration file: One type sets up the world
and populates it with items in specified locations. The sec-
ond type initializes state levels and thresholds for bots to be
spawned.

Arbitrarily complex communication and protocols (trad-
ing, auctions, deducing plans, etc.) between Quagent con-
trollers (not bots) is trivial if they are all running in the same
program. We have also implemented non-trivial communi-
cation between bots that may be spawned by different con-
trollers or players (see below).

Quagent Protocol

Quagent controller code communicates with its bots in the
game using a simple text protocol. The controller can send
commands for the bot to do things (DO) or ask it questions
(ASK). The bot confirms command receipt (OK), sends error
messages (ERR), or sends back data in response. Bots can
also asynchronously report events (TELL). The following is
a quick synopsis of the main parts of the current Quagent
protocol.



Actions
WALKBY distance: Command bot to start walking in cur-

rent direction. Bot will start walking in the right direction
and silently stop when distance is reached. Also RUNBY
and STAND (stop moving).

TURNBY angle: Bot turns in place.

PICKUP item: Pickup item. Also DROP.

Perception
ASK distance: Bots reports list of objects and their posi-

tions within given distance. Also ASK RAYS.

CameraOn, CameraOff: Normally the terminal shows
the view from the (first-person) client. These move the
camera to the bot and back.

LOOK: Uploads image buffer to the quagent controller,
showing the world as seen from the bot’s point of view.

Proprioception and Asynchronous Condition
Messages
The following query the bot’s internal state and set cer-
tain bot parameters for experimental purposes: GetWhere
(position), GetInventory, Get-Wellbeing, Set-
EnergyLowThreshold, SetAgeHighThreshold.

The bot reports certain events asychronously, using the
TELL message. Among those currently generated are:

STOPPED: Motion stops before desired WALKBY or
RUNBY distance attained

LOWENERGY: Bot’s energy fallen below a threshold; paral-
ysis looms

NOTLOWENERGY: Energy has risen from below to above
threshold.

OLDAGE: Bot’s age is above threshold: death looms;

STALLING Bot is out of energy, alive but unable to move.

Quagent APIs
A key design goal for the Quagents platform is that it be
readily usable in undergraduate AI courses and by AI re-
searchers (see the next two sections, respectively). We have
implemented an initial API in the first release of the plat-
form, and are developing a more appropriate one for the next
release.

The initial Quagent API, in Java, hides the details of
socket connections, session initialization, and stream man-
agement from the user code. The details of creating and
parsing messages are still left to user code, where it is both
time-consuming to write and error-prone to run.

For the next release of the platform, we are implementing
a more sophisticated API as another layer above the basic
API. This “agent abstraction layer” hides all aspects of the
Quagent protocol from user code. Instead, it provides ab-
stractions such as Sensors and Behaviors that abstract the
protocol details (asynchronous events are handled with a
standard Listener paradigm). This allows agent developers
to concentrate on the cognitive design of their agents rather
than on talking with a game server.

Importantly, in this API, we can also develop “virtual”
sensors and behaviors that extend and augment the “real”
ones provided by the protocol. Two examples are a di-
rectional scanner that filters the results of a protocol ASK
RAYS request, and an agent communication behavior that
allows agents to exchange messages without any protocol
interactions. The agent abstraction layer is designed to be
extensible, allowing new real or virtual sensors and behav-
iors to be added easily.

To support research into agent teams, we have already
implemented an inter-agent communication API dubbed
TeamQuagent. This extension to the system adds unique
(identifiably different) versions of items and bots, makes
some items non-pickupable, and makes some game engine
modifications. The TeamQuagent package contains low-
level routines for Quagent functioning, including a Java
class to extend and a separate facilitator for communication
between TeamQuagents.

A message between quagents can contain an arbitrary col-
lection of Java Objects, wrapped with the TeamMessage
class. By using the Quagent-to-Controller and Quagent-
to-Quagent methods, a fairly sophisticated bot can be con-
structed without using low-level system or networking com-
mands. Also, the multi-thread safe nature of TeamQuagent
allows for robust, real-time applications to be constructed
without extra checks. We use these capabilities to imple-
ment auctions and trading for role-swapping (see below).

Quagents in Teaching
We wanted to take advantage of the fact that many under-
graduate CS majors like games, that a fair amount of work
is going on to improve AI in games, and that there is in-
creasing awareness that standard AI topics can be coupled to
entertainment (e.g., (Buckland 2002)). In keeping with the
tagline “The Intelligent Agent Book” of our text (Russell &
Norvig 2003), with the recent introduction of a software en-
gineering course based on such interactive games, and with
our own experience with physical mobile robot courses at
the graduate and undergraduate level, we created Quagent
versions of all five programming exercises for our main un-
dergraduate AI course (Suppressed 2004).

State-Space Problem Solving: Write general state-space
search algorithms (depth first, breadth first, A*. etc.) for a
maze-solving application in which the maze is represented
by matrix of 0 and 1. Then transfer the solution to the Qua-
gent world and have the Quagent execute the path found.
Variations on the problem include implementing on-line
problem-solving algorithms.

Production Systems: Students learn about production
systems and use current commercial-grade AI software, usu-
ally to code a subsumption-style controller (Brooks 1991)
(Fig. 2). We use Jess (Sandia 2004) (our code distribution
includes a Jess example.) The exercise also introduces the
possibility of quagent-quagent communication.

Learning: As in the problem-solving project, students
work in a small grid-world (as in the exercises in the text),
and then must export and apply their policies and models to
the Quake world. Again, on-line learning is also a possibil-
ity.



Figure 2: Map made under production system control (stu-
dent project, 2003.)

Figure 3: View of the situation and ground truth for visual
learning and exploration project: some bots have expired of
old age while exploring (student project 2003).

Natural Language Understanding: Command the bot
(or get reports back from it) in natural language. As well
as the text, we provide chapters from NLU texts on chart
parsing, semantic grammars and recursive descent parsers.

Vision: Put some classic computer vision problems into
the Quagent world. Low-level vision software is provided.
Possible topics include segmentation, line-finding, object
recognition, tracking (calls on previous chapters on Kalman
filters), and mapping (Fig. 3.)

Quagents in Research
We want to use Quagents to study strategies for flexible, self-
organizing cooperation between possibly heterogeneous in-
telligent agents, especially with minimal communication
and methods of commanding and communicating with such
teams.

In general, we are most interested in distributed coor-
dination of intelligent agent teams (in general heteroge-
neous agents with different physical and computational abil-
ities) using constrained communication. We assume that re-
planning and re-assignment of roles can be based on higher-
level re-tasking or local intelligence, that agents can defect

Figure 4: Agents in action. Operating surfaces are textured
to help humans gauge distance. Rocks are the larger objects,
host drilling bots appear smaller and dark.

or fail, that communication rates can vary, and that visual
information can sometimes substitute for communications
(this raises the “vision problem”, however). We would like
to allow individual agents to make their own decisions re-
garding how best to carry out their tasks.

Distributed Cooperation

As a first exercise in agent team control and complex
communication, we implemented role-assignment, role-
swapping and resource-allocation methods that approach
optimal with good communications and degrade gracefully
as communications degrade. Each robot is made respon-
sible for a subset of the team’s work, but while pursuing
their goals, the robots attempt to trade goals with others that
are more capable, thereby improving team performance. As
communications degrade trading becomes less frequent, but
every goal that can be achieved ultimately is achieved. We
used the TeamQuagent protocol to implement trading. We
modified the Quake code to add a protocol to trade items,
money, and information. A trade is a transfer of any or all
of the three between two quagents. Only items are handled
in the actual Quake program: money and information, being
new to the Quake ontology, are handled in the quagent con-
trollers. Our communication protocol (Suppressed 200Xb)
is similar to the contract net (e.g., (Davis & Smith 1983)),
with some significant differences. One is that once a goal
is transfered to another host, the first host does not have to
monitor its progress to make sure it is completed. Thus there
is no communication while the team is working except when
goals are reassigned. The quagents are not really subcon-
tracting; they transfer the full goal. There are no thus layers
or chains of subcontracting.

In the simulation, there is a large group of randomly po-
sitioned rocks that have to be drilled for samples (Fig. 4).
We varied the number of agents in the team, tested different
levels of communication uncertainty, and used several ran-
domly generated groups of rocks, etc. We quantified team
effectiveness, message traffic, etc. (e.g., Fig. 5). On aver-
age, as more agents are added and as communications are
more reliable, the faster the problem gets solved. Our ex-
perience confirms the sentiment that first-choice strategies
such as auctions tend to work reasonably well (e.g., (Dias &
Stentz 2003; Gerkey & Mataric 2002).)



Figure 5: Task completion time vs. number of rovers for
three values of message loss.

Robust Agent Teams
Interesting problems often have to be solved by teams.
Sometimes a team of many agents can get a job done bet-
ter or faster even if the agents are all the same (homoge-
neous teams). Other times a team is needed because the
solution of the problem requires a set of skills that no one
agent alone possesses (heterogeneous teams). In either case,
an important issue is how to make the team robust to failures
of individual members. That is, how do we ensure that the
team meets its objectives even though individual members
may fail to meet theirs (through communications or hard-
ware failure or defection).

The Quagents platform is ideal for exploring the design
and implementation of robust agent teams. There is much
work in this area, from classic (e.g., (Smith 1980)) to more
recent (e.g., (Modi et al. 2003)). Our current research uses
the language of Joint Intention theory (Cohen & Levesque
1990) to describe shared goals, and uses voting and auction
mechanisms to let agents agree on what the goals are and
who ought to achieve them. We have implemented and ana-
lyzed a distributed version of Borda counting, which nicely
takes account of agents’ preferences and which is resistant
to manipulation by individuals. Also for reasons of robust-
ness we are considering Vickrey (sealed bid, second-price)
auctions.

For our initial implementation of these ideas, we are de-
veloping a Mars exploration scenario using the Quagents
platform. This includes specifying a new spatial layout,
creating new graphics for various agents, and most impor-
tantly, using and extending the Quagent APIs for agent be-
havior and inter-agent communication implementing the ro-
bust agent teams.

In the future, one of the most promising directions is to
refine the structure of the agents themselves. Although hy-
brid automata allow for complex functionality, hierarchi-
cal decision making, (e.g., (Tambe 1997)) could allow for
much more robust single-agent functionality even within
teamwork systems. Another improvement would be to up-
grade the auctioning process used for a goal to migrate from
one Quagent to another. Combinatorial auctions have been
successful in many agent-based and planning approaches

(e.g., (Hunsberger & Grosz 2000; Likhodedov & Sandholm
2004)), and give better performance than simple greedy
searches.

We should like to pursue approaches that suggest perfor-
mance can be guaranteed for robots that observe their envi-
ronment and see what their teammates are doing instead of
explicitly communicating (e.g., (Wie 1997; Balch & Arkin
1997; Various 2004)). To reduce further the need for com-
munication, elements from swarm robotics, mechanism de-
sign, and stigmergic theory could be added or substituted
(Reynolds 1987; Steels 1990). Even though the goals move
from agent to agent, it may be possible to make the inter-
actions more sophisticated and attain greater functionality,
even in uncertain environments.

Human Management of Intelligent Agents
Intelligent agents are increasingly capable (whether in the
real world, such as various robots, or in a cyber-world of
software agents). However, little attention has been paid to
the fact that these agents will almost always have to interact
with people. At the very least, people originate the prob-
lems that agents are intended to solve. People are also often
the beneficiaries (or victims) of agents’ actions, meaning
that human control and delegation of authority are crucial.
And once we get beyond the simplest reactive, hard-coded
agents, they will need to interact with people during their
operation, for example to clarify requirements, obtain infor-
mation or authorization, identify problems, and so on.

A promising approach to this type of collaborative prob-
lem solving is to develop an intelligent assistant that helps
a person solve problems. In some such systems (e.g., (Sup-
pressed 200Xd)), this assistant communicates using spoken
natural language. Regardless of modality, the idea is that the
assistant will coordinate and manage a team of autonomous
agents running on the Quagents platform. The assistant’s job
is to help the human supervisor understand the situation and
achieve their objectives. Quagents provide an ideal level of
abstraction for this research. It is realistic enough that we
believe the results would transfer to real world huma and/or
robotic agents, but abstract enough that we can concentrate
on developing the assistant rather than the agents.

Use of the Quagents platform in this scenario suggests
some unique possibilities for evaluation. First, one could
compare the human-assistant-quagents team with a team of
expert human players each controlling a single character in
the game. Presumably the team of humans would easily out-
perform our team (but it’s a nice challenge). Our intuition is
that the main reason the humans would do well is that they
would talk to each other offline (outside the game). So we
could make a fairer comparison by putting them in separate
rooms. Or we could try putting a team of players in a room
together, against a human with computer assistant control-
ling the same number of Quagents. One can imagine that,
with some attention to scaling in the assistant system, the
team of humans couldn’t possibly coordinate themselves as
well as the system could (or to the extent that they can, we
learn something about agent coordination). In any case, the
Quagents platform provides an ideal environment in which
to develop collaborative assistants for human management



of intelligent agents.

Conclusion
Interactive Digital Entertainment needs access to the lat-
est AI research but industries cannot give their source code
away to academics. AI communities need powerful real-
time simulations to develop AI for robotic systems and for
games and entertainment, but they must be flexible, use ex-
isting AI code, be instrumentable, and in short be open,
sharable, research vehicles. Quagents is an agent develop-
ment environment embedded in an interactive digital envi-
ronment. The goal is to have a sophisticated, game-like
simulation available to academic (and individual) investi-
gators and teachers using Linux/Unix as well as Windows
platforms. The intelligence component is independent from
the game (world) controller: the two communicate through
a standard interface (sockets) that can be enhanced by APIs
designed by the investigator, not provided by the game. Ulti-
mately, we want to give AI researchers the luxury of a com-
plex, real-time environment for intelligent agents, and we
hope that progress and technology will then flow the other
way from the research into the commercial communities. In
parallel with IDE applications, we believe AI will enter the
real world of transport, home, health care, and military ap-
plictions as well, and flexible and powerful simulators will
speed that process. The Quagent code is freely distributable
and available at (Suppressed 200Xa), which also has the full
version of this paper with many implemention and documen-
tation details.

References
Balch, T., and Arkin, R. 1997. Behavior-based formation
control for multi-robot teams. Submitted for Publication
(citeseer.ist.psu.edu/balch99behaviorbased.html).
Brooks, R. 1991. Intelligence without representation. Ar-
tificial Intelligence (47):139–159.
Buckland, M. 2002. AI techniques for game playing.
Cincinnati, OH: Premier Press.
Cohen, P., and Levesque, H. 1990. Intention is choice with
commitment. Artifical Intelligence 42:213–261.
Davis, R., and Smith, R. 1983. Negotiation as a metaphor
for distributed problem solving. Artificial Intelligence
20(1):63–109.
Dias, M. B., and Stentz, A. 2003. Traderbots: A market-
based approach for resource, role, and task allocation in
multirobot coordination. Technical Report CMU-RI-TR-
03-19, CMU Robotics Institute.
Gerkey, B. P., and Mataric, M. J. 2002. Sold!: Auction
methods for multi-robot coordination. IEEE Transactions
on Robotics and Automation Special issue on multi-robot
systems 18(5):758–768.
Hunsberger, L., and Grosz, B. 2000. A combinatorial
auction for collaborative planning. In Proceedings of the
Fourth International Conference on Multi-Agent Systems
(ICMAS-2000), 151–158.
Id, S. 2004. id software downloads.
http://www.idsoftware.com/business/techdownloads/.

Laird, J. E. 2004. John laird’s artificial intelligence and
computer games research. http://ai.eecs.umich.edu/people/
laird/gamesresearch.html.
Likhodedov, A., and Sandholm, T. 2004. Methods for
boosting revenue in combinatorial auctions. In Proceed-
ings on the National Conference on Artificial Intelligence
(AAAI), 232–237.
Modi, P.; Shen, W.; Tambe, M.; and Yokoo, M. 2003. An
asynchronous complete method for distributed constraint
optimization.
Noelle, D., and Fakhouri, T. 2004. Mod-
eling human prefrontal cortex in quake
iii arena. http://www.vuse.vanderbilt.edu/
∼noelledc/resources/VE/IDED/home.htm.
Reynolds, C. W. 1987. Flocks, herds, and schools: A dis-
tributed behavioral model. Computer Graphics 21(4):25–
34.
Russell, S., and Norvig, P. 2003. Artificial Intelligence A
Modern Approach (2nd Ed). New Jersey: Prentice Hall.
Sandia, N. L. 2004. Jess programming system.
http://herzberg.ca.sandia.gov/jess/.
Smith, R. G. 1980. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Transactions on Computers C-29(12):1104–1113.
Steels, L. 1990. Cooperation between distributed agents
through self-organization. Decentralized A.I. 175–196.
Suppressed, X. 2004. Ai assignments and projects.
http://www.someplace.edu/page.html.
Suppressed, X. 200Xa. Some index page.
http://www.somewhere.html.
Suppressed, X. 200Xb. Something relevant. Technical
Report TR, Research Institution.
Suppressed, X. 200Xc. Suppresed for review.
Technical Report 000, Research Inst. In DSpace:
http://hdl.handle.net/0000/0000.
Suppressed, X. 200Xd. Suppressed for review. In Some
Article, 000–000.
Tambe, M. 1997. Towards flexible teamwork. Journal of
Artificial Intelligence Research 7:83–124.
Terzopoulos, D., and Rabie, F. 1997. Animat vision: Ac-
tive vision in artificial animals. VIDERE 1(1). Electronic
Journal: http://www-mitpress.mit.edu/e-journals/Videre/.
Various. 2004. Various. In Modeling Other Agents from
Observations. (Columbia U. Workshop at Int. Joint Conf.
on Autonomous Agents and Multi-agent systems.
Wie, M. V. 1997. Establishing joint goals through observa-
tion. In David P. Casasent, C. M. U., ed., Intelligent Robots
and Computer Vision XVI:Algorithms, Techniques, Active
Vision, and Materials Handling. Pittsburgh, PA, USA: The
International Society for Optical Engineering.


