

 1

Going beyond PBD:
A Play-by-Play and Mixed-initiative Approach

Hyuckchul Jung, James Allen, William de Beaumont, Nate Blaylock
!George Ferguson, Lucian Galescu, !Mary Swift

Institute for Human and Machine Cognition

40 South Alcaniz Street, Pensacola, FL

{hjung, jallen, wbeaumont, blaylock, lgalescu}@ihmc.us

!Computer Science Dept., Univ. of Rochester

PO Box 270226, Rochester, NY

{ferguson, swift}@cs.rochester.edu

ABSTRACT

An innovative task learning system called PLOW

(Procedure Learning On the Web) lets end-users teach

procedural tasks to automate their various web activities.

Deep natural understanding and mixed-initiative interaction

in PLOW makes the teaching process very natural and

intuitive while producing efficient/workable procedures.

INTRODUCTION

The web has become the main medium for providing

services and information for our daily activities at home or

work. Many web activities involve the execution of a series

of procedural steps involving Web-browser actions.

Programmatically automating such tasks to increase

productivity is feasible but out of reach for many end users.

Programming-by-demonstration (PBD) is an innovative

paradigm that can enable novice users to build a program

by just showing a computer what a user intends to do [3].

However, in this approach, numerous examples are often

needed for the system to infer a workable task.

We aim to build a system with which a novice user can

teach tasks by using a single example without requiring too

much or too specialized work from the novice user. This

goal poses significant challenges because the observed

sequence of actions is only one instance of a task to teach

and the user’s decision-making process that drives his/her

actions is not revealed in the demonstration.

To achieve this challenging goal, we have developed a

novel approach in which a user not only demonstrates a task

but also explains the task with a play-by-play description.

In the PLOW system, demonstration is accompanied by

natural language (NL) explanation, which provides the

system with useful information to identify the following

key aspects in building complex task models: (i) the goal of

the task; (ii) the hierarchical structure including the

boundary of (nested) iterations; (iii) parameter

identification; and (iv) control constructs and conditions.

The power of NL makes it possible for PLOW to infer a

task structure that is not easily inferable from observations

alone but represents what the user intended. Furthermore,

the semantic information encoded in NL enables PLOW to

reliably identify objects in dynamic HTML files.

Another key aspect that makes PLOW more efficient is the

mixed-initiative interaction that dramatically reduces the

complexity of teaching a task by proactively initiating

execution for verification and asking timely questions to

solicit necessary information to build the task. In this

position paper, we briefly introduce and discuss the

challenges, innovations and lessons in developing the

PLOW system. Refer to [1, 2, 5] for detailed information.

PLOW ARCHITECTURE & INTERFACE

PLOW is an extension to TRIPS [4], a dialogue-based

collaborative problem solving system that has been applied

to many real world applications. The core components of

TRIPS include a speech recognition system, a robust

parsing system, an interpretation manager (IM), an

ontology manager (OM), and a surface generator. In

PLOW, TRIPS supports deep natural language

understanding and dialogue management.

Figure 1 shows a high-level view of the PLOW system. At

the center lies a CPS (Collaborative Problem Solving) agent

that computes the most likely intended intention in the

given problem-solving context (based on the interaction

with IM in TRIPS). CPS also coordinates and drives other

parts of the system to learn what a user intends to build as a

task and invoke execution when needed.

Figure 1: PLOW Architecture

George Ferguson
Proceedings of the CHI Workshop on End User Programming for the Web, Boston, MA, April, 2009.

 2

Figure 2: The PLOW Interface

While the core reasoning modules of PLOW are

domain/application-independent, PLOW focuses on tasks

that can be performed within a web browser. Figure 2

shows PLOW’s user interface. The main window on the left

is the Firefox browser instrumented so that PLOW can

monitor user actions and execute actions for learned tasks.

On the right is a GUI that summarizes a task under

construction, highlights steps in execution for verification,

and provides tools to manage learned tasks. A chat window

at the bottom shows speech interaction and the user can

switch between speech and keyboard anytime.

TEACHING WEB TASKS WITH PLAY-BY-PLAY

Primitive Actions and Dynamic Web Objects

Consider a case in which a user is teaching PLOW how to

find hotels near an address. At one step, a user would say,

“Put the city here” and type a city name into a text field

named “City”. Here, the observed action from the browser

instrumentation is an action that fills a text (e.g.,

“Pensacola”) into a text field. However, the result of

language understanding provides PLOW useful information

that can be used to generalize the observed action instance.

First, the user description gives a semantic concept for the

object in the current action (i.e., *CITY). The semantic

information is useful in generalizing the action. For

instance, if a full address was given earlier and the typed

city name matches a city part of the full address, PLOW can

encode their dependency relation into the current task.

Second, the semantic description helps PLOW to find

dynamic web objects in future execution. In PLOW, each

web page is logically represented by its DOM (Document

Object Model), a tree-structured object model of the screen

content, and the instrumentation accesses and manipulates

the underlying DOM nodes. In demonstration, from the

DOM tree structure of a web page, PLOW (i) finds a

reference node with a text that is closest to the semantic

concept of the action object or its ontological/linguistic

variation (e.g., town, municipality, etc.) and (ii) computes

the relation between the reference node and the node for the

object accessed in the observed action.

In execution, PLOW looks for a reference node based on

the method in (i) and finds the node for the object to be

acted upon with the relation computed in (ii). Therefore,

even when there is a web page format change, this approach

enables PLOW to find a node as long as there’s no

significant local change around the node in focus. Refer to

[2] for detail.

Task Hierarchy

PLOW uses simple heuristics to identify the beginning/end

of a sub task. Any statement that explicitly identifies a goal

(e.g., “Let me show you how …”) is seen as the beginning

of a new (sub) task. User’s explicit statement such as “I’m

done” or another goal statement indicates the end of the

current (sub) task. Our anecdotal experience is that users

easily get familiar with this intuitive teaching style.

Parameter Identification

Identifying parameters is challenging even for a simple task

and it is almost impossible with only a single observation

without special domain knowledge. When an object is used

in a task, the system should determine if it is a constant or a

variable. In the case of a variable, it also has to figure out

the relation between variables. Figure 3 shows how natural

language plays a critical role in PLOW’s parameter

identification, enabling it to identify parameters from a

play-by-play single demonstration. Furthermore, TRIPS’

reference resolution capability also identifies the relation

between parameters: e.g., after saying, “Select a check-in

date here”, if a user says “Put the date”, the reference

resolution considers both dates are equal.

Control Constructs

Conditionals

Conditionals have a basic structure of ‘if X, then do Y’,

optionally followed by ‘otherwise do Z’. However, the

action trace for conditionals includes only one action, either

Y or Z, based on the truth-value of the condition X. In

general, identifying X is very difficult, since the entire

Utterance

(Action)

Interpretation Key features

hotels !

output

- Bare plural

- Object of an

information producing

action “find”

Let me show you

how to find hotels

near an address

an address !

input

- Indefinite

- No decision action

Put hotels (Type

“hotels”)

Hotels !

constant

- Bare plural

- Identical to the typed

text in the action

Put the zipcode

(Type “32502”)

a zipcode !

related to the

address input

- Definite

- Zipcode is a role of an

address in Ontology

Figure 3: Interpretation of Noun Phrases

 3

Figure 4: Learning Iterative Steps

context of demonstration should be checked and reasoned

about. However, in the play-by-play demonstration, when a

user specifies a condition, PLOW can interpret correctly the

condition from language.

Iteration

The main difficulty in identifying iterative procedures from

a single example is that the action trace (a sequence of

actions) alone does not fully reveal the iterative structure.

For iteration, a system needs to identify these key aspects:

(i) the list to iterate over; (ii) what actions to take for each

element; (iii) how to add more list elements; and (iv) when

to stop. For a system to reason about these aspects on its

own, in addition to repetitive examples, full understanding

of the action context (beyond observed actions) and special

domain knowledge will be required (e.g., what and how

many list items were potentially available, which ones were

included in the observed actions, how and when web page

transition works, etc.). Furthermore, a user would not want

to demonstrate lengthy iterations. In PLOW, natural

language again plays a key role. As shown below, we

designed the system GUI and dialogue to guide a user

through the demonstration for iteration: mixed-initiative

interaction with proactive execution and simple queries

makes the process much easier and intuitive.

In Figure 4, a user is teaching PLOW how to find hotels

near an address. When the user highlights a list of results

(Figure 4a) and says, “Here is a list of results”, PLOW

infers that an iteration over elements in the list will follow.

Then, PLOW enters into an iteration-learning mode with

the goal of identifying the key aspects stated above. First,

by analyzing the DOM structure for the list object, PLOW

identifies individual elements of the list and then presents

the parsed list in a dedicated GUI window with each

element (essentially a portion of the original web page)

contained in a separate cell (Figure 4b). This GUI-based

approach lets the user quickly verify the list parsing result

and easily teach what to do for each element. Note that list

and table HTML objects that contain the desired list may

also be used for other purposes (e.g., formatting, inserting

ads, etc.), so it is fairly common that some irrelevant

information may appear to be part of the list; PLOW uses

clustering and similarity based techniques to weed out such

information.

After presenting the parsed list, PLOW waits for user’s

demonstration for an element. For instance, the user says,

“This is the hotel name”, and highlights the hotel name in

one of small cells in the GUI (Figure 4c). Given this

information, PLOW learns the extraction pattern and

proactively applies the rule to the rest of elements (Figure

4d). Note that a composite action (e.g., navigating to a page

from a link, extracting data from the new page and so on)

can be also defined for each element. If there is an error, the

user can notify PLOW with the problem by saying, “This is

wrong”, and show a new example. Then, PLOW learns a

new extraction pattern and reapplies it to all list elements

for further verification. This correction interaction may

continue until a comprehensive pattern is learned.

Next, the user teaches PLOW how to iterate over multiple

lists by introducing a special action (e.g., “Click the next

link for more results” – see Figure 4e). This helps PLOW to

recognize the user’s intention to repeat what he/she

demonstrated in the first list on other lists. Here, to identify

the duration of the iteration, PLOW asks for a termination

condition by saying, “When should I stop searching?” For

this query, it can understand a range of user responses such

as “Get two pages,” “Twenty items”, “Get all” and also

conditions based on information extracted for each element,

as in “Until the distance is greater than 2 miles”. In the

case of getting all results, the system also asks for how to

recognize the ending, and the user can tell and show what to

check (e.g., “When you don’t see the next link” or “When

you see the end sign”). For verification, PLOW executes the

learned iterative procedure until the termination condition is

satisfied and presents the results to the user using the

special GUI. The user can sort and/or filter the results with

certain conditions (e.g., “sort the results by distance”,

“keep the first three results”, etc.).

UTILIZING & IMPROVING TAUGHT WEB TASKS

Persistent and Sharable Tasks

After teaching a task, a user can save the task into a

persistent repository. Figure 5 shows the “Saved Tasks”

panel in the PLOW interface that shows a list of a user’s

private tasks. A pop-up menu is provided for task

Figure 5: Task Management

 4

management, and one of its capabilities is exporting a task

to a public repository for sharing the task with others. A

user can import shared tasks from the “Public Tasks” panel.

Task Invocation

Tasks in the private repository can be invoked through the

GUI (Figure 5) or in natural language (e.g., “Find me

hotels near an airport”). If the selected task requires input

parameters, PLOW asks for their values (e.g., “What is the

airport?”), and the user can provide parameter values using

the GUI or natural language. Users can invoke a task and

provide input parameters in a single utterance, e.g., “Find

me hotels near LAX” or “Find me hotels near an airport.

The airport is LAX.” Results can also be presented via the

GUI or in natural language. This NL-based invocation

capability allows users to use indirect channels, as well. For

example, we built an email agent that interprets an email

subject and body so that a user can invoke a task by sending

an email and receive the execution results as a reply.

Here, given a user request, PLOW finds a matching task

with its natural language understanding and ontological

reasoning capabilities. A user does not necessarily have to

use the same task description used in teaching. “Get me

restaurants in a city” or “Look for eatery in a town” would

select a task to find restaurants in a city.

Reusing Tasks

In teaching a task, existing tasks can be included as

subtasks. When a user gives the description of a new step,

PLOW checks if the step matches one of the known tasks;

if a matching task is found, it is inserted as a subtask with

parameter binding between the current task and the reused

task. For instance, in one teaching session, a user has taught

how to book a flight and wants to reserve a hotel. For a step

introduced by saying, “Book a hotel for the arrival date”,

PLOW will check for a matching task for the step. If the

user already has a task to reserve a hotel with a check-in

date and a number of nights, PLOW will mark the step as

reusing another task so that, in execution, the reused task

can be called. PLOW will also infer that the arrival date

should be bound to the check-in date and consider the

number of nights as a new input parameter if there is no

related object in the current task.

Editing Tasks

To fix obsolete tasks (e.g., to update them after web site

changes) or to improve/simplify a task, PLOW lets a user

add or delete steps. To reach a step to edit, PLOW supports

(i) step-by-step execution (the default mode for

verification) and (ii) partial execution up to a certain step.

Figure 6 shows a GUI snapshot in which highlighted steps

are the ones to be executed next. One can invoke the two

modes by saying, “Let’s practice step by step” and “Execute

the task up to this step” (after clicking a step in the GUI)

respectively. Setting up the action context (i.e., browser

setting, extracted objects, available parameter values, etc.)

with real execution is critical since the context is used in

PLOW’s reasoning for the action to edit.

Improving Tasks from Execution Failure

Execution failure from unnecessary or missing steps can be

corrected by task editing. Major web site redesigns will

sometimes trigger web object identification failures. When

PLOW detects an execution error, it stops at the failed

action, notifies the user and initiates a debugging process by

asking for a new example from which it learns an additional

extraction pattern.

EVALUATION

In 2006 and 2007, PLOW was evaluated along with other

task building systems by an independent agency as a part of

DARPA CALO project [6]. PLOW did very well in both

tests, receiving a grade of 2.82 (2006) and 3.27 (2007) out

of 4 (exceeding the project goals in both cases).

Furthermore, PLOW was the system of choice among the

subjects, and anecdotal comments from the subjects in 2007

were that PLOW’s user convenience has significantly

improved with more GUI/NL feedback in its interface.

CONCLUSION WITH BOOK CHAPTER SUGGESTION

PLOW demonstrates that NL is a powerful intuitive tool for

end-users to build web tasks with significant complexity

using only a single demonstration and the mixed-initiative

interaction also makes the task building process much more

convenient and intuitive. For the proposed book, we plan to

provide more detailed description for PLOW, focusing on

the NL aspects and the use of a GUI that provides intuitive

views of the task structure during learning.

REFERENCES
1. James Allen et al., PLOW: A Collaborative Task Learning

Agent, Proceedings of the AAAI Conference on Artificial

Intelligence: Special Track on Integrated Intelligence, 2007

2. Nathanael Chambers et al., Using Semantics to Identify Web

Objects, Proceedings of the National Conference on Artificial

Intelligence: Special Track on AI and the Web, 2006

3. Allen Cypher, editor. Watch what I do: Programming by

demonstration. MIT Press, Cambridge, MA, 1993

4. George Ferguson and James Allen, TRIPS: an integrated

intelligent problem-solving assistant, Proceedings of the

National Conference on Artificial Intelligence, 1998

5. Hyuckchul Jung et al., Utilizing Natural Language for One-

Shot Task Learning, Journal of Logic and Computation, doi:

0.1093/logcom/exm071, Oxford University Press, 2007

6. DARPA CALO project: http://caloproject.sri.com

 (a) step-by-step (b) partial execution

Figure 6: Current Task Execution Status during Editing

