
Chapter 1: Analyzing Algorithms and

Problems

JAVA Conventions for Describing

Algorithms

Since algorithms are not programs, you can

use pretty much any modern computer

language to describe your algorithms. We

choose to use JAVA-like notation since our

introduction courses are taught in JAVA.

1

JAVA Conventions

Here is the list of conventions that will be

used.

• Use either braces (“{” and “}”) or

indentation to indicate blocks.

• Omission of keywords, visibility control

names (public, private, and protected)

and static.

• Class name qualifiers are omitted from

method calls.

• Logical operators: ==, 6=, ≤, ≥, <, >,
&&, and ||

• Mathematical operators: +, ∗, −, /, ++,

−−, + =, ∗ =, − =, and / =

• Control strings: if–else, for, while,

return, and break.

2

Mathematical Background

Set notation

• ∈ for “is an element of” and ⊆ for “is a

subset of”

• Set operations: ¯(complement), ∩
(intersection), ∪ (union), \ (subtraction)

Binomial coefficients, C(n, k) and
(

n
k

)

Here n and k are nonnegative integers such

that 0 ≤ k ≤ n. Both C(n, k) and
(

n
k

)

denote

the number of ways to select k things from n

things. For all n, C(n,0) = 1.

3

Cross Products and Binary Relations

• For sets A and B, A×B is the set

{(x, y) | x ∈ A ∧ y ∈ B}.
• A simple cross product is one of the form

A×A. A binary relation is a subset of a

simple Cartesian product. A binary

relation R ⊆ A×A is

- reflexive if for all x in A, (x, x) ∈ A,

- symmetric if for all x and y in A,

(x, y) ∈ A if and only if (y, x),

- antisymmetric if for all x and y in A,

at most one of (x, y) and (y, x) is a

member of A

- transitive if for all x, y, and z in A,

(x, y) ∈ A ∧ (y, z) ∈ A implies (x, z) ∈ A.

4

Mathematical Functions

• The ceiling function: dxe is the smallest

integer not smaller than x.

• The floor function: bxc is the largest

integer not exceeding x.

• For all positive reals x and b, logb x is the

logarithm of x base x, that is, the real y

such that by = x.

Use lg to denote log2 and ln to denote

loge.

Lemma 1.1 (page 15) presents some

fundamental properties of logarithms.

5

Summations and Series

• ∑n
i=1 i =

n(n+1)
2 .

• ∑n
i=1 i

2 = n(n+1)(2n+1)
6 .

• ∑n
i=1 i

3 = n2(n+1)2

4 .

• For all k ≥ 0,
∑n

i=1 i
k ≈ 1

k+1n
k+1.

• Geometric Series For all r 6= 1,
∑n

i=0 r
i ≈ rk+1−1

r−1 .

• Harmonic Series ∑n
i=1

1
i ≈ ln(n) + γ,

where γ = .577 is called Euler’s constant.

• Arithmetic Geometric Series
∑n

i=1 i2
i = (n− 1)2n+1 +2.

• Fibonacci Numbers F0 = 0, F1 = 1,

for all k ≥ 2, Fn = Fn−1 + Fn−2.

6

Analysis Of Algorithms

Criteria for selecting algorithms

1. Correctness

2. Amount of work done

3. Amount of space used

4. Simplicity, clarity

5. Optimality

7

Correctness

Proving correctness is dreadful for large

algorithms. A strategy that can be used is:

divide the algorithm into smaller pieces, and

then clarify what the preconditions and

postconditions are and prove correct

assuming everything else is correct.

8

Amount of work done

Rather than counting the total number of

instructions executed, we’ll focus on a set of

key instructions and count how many times

they are executed. Use asymptotic notation

and pay attention only to the largest growing

factor in the formula of the running time.

Two major types of analysis: worst-case

analysis and average-case analysis

• Worst-case analysis: For each n ≥ 1, let

Dn the set of all instances of size n. For

each input I, let t(I) be the number of

fundamental operations executed on input

I. Then, the worst-case running time is

given by the function W , defined for all

n ≥ 1, by:

W (n) = max{t(I) | I ∈ Dn}
9

• Average-case analysis: For each n ≥ 1 and

I ∈ Dn, let P (I) be the probability that

input I is selected when the input size is

n. Then, the average-case running time is

given by the function A, defined for all

n ≥ 1, by:

A(n) =
∑

I∈Dn

P (I)t(I).

Note: According to Dr. Sten Odenwald

(http://itss.raytheon.com/cafe/qadir/q1797.html)

the number of atoms in the universe is

3× 1078. The lg of this is 260.69.... So, a

264-bit address space will be “more than

sufficient” to do computation for our

universe. 264 bits are only 33 bytes. So, it is

OK to assume that the indices require no

more than a constant number of bits for

representation.

10

Amount of space used

The amount of space used can be measured

similarly. Consideration of this efficiency is

often important.

Simplicity, clarity

Sometimes, complicated and long algorithms

can be simplified and shortened by the use of

recursive calls.

Optimality

For some algorithms, you can argue that they

are the “best” in terms of either amount of

time used or amount of space used. There

are also problems for which you cannot hope

to have efficient algorithms.

11

Asymptotic Growth Rates of Functions

Consider functions from the nonnegative

numbers to the nonnegative reals.

For such a function g, we think of the

following five function classes consisting of

functions whose growth rates are comparable

to that of g:

• O(g): f ∈ O(g) if and only if

limn→∞ f(n)
g(n)

<∞.

• o(g): f ∈ o(g) if and only if

limn→∞ f(n)
g(n)

= 0.

• Ω(g): f ∈ Ω(g) if and only if

limn→∞ f(n)
g(n)

> 0.

• ω(g): f ∈ ω(g) if and only if

limn→∞ f(n)
g(n)

=∞.

• Θ(f): Θ(f) = Ω(g) ∩O(g). Alternatively,
f ∈ Θ(g) if and only if there exists a

constant c > 0 such that limn→∞ f(n)
g(n)

= c.

12

An Example: Searching in a Sorted Array

Input: An array E of n entries, indexed in

the range, first . . . last, and a key K

Output: An integer k such that E[k] = K if

such a k exists and −1 otherwise

Let n be the size of the range. n is equal to

max{0, last− first + 1}.

Measure the amount of time used by counting

the number of comparisons against K.

13

Approach 1: Sequential Search

Examine all the entries.

The amount of time used is n because each

entry is examined once.

14

Approach 2: Jumping Search

Examine every jth entry, i.e., the entries at

positions first +mj − 1 for 1 ≤ m ≤ bn/jc.
If K is found the search is over.

As soon as the examined key exceeds K, we

know that K should be between the current

key and the key examined the last time. So,

execute the brute-force search in that region.

The amount of time used is Θ((j − 1) + n/j).

This is minimized when j = Θ(
√
n). So, set

j = d√ne. Then the time function is Θ(
√
n).

15

Approach 3: Binary Search

Examine the middle point. If that entry is

equal to K, the search is over. Otherwise,

pick one of the two regions (before or after

the middle point) that may contain K (the

other can’t contain K), and repeat the

process.

The number of examinations is at most lg(n)

because the size of the range the next time

around is at most a half of the current range.

So, the amount of time used is Θ(lgn).

16

Optimality of Binary Search

We can assume that one examination gives

with only three possible types of information:

• the entry is equal to K,

• the entry is greater than K,

• the entry is less than K.

Assume there is an algorithm A that runs in

time T (n) ∈ o(logn). Let n be such that

2T (n) < n. We’ll consider the behavior of A

on inputs of size n not containing the key K

that is searched for.

The behavior can be viewed as a binary tree

having depth T (n).

17

p

q1

r1 r2 r3 r4

q2

−

−−

+

++

18

Let v be an arbitrary leaf and π be the

downward path from the root to v. The path

represents the sequence of outcomes

occurring during a single execution of A.

Let s be the largest examination point along

the path for which the key examined is less

than K. If there is no such point, let s = −1.

Let t be the smallest examination point along

the path for which the key examined is

greater than K. If there is no such point, let

t = n.

19

"Not Found"

a

b

c

d

s=max{a,b}

t=min{c,d}
+

+

−

−

20

We can assume that s < t. Otherwise, the

path will never be followed.

Also, we can assume that s+1 ≥ t.

Otherwise, the range [s+1, t− 1] is never

examined, and thus, we cannot be sure that

the key does not exist.

Thus, s+1 = t. This means that at each leaf

A discovers that up to a point the entries

are negative and beyond that point the

entries are positive.

21

The key K corresponds to a unique leaf

because of the properties of s and t. Each

value between −1 and n− 1 is possible for s.

So, there are n+1 possibilities for s.

However, the number of leaves in this tree is

2T (n) < n, so the algorithm is able to

identify not more than n such points.

This means that A is flawed.

22

Questions

1. As an alternative to binary search, one

can think of searching by examining the

entries at three places each time, thereby

reducing the size of the array by a factor

of 1/4 instead of 1/2. Is this alternative

better or worse?

2. As an alternative to binary search, one

can think of searching by examining at

(dlgne − 1) places in each round thereby

reducing the size of the array by a factor

of dlgne. What is the asymptotic order of

the number of examinations made?

23

