
Homework 2 Due Thursday Sept 23

• CLRS 6.5-8 (algorithm for merging lists)

• CLRS 7-5 (median of 3 partition)

• CLRS 7-6 (fuzzy sorting of intevals)

1



Chapter 8: Sorting in Linear Time

Lower Bound on Sorting

For all the sorting algorithms we have seen so

far the worst-case running time is Ω(n logn).

Heapsort n logn

Insertion Sort n2

Quicksort n2

Mergesort n logn
Randomized Quicksort n logn expected

This raises the question of whether there is a

sorting algorithm having worst-case running

time of o(n logn).

2



A Formal Statement of the Question

Sorting can be viewed as the process of

determining the permutation that

restores the order of input numbers.

We will consider only comparison sorts,

algorithms that sort numbers based only on

comparisons between input elements. The

sorting methods we have seen so far are all

comparison sorts. We ask: how many

comparisons must a comparison sort

execute to sort an array of n elements?

3



Lower Bound on Comparison Sorts

We think of two outcomes in a comparison of

two numbers a and b: a ≤ b and a > b. (We

may choose a < b and a ≥ b.)

For which pair a comparison is done depends

only on the outcomes of the comparisons

that have been made so far. So, for each

n, the action of a comparison sort on an

n-element array can be viewed as a binary

tree such that

• each node corresponds to a comparison

and

• each leaf corresponds to the permutation

that the algorithm outputs.

We call such a tree binary (decision) tree

4



An Example: a decision for sorting 4 things

1:4

2:3

1:2

3:4

1:3

2:4

3:4

2:42:4

1:4

1:4 3:4

1234

1423 4123

1324

1342

1243

left:
right:

1432 4132

3124

3142

3412 4312

5



Lower Bound Argument

In a binary tree each input is associated with

a downward path from the root to a leaf.

On an input array of size n, there are n!

possible outputs.

If the tree has depth d, the number of leaves

is at most 2d. Since the tree must possess n!

distinct outputs, 2d ≥ n!. This gives

d ≥ dlgn!e = Ω(n lgn).

Thus we have proven:

Theorem A No comparison sort has the

worst-case running time of o(n lgn).

6



Linear Time Sorting Algorithms

Linear time sorting algorithms exist in certain

situations.

1. Counting-Sort

This is an algorithm that is useful when there

is a function f(n) = O(n) such that

• for each n and for each input array A

having size n, the keys are taken from

{1, . . . , f(n)}.

7



The idea behind Counting-Sort

After sorting has been completed the array

should look like: a segment of 1’s, a segment

of 2’s, a segment of 3’s, etc., where each

segment can be empty.

So, find out for each key i, 1 ≤ i ≤ f(n), the

location si .. ti of the segment of i. For each

i, let di the number of occurrences of

numbers ≤ i. Then, for all i, 1 ≤ i ≤ f(n),

si = 1 +
∑i−1

j=1 dj and ti =
∑i

j=1 dj.

Suppose that these quantities have been

computed. Then sorting can be done by

scanning the input array backward and

putting the jth occurrence of the key i to

position ti − j + 1.

8



The Algorithm

Counting-Sort(A, n, k)

1: � k = f(n)

2: for i← 1 to k do d[i]← 0

3: for i← 1 to n do

4: d[A[i]]← d[A[i]] + 1

5: � Add 1 to the no. of occurrences of key i

6: c[1] = d[1]

7: for i← 2 to k do

8: c[i]← c[i− 1] + d[i]

9: � Compute ti

10: for i← n downto 1 do

11: { B[c[A[i]]]← A[i]

12: c[A[i]]← c[A[i]]− 1 }

13: � Decrement the count by 1

14: for i← 1 to n do

15: A[i]← B[i]

9



An Example

4 53 72 861

the cumulative counts
3 6 7 8 9 12 14 16

the output array

the input
4 67222 11 88665 71 3

1512987 143 6
4 7 7222 1 8 166

8

35 1 6

151412982 6 7
5 4 7 722

1

1 8 6

8

12 6 3 6

2 6 7 8 9 14 1511
8

81 6

10



An Example (cont’d)

146 9 142 117 8
7 722 3 4 61 6

81 6

5

8

12

6 7 8 9 112 13 14
1 6 8 87

5 6 61 32 2 274 1

13871 96 11 14
2 2 274 6

81 6 8

1

7

3

1

65

81 5 9 137 1411
2 2 745 1

1 6 87

3

1 82

66

11



Stable Sort

A stable sort is a sorting algorithm that

preserves the order of elements having

the same key.

Counting-Sort is stable.

12



2. Radix-Sort

Radix-Sort is a sorting algorithm that is

useful when there is a constant d such that

all the keys are d digit numbers.

To execute Radix-Sort, for p = 1 toward d

sort the numbers with respect to the pth digit

from the right using any linear-time stable

sort.

Radix-Sort is a stable sort.

13



An Example

7650
4721
6161
6732
5522

5336
7235
4265
1145

1233

4721
5522
6732

4536

7235

0774 4536
1145
7650
6161
4265

1233

1233
1145
7650
4721
6732
4265
7235
6161

5336

5336
4536
5522 0774

1145
6161
1233
7235
4265
5336
5522
4536
7650
6732
4721
0774

0774

0774
1145
1233
4265
4536
4721
5336
5522
6161
6732
7235
7650

input digit 1 digit 2 digit 4digit 3

14



What is the running time of

Radix-Sort?

15



What is the running time of

Radix-Sort?
Since a linear-time sorting

algorithm is used d times and

d is a constant, the running

time of Radix-Sort is linear.

16



Proof of Correctness

We prove that for all p, 0 ≤ p ≤ d, when the

sorting with respect to the pth has been

completed,

• for each pair of strings (a, b), if a < b and

if a and b have the same prefix of length

d− p, then a precedes b.

We prove this by induction on p. For the base

case, let p = 0. The claim certain holds

because two numbers having the same d-digit

prefix are equal to each other.

17



Induction Step

Let 1 ≤ p ≤ d. Suppose that the claim holds

for all smaller values of p. Let a and b be two

strings such that a < b and such that a and b

have an identical length-(d− p) prefix.

Suppose that a and b have an identical p-th

digit. Then a and b have an identical

length-(d− p + 1) prefix. So, by our induction

hypothesis, by the end of the previous round

a has been moved before b. Since the sorting

algorithm for digit-wise sorting is stable, a

will be placed before b in this round. Thus,

the claim holds.

Suppose that the p-th digit of a is different

from that of b. Then the p-th digit of a is

smaller than that of b. So, the digit-wise

sorting algorithm will certainly move a before

b. Thus, the claim holds.

18



Induction Step

S
A

E

G

H

I

F

2

B

A

C

B

D

C

S

D

J

E

3

F

S

G

4

H

1

I

K

J
Q K

S

L

L

M

P

N

U

O

T

QS
R

R

S

O P

M

T

N

U

before after

19



3. Bucket-Sort

This is a sorting algorithm that is effective

when the numbers are taken from the interval

U = [0,1).

To sort n input numbers, Bucket-Sort

1. partitions U into n non-overlapping

intervals, called buckets,

2. puts each input number into its bucket,

3. sorts each bucket using a simple

algorithm, e.g. Insertion-Sort, and then

4. concatenates the sorted lists.

20



What is the worst-case

running time of Bucket-Sort?

21



What is the worst-case

running time of Bucket-Sort?

Θ(n2).

The worst cases are when all

the numbers are in the same

bucket.

But I expect on average the

numbers are evenly

distributed.

22



The Expected Running Time of

Bucket-Sort

Assume that the keys are subject to the

uniform distribution.

For each i, 1 ≤ i ≤ n, let ai be the number of

elements in the i-th bucket. Since

Insertion-Sort has a quadratic running time,

the expected running time is:

O(n) +
n∑

i=1

O(E[a2
i ]).

This is equal to O(
∑n

i=1 E[a2
i ]). Since the keys

are chosen under the uniform distribution, for

all i and j, 1 ≤ i < j ≤ n, the distribution of ai

is equal to that of aj. So, the expected

running time is equal to O(nE[a2
1]). We will

prove that E[a2
1] = 2− 1/n, which implies that

Bucket-Sort has O(n) expected running time.

23



For each i, 1 ≤ i ≤ n, let Xi be the random

variable whose value is 1 if the ith element

falls in the first bucket and is 0 otherwise.

Then, for all i, 1 ≤ i ≤ n, the probability that

Xi = 1 is 1/n.

It holds that a1 =
∑n

i=1 Xi so

a2
1 =

n∑

i=1

X2
i +

∑

1≤i,j≤n,i 6=j

XiXj.

Thus,

E[a2
1] =

n∑

i=1

E[X2
i ] +

∑

1≤i,j≤n,i 6=j

E[XiXj].

For all i, 1 ≤ i ≤ n,

E[X2
i ] = 12(1/n) + 02(1− 1/n) = 1/n,

and, for all i and j, 1 ≤ i < j ≤ n,

E[XiXj] = 1(1/n)2 + 0(1− (1/n)2) = 1/n2.

So,

E[a2
1] = n(1/n) + n(n− 1)(1/n2) = 2− 1/n.

24


