
Chapter 9: Medians and Order Statistics

The selection problem is the problem of

computing, given a set A of n distinct

numbers and a number i, 1 ≤ i ≤ n, the ithh

order statistics (i.e., the ith smallest

number) of A.

We will consider some special cases of the

order statistics problem:

• the minimum, i.e. the first,

• the maximum, i.e. the last, and

• the median, i.e. the “halfway point.”

Medians occur at i = b(n + 1)/2c and

i = d(n + 1)/2e. If n is odd, the median is

unique, and if n is even, there are two

medians.

1

How many comparisons are

necessary and sufficient for

computing both the minimum

and the maximum?

2

Well, to compute the

maximum n− 1 comparisons

are necessary and sufficient.

The same is true for the

minimum. So, the number

should be 2n− 2 for

computing both.

Actually you can do better by

processing the input numbers

in pairs

3

Simultaneous computation of max and min

can be done in 3(n−3)
2 steps

Idea: Maintain the variables min and max .

Process the n numbers in pairs.

For the first pair, set min to the smaller and

max to the other. After that, for each new

pair, compare the smaller with min and the

larger with max .

4

The Algorithm

MAX-AND-MIN(A, n)

1: max ← A[n]; min ← A[n]

2: for i← 1 to bn/2c do

3: if A[2i− 1] ≥ A[2i] then

4: { if A[2i− 1] > max then

5: max ← A[2i− 1]

6: if A[2i] < min then

7: min ← A[2i] }

8: else { if A[2i] > max then

9: max ← A[2i]

10: if A[2i− 1] < min then

11: min ← A[2i− 1] }

12: return max and min

5

Selection

Selection is a trivial problem if the input

numbers are sorted. If we use a sorting

algorithm having O(n lgn) worst-case running

time, then the selection problem can be

solved in in O(n lgn) time.

But using a sorting is more like using a

cannon to shoot a fly since only one number

needs to computed.

6

O(n) expected-time selection using the

randomized partition

Idea: In order to find the k-th order

statistics in a region of size n, use the

randomized partition to split the region into

two subarrays. Let s− 1 and n− s be the size

of the left subarray and the size of the right

subarray. If k = s, the pivot is the key that’s

looked for. If k ≤ s− 1, look for the k-th

element in the left subarray. Otherwise,

look for the (k − s)-th one in the right

subarray

7

Analysis

Let T (n) be the expected running time T (n).

For each i, 0 ≤ i ≤ n− 1, the size of the left

subarray is equal to i with probability 1/n.

Assuming that the larger interval is taken, for

some α > 0, T (n) is at most

αn +
1

n

∑

1≤k≤n−1,k 6=s

T (max(k, n− k)).

This is at most

αn +
2

n







n−1
∑

k=dn/2e

T (k)






.

8

Analysis (cont’d)

Assume that there is c > 0 such that

T (k) ≤ ck for all k < n.

Then the sum
∑n−1

k=dn/2e
T (k) is at most

∑n−1
k=dn/2e

ck. This is at most

n−1
∑

k=1

ck −
dn/2e−1

∑

k=1

ck

=
cn(n− 1)

2
−

c

2

(⌈

n

2

⌉

− 1

) ⌈

n

2

⌉

≤
cn(n− 1)

2
−

c

2

(

n

2
− 1

)

n

2

= cn

(

3n

8
−

1

4

)

.

9

Analysis (cont’d)

So, if c is sufficiently large,

T (n) ≤ αn + c

(

3

4
n−

1

2

)

.

By making the constant c at most 4α, we

have that the O(n) is at most cn
4 . Then,

T (n) ≤ cn.

10

Selection in worst-case linear time

1. Divide the elements into groups of five,

where the last group may have less than

five elements in case when the input array

size is not a multiple of five.

2. Compute the median of each group (ties

can be broken arbitrarily).

3. Make a recursive call to calculate the

median of the medians. Set x to the

median.

4. Use x as the pivot and partition.

5. If the pivot is not the order statistics that

is searched for, recurse on the subarray

that contains it.

Use a bound B to stop recursion: If the size

of the array is less than or equal to B then

use brute-force search to find the desired

order statics.

11

......

...

...

... X

may not exist

n/5 /2

12

Analysis

Assume that the input numbers are pairwise

distinct. We claim that there is a constant α

such that, for all n ≥ 1, T (n), the running

time of this method, is at most αn.

As long as B is set to a constant, we can

adjust a value of α so that the claim holds for

all n ≤ B.

13

Analysis (cont’d)

Let n > B. The number of medians is dn5e.

So, it is at most ≤ n
5 + 1 and is at least n

5.

The number of medians less than x is at least
n
10 − 2. So, the size of the smaller subarray is

at least 3(n
10 − 2) = 3n

10 − 6. Thus, the size of

the larger subarray is at most 7n
10 + 6.

Let β be a constant such that the running

time for the other things requires at most βn.

Then the total running time is

βn + α

(

n

5
+ 1 +

7n

10
+ 6

)

.

This is

βn +
9α

10
n + 7α

αn + βn−
1α

10
n + 7α

which is ≤ αn if

βn−
1α

10
n + 7α ≤ 0

14

βn−
1α

10
n + 7α ≤ 0

−10βn + (n− 70)α ≥ 0

α ≥ 10β
n

n− 70

Let B = 140, choose α ≥ 20β to show

T (n) ≤ αn.

