
Gene Kim
CSC 191/291 Lisp Tutorial

About this Document
This document was written to accompany an in-person Lisp tutorial. Therefore, the information
on this document alone is not likely to be sufficient to get a good understanding of Lisp.
However, the functions and operators that are listed here are a good starting point, so you may
look up specifications and examples of usage for those functions in the Common Lisp
HyperSpec (CLHS) to get an understanding of their usage (simple google “clhs [function/macro
name]”).

Getting Started
Note on Common Lisp Implementations
We will be using SBCL since that is the de facto standard for open source CL work (and most of
my research work). However, in this class, we won’t be using many (if any) features that are
specific to common lisp implementations so experience in any common lisp implementation will
transfer well.

IDE/Editor
It is not important for this class to have an extensive IDE since we will be working on small
coding projects. However, for your sake, it is important that you use an editor that has syntax
highlighting, lisp indentation, and parentheses highlighting. The most important being
parentheses highlighting. This will save a lot of time during programming since Lisp code can
build up many parentheses that are semantically significant. Therefore, highlighting can greatly
help with checking that the parentheses open and close in the correct places.

Recommended Environments:

- Emacs (with or without SLIME)
Lisp and emacs are closely related so there’s a lot of support for Lisp in the emacs

environment. SLIME is an extension to emacs that adds additional support. If you’re someone
who likes a lot of language-related functionality in the editor or plan to use Lisp after this class
the time investment of installing and learning SLIME may be worthwhile.

- Vim
Though there’s less support for Lisp than emacs, vim recognizes the syntax, indentation,

and parentheses. Good choice if you’re already comfortable with vim.
- Notepad++?

If you really don’t like any of the other options (I admit those editors may have fairly
steep learning curves), this will work since it supports syntax and parenthetical
highlighting.

Interacting with the REPL

The REPL (read-eval-print-loop) allows you to run code dynamically (run one command at a
time). Lisp is an interpreted language so it doesn’t need to be compiled (though it can be). To
start the REPL, from the department servers type the appropriate command sbcl . To exit type
(exit) or ctrl-d .

To load/run a file (like your homework file) type (load “filename”) .

Local Variables/Functions
Defining variables locally is important since the scoping of variables and functions in Lisp are
global by default. The scopes for variables and functions stated with explicit operators.

Variables
Local variables are defined using let and let*.

let evaluations are all performed in parallel, thus each definition must be independent of one
another.

let* evaluates each statement in order so that expressions can use variables defined previously.

Functions
Local functions are defined using flet and labels.
The syntax for these operators are analogous to let and let*, extended to functions, so I
recommend getting comfortable with those operators before trying these out.

flet evaluates the functions in parallel and the scopes for the definition are only in the body (after
the function definitions).

labels has the function scopes encompassing the function definitions so that the local functions
can call each other and themselves for recursive processes.

Functional Operations
There are some paradigms/operations in functional programming that are important for you to
know when programming in a language like Lisp. Getting comfortable with these will make your
life a lot easier since they simplify many problems.

Map (i.e. mapcar)
A map takes a function with one argument and a list, then performs the function on each
element of the list and returns the result. This is a very common operation (if you think about
problems in a functional mindset) which when combined with the next operation that we’ll
describe can simplify many complex problems into simple abstractions.

In Lisp, this is done with mapcar. (mapcar #’fn lst) => mapped lst. For example:
(mapcar #’not ‘(t nil nil t nil)) => (nil t t nil t)

The Common Lisp implementation of mapcar can also take multiple lists as arguments and take
the elements of each together as separate arguments of the functions.

(mapcar #’+ ‘(1 2 3) ‘(4 5 6)) => ‘(5 7 9)

Reduce/Fold (i.e. reduce)
A reduce takes a function with two arguments and a list. It applies the function to the
accumulated value (can specify an initial value or by default uses the first two elements for
accumulation and next value) and the next value in the list and sets that as the new
accumulated value. Returns accumulation at the end.

(reduce #’list ‘(1 2 3 4)) => (((1 2) 3) 4)
(reduce #’list ‘(1 2 3 4) :initial-value ‘()) => ((((() 1) 2) 3) 4)
(reduce #’* ‘(1 2 3 4 5)) => 120

Filter (remove-if remove-if-not)
Takes a function with one parameter returning t or nil and a list. Returns the list with only
elements that return t for the function.

(remove-if-not #’even-p ‘(1 2 3 4)) => ‘(1 3)

Conditionals
There is the classic if statement in Lisp, but it doesn’t have support for layering else ifs for many
levels as in most procedural languages. Alternatively, Lisp has the cond (conditional) which
allows you to list a series of conditions followed by corresponding executions. For if statements
without an else branch, Lisp has when and unless. when is equivalent to if without supporting an
else branch and unless is equivalent to (when (not …)).

Evaluating Lisp/Function
There are three main functions for evaluating lisp functions or code: eval, funcall, and apply.

eval interprets its argument as lisp code and runs it.

(e.g. (eval ‘(+ 1 2 3)) => 6)
funcall takes a function followed by its arguments (one-by-one) as arguments

(e.g. (funcall #’+ 1 2 3) => 6)
apply similar to funcall but takes the arguments as a list. (There are other subtleties, but likely
not important for your work here).

(e.g. (apply #’+ ‘(1 2 3)) => 6)

Type Tests
Types can be checked with a variety of type predicates. A full(?) list can be found
https://www.gnu.org/software/emacs/manual/html_node/elisp/Type-Predicates.html. They are
generally suffixed with “p” to indicate a type predicate, and sometimes have negated varieties
that a prefixed with “n” (short for not).

The most common ones are:

atom - is it an atom (i.e. not a non-empty list)
listp - is it a list (including nil)
consp - is it a cons cell (i.e. listp without nil)
null - is it null (i.e. nil)
symbolp - atom that isn’t an integer, string, or other special type
numberp - is it a number
integerp
floatp
rationalp

Equality
Lisp has several different equality predicates. They vary on how closely they follow the
computer representation of the value vs the human semantic value. For details see
https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node74.html. In most cases the most intuitive
equality predicate is equal.

Equality predicates in increasing complexity

eq - only the same instances
eql - compares integer/character semantics
equal - compares strings and lists semantically
equalp - compares between number types (integer and float) as others

Lisp Weirdness
Quotes
Quoted symbols will be interpreted as symbols directly, otherwise will be interpreted as some
value. If it’s a number or a string, this will feel normal. But if put a symbol somewhere without a
quote, Lisp will try to interpret it as a variable, a parameter, or a function.

Pipes
Symbols are by default uppercase only (case-insensitive). Therefore, to specify case-sensitive
symbols, use pipes (e.g. ‘|Hi There|). As you can see, it also allows spaces and other such
characters that normally are not interpreted as a part of a symbol.

Characters

https://www.gnu.org/software/emacs/manual/html_node/elisp/Type-Predicates.html
https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node74.html

Lisp specifies characters with #\. So to specify a character, it must be prefixed as such.
Otherwise, it will be interpreted directly as a symbol.

Testing
I highly recommend looking at the link on my site (cs.rochester.edu/~gkim21/cs291) to the
Practical Common Lisp guide to testing in Lisp. It will help you structure your tests transparently
and informatively.

Debugging
Having trouble printing big lists on a single line?
Try turning off the pretty printer: (setf *print-pretty* nil).
Still not working? Try increasing the margin: (setf *print-right-margin* 10000)

When a program crashes:

- check the backtrace with: backtrace
- go up and down the stack with: up/down
- check the local variables: list-locals (you may need to first go down the stack to get to

the code you wrote)

Practice Problems
If you have not used Lisp before, the homework problems are likely too difficult of a starting
point for getting started in Lisp. I recommend trying to solve the following problems using
recursion and higher-order functions (map/reduce/filter) to get comfortable with Lisp before
starting the homework problems.

- Count list length without length predicate recursively
- Index a list recursively [‘(a b c) => ‘((0 a) (1 b) (2 c))]
- Implement map
- Implement reduce
- All elements in list are true (not nil)
- Drop nth element in a list
- Depth-first search of a tree without non-terminal labels. The tree is represented as a list

structure. Each non-terminal node is a list and a terminal node is a symbol.
Ex. ‘((a b) c (d (e f))) -- (perhaps return the pre-ordering of elements to check it works)

Note from Gene:
If you’ve tried these problems and want to see other plausible solutions I came up with, contact
me by email (with your solutions attached) and I can send you what I’ve tried. I’m making it hard
for you guys to get the solutions so that you actually try to solve them on your own before
seeing solutions!

