
A Format String Checker for Java

Konstantin Weitz
University of Washington, USA

weitzkon@cs.uw.edu

Siwakorn Srisakaokul
University of Washington, USA

ping128@cs.uw.edu
Gene Kim

University of Washington, USA
genelkim@cs.uw.edu

Michael D. Ernst
University of Washington, USA

mernst@cs.uw.edu

ABSTRACT
Java supports format strings, but their use is error prone
because: Java’s type system does not find any but the most
trivial mistakes, Java’s format methods fail silently, and for-
mat methods are often executed infrequently.

This paper presents the Format String Checker that is
based on the format string type system presented in [3].
The Format String Checker guarantees that calls to Java’s
Formatter API will not throw exceptions.

We evaluate the Format String Checker on 6 large and
well-maintained open-source projects. Format string bugs
are common in practice (we found 104 bugs), and the an-
notation burden on the user of our type system is low (on
average, for every bug found, only 1.0 annotations need to
be written).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Reliability ; D.3.3 [Programming Languages]:
Language Constructs and Features—Data types and struc-
tures

General Terms
Experimentation, Languages, Reliability, Verification

Keywords
Format string, printf, type system, static analysis

1. INTRODUCTION
Format strings provide a convenient and easy to interna-

tionalize way to communicate text to the user. Java pro-
vides format string functionality with format methods such
as System.out.printf and String.format.

Unfortunately, incorrect usage of format methods are fre-
quent and hard to detect because:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21–25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

1public class Main {
2public static void main(String[] args) {
3System.out.printf("%s", "Hello");
4System.out.printf("%d", "World");
5System.out.printf("%s");
6System.out.printf("%s", "Hello", "World");
7System.out.printf("%y", 7);
8
9if (args.length >= 1) {
10String f = args[0];
11if (f == "%d") {
12System.out.printf(f, 7);
13System.out.printf(f, 7.2);
14}
15}
16}
17}

Listing 1: Example program Main.java that
illustrates the use of the Format String Checker.

• Java’s type system does not find any but the most
trivial mistakes.

• Java’s format methods fail silently, for example if too
many arguments are passed.

• Format methods are often used to report error mes-
sages. Hence, they appear in code that is infrequently
executed.

In a previous paper [3], we presented the format string
type system that promises to detect and prevent the incor-
rect use of format methods. The paper evaluates an imple-
mentation of the type system (Section 7), and compares it
to the related work (Section 8).

In this paper, we take a more hands-on look at the Format
String Checker. The Format String Checker is an implemen-
tation of our format string type system for Java’s Formatter
API, which is provided by the Formatter class.

The Format String Checker is implemented as a pluggable
type system in the Checker Framework [2]. A pluggable type
system extends Java’s type system in a backward compatible
way, to provide more guarantees about the absence of certain
errors. The Format String Checker guarantees the absence
of format method related errors.

The Checker Framework is implemented as an annotation
processor for the Java compiler (javac). To run the Format
String Checker with a project’s usual build, the programmer
simply adds the -processor command-line option to the
invocation of the javac command.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ISSTA’14, July 21–25, 2014, San Jose, CA, USA
ACM 978-1-4503-2645-2/14/07
http://dx.doi.org/10.1145/2610384.2628056

441

The Format String Checker is shipped along with the
Checker Framework. Both are open-source. Installation
instructions, information on how to integrate them with a
build system such as maven or ant, and more can be found
at:

http://checkerframework.org

The Format String Checker was submitted for Artifact
Evaluation and met the expectations of the committee.

2. THE FORMAT STRING CHECKER

2.1 Terminology
Consider the following code

String.format("The %s is %d.","answer",42);

which yields "The answer is 42.". String.format is a
format method, "The %s is %d." is a format string, "%s"
and "%d" are the format specifiers, and "answer" and 42 are
format arguments.

2.2 Format Method Invocation Errors
The Format String Checker detects and prevents the in-

correct use of Java’s format methods. Listing 1 shows an
example program that contains a number of incorrect uses
of format methods. Executing the following command runs
the Format String Checker on the example:

javac -processor

org.checkers.formatter.FormatterChecker Main.java

The Java compiler generates its usual output, along with
errors that indicate the invalid use of format methods.

The first error issued by the Java compiler is:

Main.java:4: incompatible types in argument.
System.out.printf("%d", "World");

^
found : java.lang.String
required: INT conversion category (one of:

byte, short, int, long, BigInteger)

The error indicates that the type of the format argument
passed to the format method is wrong. This invalid invo-
cation will lead to a runtime exception if main is run. The
error can be fixed by either replacing "%d" with "%s", or
passing a number instead of the "World" argument.

The next errors issued by the Java compiler are:

Main.java:5: missing arguments;
expected 1 but 0 given

System.out.printf("%s");
^

Main.java:6: too many arguments;
expected 1 but 2 given

System.out.printf("%s", "Hello", "World");
^

These errors indicate that the wrong number of format ar-
guments was passed to the format methods. The first one
will surely lead to a runtime error, the second error does not
lead to a runtime error, but the output does not contain the
"World" argument.

If passing unused arguments is the intended behavior, the
programmer can use the following annotation to suppress
the error.

@SuppressWarnings("formatter")

The next error issued by the Java compiler is:

Main.java:7: invalid format string
"Conversion = ’y’"

System.out.printf("%y", 7);
^

The error indicates that an invalid format string was passed
to a format method. In this case, the format string is invalid
because %y is not a valid format specifier. Using %d instead
fixes the error.

The last error issued by the Java compiler is:

Main.java:13: incompatible types in argument.
System.out.printf(f, 7.2);

^
found : double
required: INT conversion category (one of:

byte, short, int, long, BigInteger)

This error shows that checking is not only done for literal
format strings. In this example, the Format String Checker
uses a data-flow analysis to infer that f can only be "%d",
and thus that 7.2 cannot be used as a format argument.

2.3 Type Qualifiers
This section investigates how the Format String Checker

was able to detect the invalid format method invocations
from the previous section’s example.

Consider a format method invocation in standard Java.
Even with the Format String Checker disabled, the Java
type system already provides certain guarantees about the
invocation of a format method.

For example, because the format string argument of a for-
mat method is of type String, Java’s type system guaran-
tees that the format string is a string, and cannot be a list
or number. The String type thus restricts the possible val-
ues that can be passed as the format method’s format string
argument.

The Format String Checker extends the type system with
type annotations. A type annotation is attached to a stan-
dard Java type and further restricts the possible values of
that type. The type annotation @Format attached to a
String (written as @Format String), for example, restricts
the values to be valid format strings1.

The fundamental guarantee of the Format String Checker
is the following: every format method is called with a for-
mat string that is annotated with the correct @Format type
annotation. Section 2.5 provides more details.

If the format string passed to a format method is not an-
notated with a type annotation, the Format String Checker
issues the following error:

invalid format string
(is a @Format annotation missing?)
System.out.printf(format, args);

^

This guarantee is surprising, given that none of the ex-
amples from Listing 1 contain any type annotations. The
examples work because the Format String Checker uses a
data-flow analysis to automatically infer the correct anno-
tations in many cases.

1The JDK documentation for the Formatter class explains
the requirements for a valid format string [1].

442

// code without annotations
String.format("%d", 42);
String f = "%d %f";
String.format(f, 5, 7.2);

// inferred annotations for the code above
String.format((@Format({INT}) String) "%d", 42);
@Format({INT,FLOAT}) String f =

(@Format({INT,FLOAT}) String) "%d %f";
String.format(f, 5, 7.2);

Listing 2: @Format annotation inference.

Listing 2 shows examples of inferred type annotations.
Note that inferred type annotations are not inserted into
the code, they are only inserted in the compiler’s internal
source code representation.

The type annotations from Listing 2 contain more struc-
ture than discussed so far. Every @Format annotation is
equipped with a list of conversion categories.

We already mentioned that the possible values of the qual-
ified @Format String type are restricted to be valid format
strings. The list of conversion categories further restricts the
possible values of the type. @Format({INT,FLOAT})String,
for example, restricts the values to valid format strings with
two format specifiers that respectively require “float-like”
and “integer-like” format arguments.

2.4 Conversion Categories
The following list of frequently used conversion categories

makes the notion of “xxx-like” precise.

GENERAL imposes no restrictions on a format argument’s
type. Applicable for format specifiers %b, %B, %h, %H,
%s, and %S.

CHAR requires that a format argument represents a Uni-
code character. Specifically, char, Character, byte,
Byte, short, and Short are allowed. int or Integer

are allowed if Character.isValidCodePoint(value)

would return true for the format argument (the For-
mat String Checker currently permits any value of type
int or Integer without issuing a warning or error —
see Section 2.5). Applicable for format specifiers %c,
and %C.

INT requires that a format argument represents an inte-
gral type. Specifically, byte, Byte, short, Short, int,
Integer, long, Long, and BigInteger are allowed.
Applicable for format specifiers %d, %o, %x, and %X.

FLOAT requires that a format argument represents a float-
like type. Specifically, float, Float, double, Double,
and BigDecimal are allowed, but integral types are
not. Applicable for format specifiers %e, %E, %f, %g,
%G, %a, and %A.

TIME requires that a format argument represents a date
or time. Specifically, long, Long, Calendar, and Date

are allowed. Applicable for format specifiers ending in
t and T.

2.5 Guarantees
The Format String Checker guarantees that format meth-

ods never throw an exception at runtime, with a few caveats.
This section explains the guarantees precisely.

public final void log (
@FormatFor("args") String format,
Object... args)

{
logfile.printf(format, args);

}

Listing 3: A @FormatFor type annotation on the
format parameter of a format method wrapper
function.

The Format String Checker guarantees that format meth-
ods will never be called with an invalid format string. Thus,
a format method never throws any of the following excep-
tions:

• IllegalFormatException

• DuplicateFormatFlagsException

• FormatFlagsConversionMismatchException

• IllegalFormatConversionException

• IllegalFormatFlagsException

• IllegalFormatPrecisionException

• IllegalFormatWidthException

• MissingFormatArgumentException

• MissingFormatWidthException

• UnknownFormatConversionException

• UnknownFormatFlagsException

The Format String Checker also guarantees that a format
method will never be called with missing format arguments
or format arguments of the wrong type. Thus, a format
method never throws MissingFormatArgumentException or
IllegalFormatConversionException.

We now discuss erroneous format string invocations that
are outside the scope of the Format String Checker. This
means that a format method call may fail, despite the fact
that the Format String Checker issues no warning.

• The only exception that is directly thrown by Java’s
format methods, other than those listed above, is the
IllegalFormatCodePointException exception. It is
thrown if a conversion category is CHAR, and the type
of the respective format argument α is int or Integer,
and if Character.isValidCodePoint(α) would return
false.

• If the format string is null, then a format method will
throw a NullPointerException. Checking for null
values is orthogonal to restricting the values of non-null
format strings. The Checker Framework already ships
with a Nullness Checker [2] that a programmer can
run, in conjunction with the Format String Checker,
to eliminate NullPointerExceptions.

• A method implemented by one of the format argu-
ments may throw an exception. This can happen with
a format argument’s toString method, or if the for-
mat argument implements the Formattable interface
and throws an exception in the formatTo method.

2.6 Polymorphism for Format Methods
We have shown how to write a method that takes as an

argument a format string of a specific type. However, some
methods are polymorphic with respect to their format string
parameter: the method’s parameters’ types depend on the
value of the format string.

443

Table 1: Case study overview. Code size is computed without blank lines or comments. False Positives is
the number of warnings that were suppressed with a @SuppressWarnings annotation.

Java Lines Format Method Annotations False Bugs
Project of Code Call Sites @Format @FormatFor Positives Submitted Fixed

Apache Hadoop 678K 332 20 6 22 3 2
Apache Hive 538K 213 0 1 7 1 0
Apache Lucene 664K 148 2 0 0 0 0
Apache HBase 569K 96 0 0 1 2 2
Daikon 205K 1583 0 30 7 95 95
Findbugs 122K 133 7 1 3 3 3

Total 2777K 2505 29 38 40 104 102

Consider for example Listing 3. If the log method is called
with the format string "%d", then args must be an array of
one“integer-like”value. If the format string is "%f %f", then
args must be an array of two “float-like” values.

Our type system provides the @FormatFor type annota-
tion to express this situation. The @FormatFor("x") anno-
tation specifies that the variable (or parameter) x is an array
of format arguments that matches the format string of the
annotated variable.

We annotated all 14 format methods in the JDK with
the @FormatFor annotation. The format methods provided
by the JDK are all the format and printf methods in
the Formatter, String, PrintStream, PrintWriter, and
Console classes.

2.7 Run-time Checks
Strings obtained from an external source (such as stdin),

have to be tested at runtime before they can be passed into a
format method. The validity of a format string can be tested
using the hasFormat(String, ConversionCategory...)

method. The method returns true if the argument is a
syntactically valid format string with format specifiers that
match the passed conversion categories and false otherwise.

If the conversion categories are passed to hasFormat as
literals, the Format String Checker flow-sensitively infers, at
compile time, a @Format annotation for the string in the true
branch of any test against the result (and, more generally,
in all code that is reachable from the true branch but not
reachable from the false branch).

Listing 4 illustrates the use of hasFormat to catch an in-
valid format string at the time when it is read, instead of
when it is potentially used.

3. EVALUATION
We evaluated the Format String Checker on 6 large and

well-maintained open-source projects — namely Apache
Hadoop, Apache Hive, Apache Lucene, Apache HBase,
Daikon, and FindBugs.

Running the Format String Checker revealed 104 previ-
ously unknown bugs, as summarized in Table 1. We reported
all of these bugs. The developers fixed 102 bugs, won’t fix
1 bug as it is part of deprecated code, and have not yet
commented on 1 bug.

Table 1 also indicates the effort required to use the Format
String Checker.

Except for bug fixes, the only code changes introduced by
us were additional annotations (the sum of Annotations and
False Positives).

The ratio of code changes to format method call sites is
only 0.04. This is due to the fact that literals are annotated

// Bad version, throws an exception if
// an invalid format string is used
Scanner s = new Scanner(System.in);
System.out.printf(s.next(), "hello", 42);

// Improved version, reports an error when
// an invalid format string is read
Scanner s = new Scanner(System.in);
String f = s.next()
if (!hasFormat(f, GENERAL, INT)) {
// ... good error reporting here ...
System.exit(2);

}
// f is now known to be of type:
// @Format({GENERAL, INT}) String
System.out.printf(f, "hello", 42);

Listing 4: The hasFormat method serves as a way to
dynamically check whether a string is valid.

automatically, and the use of data-flow analysis to automat-
ically infer the correct @Format annotations for other format
strings.

The ratio of code changes to bugs is very favorable at 1.0.
This means that for every annotation written, the program-
mer is on average rewarded by finding 1.0 new unknown
bugs.

Daikon contained more bugs than any of the other
projects. This is partially due to the fact that Daikon uses
by far the most format methods of any of the other projects,
making it much more likely that a format method invoca-
tion is faulty. Daikon is also the project that produces the
largest and most diverse command line output. These two
facts may be correlated. Finally, Daikon has the smallest
number of users and developers — it may be the least ma-
ture and robust.

4. REFERENCES
[1] Java Formatter class documentation.

http://docs.oracle.com/javase/7/docs/api/
java/util/Formatter.html.

[2] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins,
and M. D. Ernst. Practical pluggable types for Java. In
ISSTA 2008, Proceedings of the 2008 International
Symposium on Software Testing and Analysis, pages
201–212, Seattle, WA, USA, July 22–24, 2008.

[3] K. Weitz, G. Kim, S. Srisakaokul, and M. D. Ernst. A
type system for format strings. In ISSTA 2014,
Proceedings of the 2014 International Symposium on
Software Testing and Analysis, 2014.

444

