
Final Exam
CSC 252

13 December 2021
Computer Science Department

University of Rochester

Instructor: Alan Beadle
TAs: Abhishek Tyagi, Matthew DeWeese, Elana Elman, Yifan "Iven" Jiang, Yanghui "Woody" Wu,
Zeyu "George" Wu

 Name: ____________________________________

Problem 0 (3 points):

Problem 1 (16 points):

Problem 2 (14 points):

Problem 3 (17 points):

Problem 4 (21 points):

Problem 5 (22 points)

Total (93 points):

Extra Credit (6 points)

Remember “I don’t know” is given 15% partial credit, but you must erase
everything else. This does not apply to extra credit questions.

Your answers to all questions must be contained in the given boxes. Use spare
space to show all supporting work to earn partial credit.

You have 3 hours to work.

Please sign the following. I have not given nor received any unauthorized help on
this exam.

Signature:___

GOOD LUCK!!!

1

Problem 0: Warm-up (3 Points)
What’s the most surprising thing about computers you learned from 252?

Problem 1: Number Representation (16 points)
(3 points) Convert the decimal number 443 to hexadecimal.

(3 points) Put 5
7

16
 into the binary normalized form.

The IEEE introduces a floating-point standard consisting of 10 bits, of which 4 bits
are reserved for the exponent and 5 bits are reserved for the fraction.
(1 point) What is the bias in this standard?

(3 points) If possible, precisely represent the number
35

128
 in this 10-bit standard,

writing your answer in binary. If not possible, explain why.

2

(3 points) If possible, precisely represent the number
65

128
 in this 10-bit standard,

writing your answer in binary. If not possible, explain why.

(3 points) What is the largest denormalized value in this 10-bit format? Write
your answer in binary normalized form.

Problem 2: Miscellaneous (14 points)
Part a) (3 points) If a program is 80% parallelizable and you have an infinite
number of CPUs, what is the maximum possible speedup factor? (round to the
nearest integer)

Part b) (3 points) Suppose a CPU is using a 2-bit branch predictor. The last five
branches were: not taken, taken, taken, taken, not taken. What does the branch
predictor predict next? If it is wrong, then what will it predict after that?

3

Part c) (5 points) Consider the following assembly code fragment:
 .L1:
 dec %rax
 mov %rax, (%r11)
 inc %r11
 cmpq %rax, $0x01
 jge .L1
 sub $0x99, %rsi
 mov %rsi, %rax
 ret
Suppose that this code executes on a four-stage pipeline with the following
stages: Fetch, Decode, Execute, and Mem+writeback. Assume that this CPU has
an always-wrong branch predictor, which always makes the wrong prediction.

If the conditional branch is taken exactly once, how many cycles are needed to
fully execute this code snippet? Assume that all data dependencies are handled by
data forwarding, and assume that the branch misprediction is detected in the
execute stage. Hint: Remember that the pipeline starts empty, and the
program is not done until the last instruction has finished all stages.

4

Part d) (3 points) Suppose there is a C struct containing (in some unknown
order) an array of 2 chars, an array of 6 integers, and a pointer to a long int.
Assume the code will run on a 64-bit CSUG machine. What is the minimum
possible size of this struct? Hint: the struct alignment/padding rules treat the
elements of arrays as individual elements. You don’t need to write any code.

Problem 3: Assembly Programming (17 points + 2 points extra credit)

Consider the following objdump output, produced from a C function which has
been compiled with gcc:

0000000000001135 <foo>:
 1135: 89 7c 24 fc mov %edi,-0x4(%rsp)
 1139: 89 74 24 f8 mov %esi,-0x8(%rsp)
 113d: 83 7c 24 fc 00 cmpl $0x0,-0x4(%rsp)
 1142: 79 04 jns 1148 <foo+0x13>
 1144: f7 5c 24 fc negl -0x4(%rsp)
 1148: 83 7c 24 f8 00 cmpl $0x0,-0x8(%rsp)
 114d: 79 04 jns 1153 <foo+0x1e>
 114f: f7 5c 24 f8 negl -0x8(%rsp)
 1153: 8b 44 24 fc mov -0x4(%rsp),%eax
 1157: 0f af 44 24 f8 imul -0x8(%rsp),%eax
 115c: c3 retq

(3 points) How many arguments does this function have, and what are their
types?

5

(3 points) Write one line of C code to call this function with the right number of
arguments, at least one of which is negative. Remember to assign the return
value to a variable of an appropriate type. Then write what the actual return value
will be.

(2 points extra credit) If this function had one more argument, where would the
value of that argument be stored when the function is called? Be very specific for
any credit.

Part b) (7 points) Some students wrote a CSC252 project in assembly. They
discover right before submission that the machine used for grading has a faulty
ret instruction. They decide to rewrite the project without using ret.

(3 points) On a correct 64-bit machine, which register(s) does ret update?
Explain how the new register values are determined.

(4 points) Which two instructions could they combine to replace the faulty ret?
Provide just the names of the instructions in the order they are used.

6

Part c) (4 points) Write a few lines of x86_64 assembly code to conditionally call
a function bar() if the values contained in rcx and rdx are equal. Make up

arbitrary values for any addresses needed. You may use labels like “.L1:”.

Problem 4: Cache (21 points + 1 point extra credit)

You have been asked to design a byte-addressable, 2-way associative cache. Each
cache line will hold 2 bytes. There will be 16 sets, and you will use an LRU
replacement policy.

Unfortunately, you can only afford to have up to 720 bits in the cache. Hint: Your
cache will use exactly this number of bits. This includes both data and
overhead bits. You have decided to use a write-through policy to save some bits.

(2 points) How many bits are needed per set to implement the LRU policy?

(2 points) How many bits of an address are used for the set index? How many bits
of an address are used for the line offset?

(2 points) What is the total number of overhead bits in the cache?

7

(3 points) How many tag bits does each cache line have?

(3 points) What is the maximum amount of physical memory this machine can
have? (In bytes)

Assume that the machine runs only one program, which will generate the following
memory access sequence:

Access Address

1 0000 0101 1000

2 0000 0111 1001

3 0000 1111 0001

4 0000 0001 1001

5 0000 0111 1000

6 0000 1111 0000

7 0000 0101 1000

8 0000 0101 1001

(3 points) Assuming the cache is initially empty, how many cache misses will the
program generate?

8

(3 points) How many valid bits will be set to 1 (valid) after the program runs?

(3 points) If the cache used a random replacement policy instead of LRU, what is
the maximum number of misses that could happen in the above trace?

(1 point extra credit) How many total bits did you save by using a write-through
design and what are those bits called?

Problem 5: Virtual Memory (22 points + 3 points extra credit)

You are building a byte-addressable machine with virtual memory support. The
virtual address space is 128 KB (2^17 bytes). The physical memory size is 32KB.
The system uses a one-level page table.

Part a) Basic organization
(4 points) Assume the page size is 512 bytes. How many bits are used for the
physical page number (PPN), and how many for the virtual page number (VPN)?

(2 points) What is the size of each PTE, assuming that the only overhead in the
PTE is one valid bit and one dirty bit?

9

(4 points) Suppose a program attempts to read a value from memory, but the PTE
for the page containing that value has a valid bit of 0. Describe the events that
might happen as a result of this. Be especially sure to mention any possible
changes to the page table. You may assume there is no TLB for this question.

(3 points) Suppose the system has a TLB with a fixed number of entries. What
effect would decreasing the page size have on the TLB hit rate? Why? Explain your
answer to receive ANY credit.

(3 points extra credit) Assuming the original 512 byte page size, how much
memory could be saved by splitting the page table into multiple levels?

10

Part b) Performance
Suppose you build the machine described above, with a 512 byte page size and a 2-
entry TLB that uses LRU replacement.

Consider the C code below. Assume:
1. A 1-level page table translation scheme with the page table starting empty,

and
2. arr is aligned such that it starts at the start of a page.

void func() {
char arr[3000];
for(int i = 0; i < 8; i++) {

if(rand_0_1() == 1) {
printf("%c\n", arr[(i << 8)]);

} else {
printf("%c\n", arr[i]);

}
}

}

rand_0_1() is a function that returns either 0 or 1, at random.

For the following 2 questions, only count page faults generated by accessing
elements of arr.

(3 points) What is the maximum number of page faults that this code could
possibly generate? Explain.

11

(3 points) What is the minimum number of page faults that this code could
possibly generate? Explain.

(3 points) What is the maximum number of TLB misses that this code could
possibly generate? Explain.

12

