
Interval-Based
Memory Reclamation

Haosen Wen, Joseph Izraelevitz, Wentao Cai,
H. Alan Beadle and Michael L. Scott

University of Rochester

PPoPP’18

-2/19-

Background
● Unlike lock-based concurrent data

structures, non-blocking ones
allow updates to happen
concurrently with other accesses.
● Specifcally, a thread might try to

reclaim a block while others still have
access to it.

A
B

Thread 1

Thread 2

● (Thread-safe) garbage collecting languages tend to
bring high overhead.

-3/19-

The Problem
● Manual approaches are majorly based on

"reservations," a global metadata, which require
expensive store-load fences to update:

● Hazard Pointers (HP) [Michael, PODC’02] reserves a
minimum number of blocks per thread, but
updates reservation every time a thread follows
a shared pointer.

● Epoch Based Reclamation (EBR) [Fraser, thesis’04];

[Hart et al., 2007] only issues memory fences at
beginnings and ends of operations, but a stalling
thread may cause an unbounded amount of
blocks to be unreclaimable.

● Our approach improves EBR by making it
robust to thread stalling.

-4/19-

BA CA

B

Reserved by
Thread 1

B

C
Reserved by

Thread 2

Store-load
Fence by T1

BA CC

B

Reserved by
Thread 1

B

C
Reserved by

Thread 2
Reclaimable

● Thread 1 is
traversing a linked
list and Thread 2 is
retiring block A.

● Blocks in global
array of HPs are
reserved from
reclamations.

● Store-load fences
are issued on every
HP update.

● Number of HPs per
thread is usually
small, but can be
unbounded in some
cases.

Not
reclaimable

Hazard Pointers (HP)

-5/19-

BA C
1

Reserved by
Thread 1

2

● The Epoch counter is
a slow-ticking "clock"

● Each thread puts the
current epoch E in
reservation at the
beginning of
operations, reserving
all objects retired on
and after epoch E.

● As a result, only
blocks retired before
the lowest reservation
can be reclaimed.

Not
reclaimable

Epoch-Based Reclamation (EBR)

Epochs

Block A

1 2 3 4

Epoch: 2

Block B
Lowest reservation: 1

Reserved by
Thread 2

Thread 1
Thread 2

-6/19-

A
1

Reserved by
Thread 1

--

● The Epoch counter is
a slow-ticking "clock"

● Each thread puts the
current epoch E in
reservation at the
beginning of
operations, reserving
all objects retired on
and after epoch E.

● As a result, only
blocks retired before
the lowest reservation
can be reclaimed.

● Unbounded numbers
of blocks may be tied
up if some thread is
stalled: EBR is not
robust to thread
stalling.

Not
reclaimable

Epochs

Block A

1 2 3 4

Epoch: 5

Block B Lowest reservation: 1

Zzzzzz...

B C ...

Block C

Epoch-Based Reclamation (EBR)

Block D

D

-7/19-

Thoughts about EBR
● EBR is not robust [Dice et al., 2016]: a stalled thread

can end up reserving an unbounded number of
blocks, including blocks created after it stalled.

● If reservation of one thread can only hold a
bounded range of epochs, then a stalled thread
can only reserve a fnite number of blocks.

● To ensure correctness, a block should be reserved
if its "life interval" ("lifetime" between its birth
epoch and retire epoch) intersects with any
reservation(s).

-8/19-

Introducing
Interval-Based Reclamation

(IBR)

-9/19-

A
2

Reserved by
Thread 1

--

● IBR tracks the life
interval (hence the
name) of all blocks.

● A block is reclaimable
if its life interval does
not intersect with
reservations of any
thread.

● The reservation of
each thread contains
a fnite range of
epochs; a stalled
thread won’t reserve
any block born after
the upper bound of its
reservation.

● A thread updates its
upper reservation as
it progresses.

Not
reclaimable

Interval-Based Reclamation (IBR)

Epochs

Block A

1 2 3 4

Epoch: 5

Block B Reserved epochs:
[1, 2]

Zzzzzz...

B C ...

Block C

1 --
reclaimable

-10/19-

Tagged Pointer IBR (TagIBR)
● Update reservations when following shared

pointers. Goal: reserve the target block
before pointer dereference.

● A tag in the pointer is guaranteed to be greater
than or equal to the birth epoch of its target.

1

1

Epochs

Block A

1 2 3 4

Thread 1
Read(A)

2

1

Epochs

Block A

1 2 3 4

Birth: 1
(Data)

Tag:2

Birth: 2
(Data)
Tag

Block A

-11/19-

2 Global Epoch IBR (2GEIBR)
● Always update upper reservations to the current

global epoch – faster (or simpler*).
● There is a potential trade-of between space

bound and throughput (or simplicity*) (in long-
running operations).

1

1

Epochs

Block A

1 2 3 4

Thread 1
Read(A)

4

1

Epochs

Block A

1 2 3 4

Epoch: 4

Birth: 1
(Data)

Birth: 2
(Data)

Block A

*with diferent TagIBR variants.

-12/19-

Persistent Object IBR (POIBR)

● The most straightfarward implementation of IBR:
every thread can only reserve one epoch.

● Suitable only for data structures who persists
histories. For example, one whose internal
pointers are immutable.

-13/19-

Performance Results

-14/19-

Experimental Setup

● Platform: Intel(R) Xeon(R) CPU E5-2699 v3.
● Processor: 2 sockets, 18 cores,
2 hyperthreads on each core:
72 hyperthreads in total.
(Threads >72, some get stalled)

● Thread pinning strategy:
1 thread per core on one socket ->
hyperthreads on the same socket ->
next socket.

-15/19-

 Schemes in the test

● HP: Hazard Pointers
● EBR: Epoch-based reclamation
● TagIBR

● (sub-variants: TagIBR-FAA, TagIBR-WCAS in paper.)

● 2GEIBR: 2 Global Epoch IBR
● No MM
● (POIBR in paper)

-16/19-

●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●

●●●

●●●

●●●

●●●
●●●

●●●

0

2000

4000

6000

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Threads

A
vg

. o
f U

nr
ec

la
im

ed
 R

et
ire

d
B

lo
ck

s
●

EBR

TagIBR
2GEIBR

HP

Average retired-but-not-reclaimed objects per operation
Natarajan & Mittal’s Tree

● Michael’s Hash Map has similar performance

Number of hardware
contexts

Threads exceeding 72
get stalled

-17/19-

●●●

●●●

●●●

●●●
●●● ●●● ●●●

●●●
●●●

●●●

●●●
●●● ●●●

●●● ●●●

●●●

●●●
●●●

●●● ●●● ●●●

0

10

20

30

40

50

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Threads

T
hr

ou
gh

pu
t (

M
 o

ps
/s

ec
) ●

No MM
EBR

TagIBR
2GEIBR

HP

Throughput (M ops/s)
Natarajan & Mittal’s Tree

● Michael’s Hash Map has similar performance

Number of hardware
contexts

-18/19-

Throughput (M ops/s)

Michael’s Linked List

●●●

●●●

●●●

●●●

●●● ●●● ●●● ●●●

●●●

●●●

●●●

●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●

0.000

0.025

0.050

0.075

0.100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Threads

T
hr

ou
gh

pu
t (

M
 o

ps
/s

ec
)

●

No MM
EBR

TagIBR

2GEIBR
HP

-19/19-

 Summary
● We presented Interval-Based Memory
Reclamation, a family of memory
management schemes for non-blocking
concurrent data structures.

● These showed throughput comparable to the
fastest existing approach(es), and are robust
to thread stalling.

● In theory, TagIBR is more suitable for data
structures with long operations working on
old data; 2GEIBR for (almost) the rest.

● The artifact is available at:
https://zenodo.org/record/1168572

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

