Interval-Based
Memory Reclamation

Haosen Wen, Joseph lzraelevitz, Wentao Cal,
H. Alan Beadle and Michael L. Scott

University of Rochester

PPOPP’'18

UNIVERSITY o

B ROCHESTER

Background

 Unlike lock-based concurrent data e
structures, non-blocking ones
Thread 1

allow updates to happen .
concurrently with other accesses. X

« Specifically, a thread might try to
reclaim a block while others still have
access to it.

* (Thread-safe) garbage collecting languages tend to
bring high overhead.

UNIVERSITY of

2119 & ROCHESTER

The Problem

 Manual approaches are majorly based on
"reservations," a global metadata, which require
expensive store-load fences to update:

* Hazard Pointers (HP) [michael, PODC’02] reserves a
minimum number of blocks per thread, but
updates reservation every time a thread follows

a shared pointer.

 Epoch Based Reclamation (EBR) [Fraser, thesis’04];
[Hart et al., 2007] only iIssues memory fences at
beginnings and ends of operations, but a stalling
thread may cause an unbounded amount of
blocks to be unreclaimable.

* Our approach improves EBR by making it

robust to thread stalling.
-3/19-

UNIVERSITY of

e IVERSIT
ey ROCHESTER

Hazard Pointers (HP)

Retired: A

Thread 1 Thread 2

n A B
T
B C
Thread 1 Thread 2
Y C B
I
C

-4/19-

Reserved by

Thread 1
/.'\
/ \
/ \‘
.y p
e e C
X)
\ 7/
\. ./
Not Reserved by
reclaimable Thread 2
Store-load :
__________________ R -e-served by
Thread 1
. I- '\\

'¢ ~
L] 1
\ /
\ /
\N 7/

Reclaimable Reserved by
Thread 2

Thread 1 is
traversing a linked
list and Thread 2 is
retiring block A.

Blocks in global
array of HPs are
reserved from
reclamations.

Store-load fences
are issued on every
HP update.

Number of HPs per
thread is usually
small, but can be
unbounded in some
cases.

@6 UNIVERSITY of

OCHESTER

Epoch-Based Reclamation (EBR)

: Reserved b

Epoch: 2 Thread 1 y The Epoch counteris
S~ a slow-ticking "clock"
Thread 1 Thread 2 ./ \‘., \‘*--\\\ » Each thread puts the

e) current epoch E in

Resrv.'s 1 2 *\t_A_«,’ """"" reservation at the

N beginning of

N7 operations, reserving
Not Reserved by all objects retired on
Retired: A reclaimable Thread 2 and after ePOCh E.

» As a result, only
blocks retired before
the lowest reservation

Lowest reservation: 1 can be reclaimed.

Block B
Block A
Thread 1
Thread 2 >
1 2 3 4 Epochs

-5/10- R(g%ﬁ{ﬁg%}lé[{

Epoch-Based Reclamation (EBR)

Epoch: 5 Reserved by
/727277... Thread 1
Thread 1 Thread 2 SRS
rea rea R R
Py S S
. CAF---»Br----»Cr---»D: ...
) S ’\%
_ Not

Retired: A, B, C, ... reclaimable

Block D ; ,

Block C

Block B Lowest reservation: 1

Block A

>
1 2 3 4 Epochs
-6/19-

The Epoch counter is
a slow-ticking "clock"

Each thread puts the
current epoch E in
reservation at the
beginning of
operations, reserving
all objects retired on
and after epoch E.

As a result, only
blocks retired before
the lowest reservation
can be reclaimed.

Unbounded numbers
of blocks may be tied
up if some thread is
stalled: EBR is not
robust to thread
stalling.

RECHES R

Thoughts about EBR

* EBR is not robust [Dice et al,, 2016]: a stalled thread
can end up reserving an unbounded number of
pblocks, including blocks created after it stalled.

* |If reservation of one thread can only hold a
pounded range of epochs, then a stalled thread
can only reserve a finite number of blocks.

* To ensure correctness, a block should be reserved
If its "life interval" ("lifetime" between its birth
epoch and retire epoch) intersects with any
reservation(s).

UNIVERSITY of

e IVERSIT
ey ROCHESTER

-7/19-

Introducing
Interval-Based Reclamation
(IBR)

UNIVERSITY of
B ROCHESTER

-8/19-

Interval-Based Reclamation (IBR)

Epoch: 5 Reserved by
/727277... Thread 1
S
Thread 1 Thread 2 /! \31
:'-"?. ol ST
LA - B - C re--p
Upper @ — ‘~_</_x ._,'\
Lower 1 == ,
Not reclaimable
reclaimable
Retired: A, B, C, ...
Block C
Block B Reserved epochs:
[1, 2]
Block A
>
1 2 3 4 Epochs
-9/19-

IBR tracks the life
interval (hence the
name) of all blocks.

A block is reclaimable
if its life interval does
not intersect with
reservations of any
thread.

The reservation of
each thread contains
a finite range of
epochs; a stalled
thread won't reserve
any block born after
the upper bound of its
reservation.

A thread updates its
upper reservation as
it progresses.

RECHES R

Tagged Pointer IBR (TagIBR)

» Update reservations when following shared
pointers. Goal: reserve the target block
before pointer dereference.

* A tag in the pointer is guaranteed to be greater
than or equal to the birth epoch of its target.

Block A
Thread 1 _ Thread 1
Birth: 1 Birth: 2
[Jpper 1 (Data) (Data) [Jpper p.
Tag:2: Tag
Lower 1 Lower 1
Thread 1
: Read(A) :
Block A Block A
> F - >
1 3 4 Epochs 1 2 3 4 Epochs

-10/19-

UNIVERSITY of

11 ROCHESTER

2 Global Epoch IBR (2GEIBR)

A
9

ways update upper reservations to the current
obal epoch - faster (or simpler*).

* There is a potential trade-off between space
bound and throughput (or simplicity*) (in long-
running operations). Block A

Birth: 1 Birth: 2
Thread 1 (Data) }—» (Data) Thread 1
_/
Upper 1 Upper 4
Lower 1 Epoch: 4 Lower 1
Thread 1
: Read(A) :
Block A Block A
: : : Y : : : : N
1 2 3 4 Epochs 1 2 3 4 Epochs

UNIVERSITY of

1119. *with different TagIBR variants. 11 ROCHESTER

Persistent Object IBR (POIBR)

* The most straightfarward implementation of IBR:
every thread can only reserve one epoch.

» Suitable only for data structures who persists
histories. For example, one whose internal
pointers are immutable.

UNIVERSITY of

e IVERSIT
ey ROCHESTER

-12/19-

Performance Results

-13/19-

Experimental Setup

e Platform: Intel(R) Xeon(R) CPU E5-2699 v3.

* Processor: 2 sockets, 18 cores,
2 hyperthreads on each core:
72 hyperthreads in total.
(Threads >72, some get stalled)

* Thread pinning strategy:
1 thread per core on one socket ->
hyperthreads on the same socket ->
next socket.

""" UNIVERSITY of

11 ROCHESTER

-14/19-

Schemes In the test

 HP: Hazard Pointers
 EBR: Epoch-based reclamation
* TagIBR
* (sub-variants: TagIBR-FAA, TagIBR-WCAS in paper.)
* 2GEIBR: 2 Global Epoch IBR
* No MM

* (POIBR in paper)

UNIVERSITY of

B ROCHESTER

-15/19-

Average retired-but-not-reclaimed objects per operation

Avg. of Unreclaimed Retired Blocks

6000+

4000+

2000+

Natarajan & Mittal’'s Tree

-+ EBR

o 2GEIBR

= TagIBR
HP

Threads exceedmg 72

getstalled — —»

Number of hardware
contexts

PO D SE S S S SR SH SH S~ S S .

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Threads

* Michael’s Hash Map has similar performance

-16/19-

UNIVERSITY of

OCHESTER

Throughput (M ops/s)

Natarajan & Mittal’'s Tree

501 A No MM Number of hardware
4 EBR
o SGEIBR / contexts
) = TagIBR
v
(7))
o
O 301
>3
3
2 20
(@))
-
o
c i
= 10
O_

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Threads

* Michael’s Hash Map has similar performance

UNIVERSITY of

(@@
Sy ROCHESTER

-17/19-

Throughput (M ops/s)

Michael’s Linked List

0.100; £ TagIBR
A No MM
- ¢ EBR
O - 2GEIBR o
e o e oy e |

¥ 0.0751
~
w
o
@]
=
— 0.0501
-
o
L
(@))
o
O 0.0251
L
|_

0.000-

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Threads
I'@ UNIVERSITY of
-18/109- 5 OCHESTER

Summary

* We presented Interval-Based Memory
Reclamation, a family of memory
management schemes for non-blocking
concurrent data structures.

* These showed throughput comparable to the
fastest existing approach(es), and are robust
to thread stalling.

* In theory, TagIBR is more suitable for data
structures with long operations working on
old data; 2GEIBR for (almost) the rest.

* The artifact is available at:
https://zenodo.org/record/1168572

UNIVERSITY of
k

-19/109- L5 & OCHESTER

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

