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Background

 Unlike lock-based concurrent data e
structures, non-blocking ones
Thread 1

allow updates to happen .
concurrently with other accesses. X

« Specifically, a thread might try to
reclaim a block while others still have
access to it.

* (Thread-safe) garbage collecting languages tend to
bring high overhead.
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The Problem

 Manual approaches are majorly based on
"reservations," a global metadata, which require
expensive store-load fences to update:

* Hazard Pointers (HP) [michael, PODC’02] reserves a
minimum number of blocks per thread, but
updates reservation every time a thread follows

a shared pointer.

 Epoch Based Reclamation (EBR) [Fraser, thesis’04];
[Hart et al., 2007] only iIssues memory fences at
beginnings and ends of operations, but a stalling
thread may cause an unbounded amount of
blocks to be unreclaimable.

* Our approach improves EBR by making it

robust to thread stalling.
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Hazard Pointers (HP)
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Thread 1 is
traversing a linked
list and Thread 2 is
retiring block A.

Blocks in global
array of HPs are
reserved from
reclamations.

Store-load fences
are issued on every
HP update.

Number of HPs per
thread is usually
small, but can be
unbounded in some
cases.
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Epoch-Based Reclamation (EBR)
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» As a result, only
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Epoch-Based Reclamation (EBR)
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The Epoch counter is
a slow-ticking "clock"

Each thread puts the
current epoch E in
reservation at the
beginning of
operations, reserving
all objects retired on
and after epoch E.

As a result, only
blocks retired before
the lowest reservation
can be reclaimed.

Unbounded numbers
of blocks may be tied
up if some thread is
stalled: EBR is not
robust to thread
stalling.
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Thoughts about EBR

* EBR is not robust [Dice et al,, 2016]: a stalled thread
can end up reserving an unbounded number of
pblocks, including blocks created after it stalled.

* |If reservation of one thread can only hold a
pounded range of epochs, then a stalled thread
can only reserve a finite number of blocks.

* To ensure correctness, a block should be reserved
If its "life interval" ("lifetime" between its birth
epoch and retire epoch) intersects with any
reservation(s).
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Introducing
Interval-Based Reclamation
(IBR)
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Interval-Based Reclamation (IBR)
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IBR tracks the life
interval (hence the
name) of all blocks.

A block is reclaimable
if its life interval does
not intersect with
reservations of any
thread.

The reservation of
each thread contains
a finite range of
epochs; a stalled
thread won't reserve
any block born after
the upper bound of its
reservation.

A thread updates its
upper reservation as
it progresses.
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Tagged Pointer IBR (TagIBR)

» Update reservations when following shared
pointers. Goal: reserve the target block
before pointer dereference.

* A tag in the pointer is guaranteed to be greater
than or equal to the birth epoch of its target.

Block A
Thread 1 _ Thread 1
Birth: 1 Birth: 2
[Jpper 1 (Data) (Data) [Jpper p.
Tag:2: Tag
Lower 1 Lower 1
Thread 1
: Read(A) :
Block A Block A
> F - >
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2 Global Epoch IBR (2GEIBR)

A
9

ways update upper reservations to the current
obal epoch - faster (or simpler*).

* There is a potential trade-off between space
bound and throughput (or simplicity*) (in long-
running operations). Block A
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Persistent Object IBR (POIBR)

* The most straightfarward implementation of IBR:
every thread can only reserve one epoch.

» Suitable only for data structures who persists
histories. For example, one whose internal
pointers are immutable.
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Performance Results
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Experimental Setup

e Platform: Intel(R) Xeon(R) CPU E5-2699 v3.

* Processor: 2 sockets, 18 cores,
2 hyperthreads on each core:
72 hyperthreads in total.
(Threads >72, some get stalled)

* Thread pinning strategy:
1 thread per core on one socket ->
hyperthreads on the same socket ->
next socket.
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Schemes In the test

 HP: Hazard Pointers
 EBR: Epoch-based reclamation
* TagIBR
* (sub-variants: TagIBR-FAA, TagIBR-WCAS in paper.)
* 2GEIBR: 2 Global Epoch IBR
* No MM

* (POIBR in paper)
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Average retired-but-not-reclaimed objects per operation

Avg. of Unreclaimed Retired Blocks
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* Michael’s Hash Map has similar performance
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Throughput (M ops/s)

Natarajan & Mittal’'s Tree
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Throughput (M ops/s)

Michael’s Linked List
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Summary

* We presented Interval-Based Memory
Reclamation, a family of memory
management schemes for non-blocking
concurrent data structures.

* These showed throughput comparable to the
fastest existing approach(es), and are robust
to thread stalling.

* In theory, TagIBR is more suitable for data
structures with long operations working on
old data; 2GEIBR for (almost) the rest.

* The artifact is available at:
https://zenodo.org/record/1168572
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