
Lectures 10 and 11 Training HMMs 1

Lecture 10: The EM Algorithm: Training Models with Hidden Data
Earlier in this course we considered a range of techniques for estimating probability distributions
from data. In these cases, the training data always included all the information we needed to
compute the probabilities. For instance, if we were training a tagging model, we had data that
was tagged with the correct answers. In many applications, however, the data we have is missing
critical information, which is called the hidden data. Today we’ll explore a general technique
for estimating distributions in which some of the key information is hidden. While the exact
nature of the algorithm will vary from application to application, the general technique is called
the EM algorithm, which stands for expectation maximization.

One of the key ideas of any EM algorithm is that you start with some distribution of the data, and
perform an iteration step that produces a new distribution that is either better or the same as the
initial one (in the sense that it increases the probability of the training corpus). This does not
mean that the algorithm could eventually produce the optimal distribution, It is what is often
called a hill climbing algorithm, and it may converge on some local maximum that is not the
best one that could be found. In addition, we must remember that optimizing the probability of
the training corpus is never a goal in itself. We actually want model that perform well on new
data. So we must be careful not to overtrain the model by running too many iterations.

1. An Intuitive EM Algorithm for HMMs
The general problem of training HMMs is that we don’t know which states correspond to which
output, thus we cannot do a simple counting estimate. As an example, consider the HMM l that
models a simplified 2 bucket version of the ball game from a couple of assignments ago. There
are two output producing nodes, S1 and S2, and the output vocabulary is R,W, and B (red, white
and blue balls). The possible non-zero arcs are shown in Figure 1.

S1

A1,1

A1,2
S0 S2

A2,2

A2,FA0,1

Figure 1: An example HMM for Training
Say the observation sequence we want to model is RWBB. We want to find values for the
transition probabilities and output probabilities so as to maximize Prob(RWBB | l). If we had a
tagged corpus, we could estimate these probabilities by simple counting on the training corpus.
But in this case we don’t know what the state sequence was. In fact, there are three sequences
that could have produced RWBB with the HMM in Figure 1.

P1: S0-S1-S1-S1-S2-SF
P2: S0-S1-S1-S2-S2-SF
P3: S0-S1-S2-S2-S2-SF

Lectures 10 and 11 Training HMMs 2

We are going to train the HMM by adapting the counting technique to do a weighted count over
all possible sequences. To do this, we need some initial values for the transition and output
probabilities so we can compute an initial probability for each of the possible sequence. Lets just
assume everything is equally likely, so the probability of A1,1 and A1,2 are both .5, and the
output probability distribution for each node assigns each symbol a probability of 1/3. These
values are shown in Figure 2.

Transition Pr S 1 S 2 S F
S 0 1.000 0.000 0.000
S 1 0.5 0.5 0
S 2 0 0.5 0.5
Output Pr R W B
S 1 0.33 0.33 0.33
S 2 0.33 0.33 0.33

Figure 2: The initial guess at the HMM parameters
Given this HMM, we see that the probability of each of the three paths is equally likely. To see
this, consider the probability observing RWBB from path P1 is
Prob(RWBB & P1)

= A0,1 * Pr(R|S1) * A1,1 * Pr(W|S1) * A1,1 * Pr(B|S1) * A1,2 * Pr(B|S2) * A2,F

= 7.4 * 10-4

The probability of RWBB for the other paths will be the same value since the transition and
output probabilities are identical for each arc and node in the network. Given the probability of
observing the sequence for each path, we can compute the probability of each path given the
observation sequence:

Prob(P1 | RWBB)
= Prob(P1 & RWBB) / Prob(RWBB)

We saw how to compute the numerator above. How do we find the value of Prob(RWBB) given
the HMM? Well, there are only three paths that can generate this sequence, so

Prob(RWBB) = Si Prob(Pi & RWBB)

In our example above, Prob(RWBB) = 7.4 * 10-4 + 7.4 * 10-4 + 7.4 * 10-4 = 2.22 * 10-3.
Combining these two, we get

 Prob(Pi & RWBB)
Prob(Pi | RWBB) = Sj Prob(Pj & RWBB)

With our initial parameters, the formula gives a probability of 1/3 to each path.
We can now do our counting for each path. Figure 3 show the counts of each transition for each
path, and then the weighted sum. For instance, the sum for S1-S1 includes 2 from path P1,
weighted at .333, giving .666, and one from path P2 with weight .333 again, giving .333,
producing a total of 1. Due to the structure of the network and the fact that each path is equally
likely, each of these sums comes to one this time. When we use these counts to compute the new
transition probabilities,we find they haven’t changed this time. For instance, there is a weighted

Lectures 10 and 11 Training HMMs 3

sum of 2 transitions from S1, thus the Prob(S1-S1 being taken from S1) = 1/2 = .5 and Prob(S1-
S2 being taken from S1) = 1/2 = .5, both as before.

P a t h P r o b Nodes S 0 - S 1 S 1 - S 1 S 1 - S 2 S 2 - S 2 S 2 - S F
P1 0.333 S0-S1-S1-S1-S2-SF 1 2 1 0 1
P2 0.333 S0-S1-S1-S2-S2-SF 1 1 1 1 1
P3 0.333 S0-S1-S2-S2-S2-SF 1 0 1 2 1
Weighted CountWeighted Count 1 1 1 1 1

Figure 3: Computing the Weighted sum of transitions
 For the output probabilities, we can obtain more interesting data as shown in Figure 4.

P a t h P r o b Nodes R / S 1 W / S 1 B / S 1 R / S 2 W / S 2 B / S 2
P1 0.333 S0-S1-S1-S1-S2-SF 1 1 1 0 0 1
P2 0.333 S0-S1-S1-S2-S2-SF 1 1 0 0 0 2
P3 0.333 S0-S1-S2-S2-S2-SF 1 0 0 0 1 2
Weighted CountWeighted Count 1.000 0.667 0.333 0.000 0.333 1.667

Figure 4: Computing the weighted sum of outputs from each node
Using the counts in Figure 4, we can compute the new output probabilities using

Prob(R | S1) = Count(R, S1) / Count(S1)
The weighted count for node S1 over all output symbols is 2. Thus we have

Prob(R | S1) = 1/2 = .5, Prob(W | S1) = .667 / 2 = .333 and Prob(B | S1) = .333/2 = .167
Putting it all together, we have a new set of parameters as shown in Figure 5.

Transition Pr S 1 S 2 S F
S 0 1.000 0.000 0.000
S 1 0.5 0.5 0
S 2 0 0.5 0.5
Output Pr R W B
S 1 0.5 0.333 0.167
S 2 0 0.167 0.833

Figure 5: Revised set of HMM parameters
Note that the probability of RWBB given this new set of parameters, computed using the formula

Prob(RWBB) = Si Prob(Pi & RWBB)

is 1.2*10-2, considerably higher than the 2.22*10-3 with the original parameters. Baum (1972)
proved that by performing this reestimation procedure on an HMM, the new parameters will
yield a higher or equal probability to the sequence than the original parameters. We use the
reestimation method repeatedly until the probability of the observation doesn’t improve
significantly.
If we repeat this process another time using the new parameters, we get the following
probabilities for each path:

Lectures 10 and 11 Training HMMs 4

Prob(P1 & RWBB) = 1.45 * 10-3

Prob(P2 & RWBB) = 7.22 * 10-3

Prob(P3 & RWBB) = 3.62 * 10-3

With these weights, the total is 1.23*10-2. From this, we can compute the path probabilities and
obtain the new counts shown in Figure 6.

P a t h P r o b Nodes S 0 - S 1 S 1 - S 1 S 1 - S 2 S 2 - S 2 S 2 - S F
P1 0.118 S0-S1-S1-S1-S2-SF 1 2 1 0 1
P2 0.587 S0-S1-S1-S2-S2-SF 1 1 1 1 1
P3 0.294 S0-S1-S2-S2-S2-SF 1 0 1 2 1
Weighted CountWeighted Count 1 0.823 1 1.175 1

P a t h P r o b Nodes R | S 1 W|S1 B | S 1 R | S 2 W|S2 B | S 2
P1 0.118 S0-S1-S1-S1-S2-SF 1 1 1 0 0 1
P2 0.587 S0-S1-S1-S2-S2-SF 1 1 0 0 0 2
P3 0.294 S0-S1-S2-S2-S2-SF 1 0 0 0 1 2
Weighted CountWeighted Count 1.000 0.705 0.118 0.000 0.294 1.880

Figure 6: The new weighted counts for the second iteration
This produces the new estimates of the parameters shown in the column for the second iteration
shown in Figure 7. The probability of the output sequence given these new parameters is 1.45 *
10-2, another improvement. In fact, if we decide to continue the iterations until there is no change
in the 10-5 digit, we will continue for eight iterations as shown in Figure 7. Note that the main
change in the iterations is that the probability of S1 outputting B is slowly sinking to zero. If we
are solely interested in optimizing the probability of RWBB then this continues to improve the
score. But if we are using this to estimate parameters for a recognition system, we may not want
to continue for too long or we will overtrain on this input and assign poor scores to slight
variants (say an observation that starts with a B).

Iteration 0 1 2 3 4 5 6 7 8
Transition ProbabilitiesTransition ProbabilitiesTransition Probabilities
S1-S1 0.500 0.500 0.452 0.432 0.424 0.420 0.419 0.418 0.417
S1-S2 0.500 0.500 0.548 0.568 0.576 0.580 0.581 0.582 0.583
S2-S2 0.500 0.500 0.541 0.554 0.558 0.560 0.561 0.562 0.563
S2-SF 0.500 0.500 0.459 0.446 0.442 0.440 0.439 0.438 0.437
Output ProbabilitiesOutput ProbabilitiesOutput Probabilities
S1/R 0.33 0.5 0.548 0.568 0.576 0.579 0.581 0.582 0.583
S1/W 0.33 0.33 0.387 0.407 0.415 0.417 0.417 0.417 0.416
S1/B 0.33 0.167 0.0645 0.024 0.008 0.003 0.001 0.0004 0.0001
S2/R 0.33 0 0 0 0 0 0 0 0
S2/W 0.33 0.167 0.135 0.126 0.123 0.123 0.123 0.124 0.125
S2/B 0.33 0.833 0.865 0.874 0.876 0.876 0.876 0.876 0.875
Probability of ObservationProbability of ObservationProbability of Observation

0.00222 0.01230 0.01446 0.01521 0.01549 0.01558 0.01562 0.01563 0.01563
Figure 7: A Summary of Eight Iterations of the Training Algorithm

