
Lectures 10 and 11 Training HMMs 1

Lecture 11: Efficient Methods for Training HMMs
Last time we saw an instance of the EM algorithm, where we used an initial probability
distribution for hidden data to generate a new corpus of weighted data that was “fully tagged”
and thus we could re-estimate a new probability distribution that is better (or the same) as the
initial estimate. The problem with the method is, of course, that the technique can require an
exponential expansion of the corpus in general. When trying to train HMM models, and even
fairly simple HMMs can produce a large number of paths in practice. For instance, the HMM in
Figure 1 is the same as that last time but we removed the start and end states and fully connected
them. Rather than the 3 possible sequences from last time, there are know eight possible
sequences that generate R W B B. In general, with N states we will have NT paths where T is the
length of the observed sequence. So we need to develop ways to calculate the necessary values
efficiently. This algorithm is called the Baum-Welch reestimation method or the forward-
backward algorithm. Rather than enumerating the paths, this method “counts” by looking at
the probabilities of reaching various states as well as probabilities of completing the sequence
starting from a given state. These are called the forward and backward probabilities, respectively,
and we will develop them first before looking at their use in reestimation.

Figure 1: An example HMM for Training
The key to doing this efficiently is to be able to compute the probability of the HMM being in a
particular state at a particular time for the output. Let the observed sequence be O1,T, and let Qi be
random variables that produce the state that the HMM is in at time i. Given this, we are
interested in

P(Qt=Si, O1, …, OT)
We will access this probability by dividing it into two parts, using the chain rule that allows us to
rewrite it as

= P(Qt=Si, O1, .., Ot)*P(Ot+1, …, OT | Qt=Si, O1, .., Ot)
Which, because the Markov assumption says that the future output depends only on the current
state,

= P(Qt=Si, O1, .., Ot)*P(Ot+1, …, OT | Qt=Si)
These two terms are called the forward and backward probabilities and we will spend most of
today learning how to estimate them.

1. Computing Forward Probabilities
Then the forward probability for state i at time t, at(i), is the probability that an HMM will
output a sequence O1,t and end in state si. For instance, the forward probability of being in state s1
after two steps on the sequence R W B B is the joint probability

S1 S2

Lectures 10 and 11 Training HMMs 2

a2(1) = P(Q2=s1, O1 = R, O2 =W)

We develop an algorithm to compute the forward probabilities that is very similar to the Viterbi
algorithm.

Let’s first calculate the probability of being in each state at time 1 (with output R) given the
initial probability distribution shown in Figure 2. This is simply the probability of the state being
the initial state times the probability of having output R.

a1(1) = P(Q1=S1) * P(O1 = R| Q1=S1) = .8*.3 = .24
a1(2) = P(Q1=S2) * P(O1=R| Q1=S2) = .2 * .4 = .08

To compute the forward probabilities at time 2, we just look at the increments from time 1 using
the general formula for time t

at(i) = Sj at-1(j) * P(Qt=Si | Qt-1=Sj) * P(Ot | Qt = Si)
In other words, we simply sum over all extensions from every possible state at time t-1 to state
Si. Applying this to compute the forward probability of S2 at time t we get

a2(2) = (a1(1) * P(S2|S1) + a1(2) * P(S2|S2)) * P(W|S2)
= (.24 * .4 + .08 * .7) * .3 = .046

Once we have all the forward probabilities for time 2, we can then compute the forward
probabilities for time 3, and so on. The results of this calculation for the given HMM and output
R W B B is shown in Figure 3.

Forward Probs R W B B
S1 .24 .067 .016 .0045
S2 .08 .046 .017 .0056
Figure 3: The Values for the Forward Probabilities

Note that since the input is given we often want to know what the probability of being in a state
is at time t given the input. For instance, what is the probability of being in state S1 at time 3
given the input R W B? This conditional probability is

P(Q3 = S1 | R W B) = P(Q3 = S1, R W B) / P(R W B)
The numerator is just the forward probability. But how do we compute the denominator, which is
the probability of seeing R W B given this HMM. Well this simply is the sum over all the

Output Prob R W B
S1 .3 .4 .3
S2 .4 .3 .3
(b) Output Probabilities
S1 .8
S2 .2
(c) Initial State Probability
Figure 2: The Initial Distributions for the HMM

Transition
from\to

S1 S2

S1 .6 .4
S2 .3 .7
 (a) Initial Transition
Probability Matrix Ai,j

Lectures 10 and 11 Training HMMs 3

forward probabilities at time 3 (since we have to end up in one of the states!). So the probability
of being in state S1 at time 3 (after seeing R W B) is

P(Q3 = S1 | O1,3) = a3(1) / Si a3(i)
= .016 / (.016 + .017) = .485

2. Backward Probability
The other probability we need is called the backward probability, which is the probability of
starting in state Si at time t and generating the rest of the observation sequence ot+1,..., oT.

bt(i) = Prob(ot+1,..., oT | Qt = Si)
The backward probabilities can be computed efficiently using an algorithm that is a simple
“backwards” variant of the forward algorithm. Rather than starting at time 1, the algorithm starts
at time T and then works backwards through the network from observation oT down to ot+1. The
initial probabilities of being in state Si at time T and generating nothing else is simply 1 since
there is no more output in this context.

i.e., bT(i) = P(∅ | Si) = 1
The recurrence formula used in the iterative step is

bt(i) = Sj Ai,j * Prob(ot+1 | Sj) * bt+1(j)

Figure 4 shows the backwards probabilities computed for our example. We show the t=0 case as
well, which involves a slightly different probably involving the initial state distribution rather
than a transition probability.

State RWBB (t=0) WBB (t =1) BB (t = 2) B (t =3) ∅ (t =4)
S1 .0078 .0324 .09 .3 1
S2 .0024 .0297 .09 .3 1
Figure 4: The Backward Probabilities for the Example

3. Using Forward and Backwards Probabilities
With both the forward and backward probabilities defined, we can now define the probability of
observing o1 ... oT and being in state Si at time t as follows:

Prob(o1 ... oT, qt = Si) = at(i) * bt(i)
i.e., its the probability of observing o1 ... ot ending in state Si, times the probability of observing
ot+1 ... oT given that we start in Si. With this, we can now compute the conditional probability of
being in state Si at time t given the observation sequence

Prob(qt = Si | o1 ... oT) = Prob(o1 ... oT, qt = Si) / Prob(o1 ... oT)
The numerator we just saw equals at(i) * bt(i). The denominator can be computed in many
different ways, all producing the same result. For instance, we could sum the forward
probabilities of all states in the final position, i.e., Si aT(i), or we could sum over all states which
the backward probability at time 0, Si b0(i). Or we could sum at(i) * bt(i) over all states for any

Lectures 10 and 11 Training HMMs 4

time t. They all produce the same value. Here we’ll use the one with the forward probabilities to
produce a formula.

Prob(qt = Si | o1 ... oT) = at(i) * bt(i) / Si aT(i)
The probability of being in any state at any time given the output R W B B is shown in Figure 5.

State\time R (t= 1) W (t = 2) B (t = 3) B (t = 4)
S1 .8 .54 .46 .44
S2 .2 .46 .54 .56
Figure 4: The probability of being in state Si at time t, given output is R W B B
Note we can now do a weighted count over the corpus in order to re-estimate the output
probabilities for the state. For instance, for state S1 we have a count of .8 for R, .54 for W, and .9
for B (since it occurred twice). These sum to 2.24, so we end up we P(R | S1) = .8 / 2.24 = .357.
Figure 5 shows the reestimated output probabilities for all states and outputs.

Standard Notations Used in the Literature
Much of the literature on HMMs and discussion of the forward probability use a
specific notation. We state the forward algorithm in these terms here so oyu can
become familiar with it. Before doing that, we present the standard notations for
defining HMMs.
An HMM l consists of

1. a set of N states S ={S1, ..., SN};
2. a set of R output symbols V = {v1, ..., vR);
3. a k by k matrix Ai,j which are the transition (i.e., Ai,j = Pr(Sj follows state

Si);
4. an output probability distribution B specifying the probability of each

output symbol and each state (i.e., Bj(i) = Pr(Nj outputs vi)
5. An initial state probability distribution P (i.e., P (i) = probability that Si is

the starting state.)
Forward Probability Calculation

Define at(i) = P(Qt=Si, O1, …, Ot)
Given a sequence of length T, and an HMM with transition matrix A and output
probability B,
1. Initialization

a1(i) = P(i) * Bi(o1) for every I (i.e., every node SI)
2. Iteration Step

at+1(i) = (Sj=1,N at(j) Aj,i) * Bi(ot+1) for every i
Backward Probability Calculation

Define bt(i) = P(Ot+1, …, OT | Qt=Si)
Given a sequence of length T, and HMM as before,
1. Initialization

bT(i) = 1
2. Iteration

bt(i) = Sj Ai,j * Bj(ot+1) * bt+1(j)

Lectures 10 and 11 Training HMMs 5

State R W B
S1 .357 .241 .401
S2 .114 .261 .625
Figure 5: The new output probabilities for the HMM
These probabilities can be computed directly from the forward and backward probabilities using
the following standard re-estimation formula.

Re-estimating the Transition Probabilities
To compute the probability of taking the transition Si->Sj, written as Ai,j we can use a similar
argument to the above. For a single time t, we use the forward probability to find out how likely
we are to get to Si at time t, then take Ai,j * P(ot+1 | Sj) as the probability of taking the transition
at time t, and then the backward probability to find out how likely we are to complete the
observation sequence from state Sj, i.e.,

P(Qt=Si, Qt+1=Sj & o1 ... oT) = at(i) * Ai,j * P(ot+1 | Sj) * bt+1(j)
Thus, the probability of taking this transition at any time during the process is the sum of these
terms over time t.

St at(i) * Ai,j * P(ot+1 | Sj) * bt+1(j)
To make this into a “count” we need to compute the probability of ever being in state Si at any
time t. We saw above that the probability of being in state Si at time t is at(i) * bt(i), so the
probability for any time will be the sum over these

St at(i) * bt(i).
We can put these together to get the new estimate for the transition probability Ai,j

New Ai,j = (St at(i) * Ai,j * P(ot+1 | Sj) * bt+1(j)) / St at(i) * bt(i)
For instance, consider calculating the probability that we go from S1 to S2.
We need to consider this at each time step. For t=1 we have

a1(1) * A1,2 * P(B | S2) * b2(2)) = .24 * .4 * .3 * .09 = .0026
For t=2 we get .0024 and t=3 we get .0019. The sum of these gives .007. Likewise, if we add up
the terms for S1-> S1 for all t, we get .0117. The denominator in each of these cases is equal to
the sum of these two values (since it is all the cases that involve a transition from S1), so we get
new transition estimates as follows:

New A1,1 = .007 /(.007+.0117) = .37
New A1,2 = .0117/(.007+.0117) = .63

 St where ot=wk at(i) * b t(i)

St at(i) * b t(i)
new Prob(wk | Si) =

Lectures 10 and 11 Training HMMs 6

The complete set of new transition probabilities is shown in Figure 6.
Transition To S1 To S2
From S1 .63 .37
From S2 .31 .69
Figure 6: The new Transition probabilities.
We can see whether we have a better model now by looking at the probability of the corpus. We
also have calculated the probability of the corpus under the old model:

Pold(RWBB) = Si aT(i) = .01
We the new output and transition probabilities we get

Pnew(RWBB) = .02
doubling the probability of the corpus. Another iteration brings the corpus probability to .028 and
one more to .043!
At this stage, the new output and transition probabilities are shown in Figure 7.

Training with a Corpus
In speech applications, we want to train our HMM models to optimize recognition performance
over a wide number of observation sequences. But the method described above only considered a
single sequence. We will consider a way to generalize this procedure by estimating the
parameters for each of the instances in the training corpus and then combining them.
For instance, if we have four instances in our corpus, O1 = RWBB, O2 = RBWB, O3 = WRBR
and O4 = RRBB, we compute good parameters for each. In the ideal model, the probability of
each of these sequences should be equal, since each occurs the same number of times in the
training corpus. So rather than combining the values computed for each on an equal basis, we
weight each by the inverse of the probability assigned it by the current HMM. For example, say
the current HMM assigns a probability of .3 to RWBB, RBWB and WRBR, and only .1 to
RRBB. Then the weighting we use will be 1/.3 = 3.333 for the first three and 1/.1 = 10 for the
last. By giving more weight to the low probability sequence, we make its parameter estimates
more influential in the new estimate.
Given this, the reestimation formulas for a corpus of observation sequences O1, ..., Ok are:

St akt(i) * bkt(i)/Prob(Ok)

 Sk=1,K (akt(i) * Aki,j * Prob(o t+1 | Sj) *
bkt+1(j))/Prob(Ok)Ai,j =

Transition To S1 To S2
From S1 .43 .57
From S2 .11 .89
New Transition Probabilities

R W B
S1 .53 .27 .2
S2 .01 .23 .76
New Output Probabilities

Figure 7: The New HMM Probabilities After 4 Iterations

Lectures 10 and 11 Training HMMs 7

Prob(oi | Sj) = Sk=1,N Prob(oi | Sj, Ok), for each observation oi and state Sj.
where akt(i) and Bkt(i) are the forward and backward probabilities for the the k’th
observation sequence.

Given a corpus containing instances of M different words, we would perform this procedure on
each set of instances for each word, producing an HMM for each word.

