
Speech Recognition 1

 Lecture 12: An Overview of Speech Recognition

1. Introduction

We can classify speech recognition tasks and systems along a set of dimensions that
produce various tradeoffs in applicability and robustness.

Isolated word versus continuous speech: Some speech systems only need identify
single words at a time (e.g., speaking a number to route a phone call to a company to the
appropriate person), while others must recognize sequences of words at a time. The
isolated word systems are, not surprisingly, easier to construct and can be quite robust as
they have a complete set of patterns for the possible inputs. Continuous word systems
cannot have complete representations of all possible inputs, but must assemble patterns of
smaller speech events (e.g., words) into larger sequences (e.g., sentences).

Speaker dependent versus speaker independent systems: A speaker dependent system
is a system where the speech patterns are constructed (or adapted) to a single speaker.
Speaker independent systems must handle a wide range of speakers. Speaker dependent
systems are more accurate, but the training is not feasible in many applications. For
instance, an automated telephone operator system must handle any person that calls in,
and cannot ask the person to go through a training phase before using the system. With a
dictation system on your personal computer, on the other hand, it is feasible to ask the
user to perform a hour or so of training in order to build a recognition model.

Small versus vocabulary systems: Small vocabulary systems are typically less than 100
words (e.g., a speech interface for long distance dialing), and it is possible to get quite
accurate recognition for a wide range of users. Large vocabulary systems (e.g., say
20,000 words or greater), typically need to be speaker dependent to get good accuracy (at
least for systems that recognize in real time). Finally, there are mid-size systems, on the
order to 1000-3000 words, which are typical sizes for current research-based spoken
dialogue systems.

Some applications can make every restrictive assumption possible. For instance, voice
dialing on cell phones has a small vocabulary (less than 100 names), is speaker dependent
(the user says every word that needs to be recognized a couple of times to train it), and
isolated word. On the other extreme, there are research systems that attempt to transcribe
recordings of meetings among several people. These must handle speaker independent,
continuous speech, with large vocabularies. At present, the best research systems cannot
achieve much better than a 50% recognition rate, even with fairly high quality recordings.

2. Speech Recognition as a “Tagging” Problem,
Speech recognition can be viewed as a generalization of the tagging problem: Given an
acoustic output A1,T (consisting of a sequence of acoustic events a1, …, aT) we want to
find a sequence of words W1,R that maximizes the probability

Speech Recognition 2

ArgmaxW P(W1,R | A1,T)

Using the standard reformulation for tagging by rewriting this by Bayes Rule and then
dropping the denominator since it doesn’t affect the maximization, we transform the
problem into computing

argmaxW P(A1,T | W1,R) P(W1,R)

In the speech recognition work, P(W1,R) is called the language model as before, and
P(A1,T | W1,R) is called the acoustic model.

This formulation so far, however, seems to raise more questions that answers. In
particular, we will address the main issues briefly here and then return to look at them in
detail in the following chapters.

What does a speech signal look like?

Human speech can be best explored by looking at the intensity at different frequencies
over time. This can be shown graphical in a spectogram of a signal containing one word
such as the one shown in Figure 1. Time is on the X axis, frequency is on the Y axis, and
the darkness of the area corresponds to intensity. This word starts out with a lot of high
frequency noise with no noticeable lower frequencies or resonance (typical of an /s/ or
/sh/ sound), starting at time 1.55, then at 1.7 there is a period of silence. This initial signal
is indicative of a “stop” consonant such as a /t/, /d/, /p/. Between 1.8 and 1.9 we see a
typical vowel, with strong lower frequencies and distinctive bars of resonance called the
formants clearly visible. After 1.9 it looks like another stop consonant, that includes an
area with lower frequency and resonance.

The Sounds of Language

The sounds of language are classified into what are called phonemes. A phoneme is
minimal unit of sound that has semantic content. e.g., the phoneme AE versus the
phoneme EH captures the difference between the words “bat” and “bet”. Not all acoustic

Figure 1: A Spectogram of the word “sad”

Speech Recognition 3

changes change meaning. For instance, singing words at different notes doesn’t change
meaning in English. Thus changes in pitch does not lead to phenemic distinctions.

Often we talk of specific features by which the phonemes can be distinguished. One of
the most important features distinguishing phonemes is Voicing. A voiced phoneme is
one that involves sound from the vocal chords. For instance, F (e.g., “fat”) and V (e.g.,
“vat”) differ primarily in the fact that in the latter the vocal chords are producing sound,
(i.e., is voiced), whereas the former does not (ie.., it is unvoiced).

Here’s a quick breakdown of the major classes of phonemes.

Vowels

Vowels are always voiced, and the differences in English depend mostly on the formants
(prominent resonances) that are produced by different positions of the tongue and lips.
Vowels generally stay steady over the time they are produced. By holding the tongue to
the front and varying its height we get vowels IY (beat), IH (bit), EH (bat), and AE (bet).
With tongue in the mid position, we get AA (Bob - Bahb), ER (Bird), AH (but), and AO
(bought). With the tongue in the Back Position we get UW (boot), UH (book), and OW
(boat). There is another class of vowels called the Diphongs, which do change during
their duration. They can be thought of as starting with one vowel and ending with
another. For example, AY (buy) can be approximated by starting with AA (Bob) and
ending with IY - (beat). Similarily, we have AW (down, cf. AA W), EY (bait, cf. EH
IY), and OY (boy, cf. AO IY).

Consonants
Consonants fall into general classes, with many classes having voiced and unvoiced
members.

Stops or Plosives: These all involve stopping the speech stream (using the lips,
tongue, and so on) and then rapidly releasing a stream of sound. They come in
unvoiced, voiced pairs: P and B, T and D, and K and G.
Fricatives: These all involves “hissing” sounds generated by constraining the
speech stream by the lips, teeth and so on. They also come in unvoiced, voiced
pairs: F and V, TH and DH (e.g., thing versus that), S and Z, and finally SH and
ZH (e.g., shut and azure).
Nasals: These are all voiced and involve moving air through the nasal cavities by
blocking it with the lips, gums, and so on. We have M, N, and NX (sing).
Affricatives: These are like stops followed by a fricative: CH (church), JH
(judge)
Semi Vowels: These are consonants that have vowel-like characteristics, and
include W, Y, L, and R.
Whisper: H

This is the complete set of phonemes typically identified for English.

Speech Recognition 4

How do we map from a continuous speech signal to a discrete sequence A1,T?

One of the common approaches to mapping a signal to discrete events is to define a set of
symbols that correspond to useful acoustic features of the signal over a short time
interval. We might first think that phonemes are the ideal unit, but they turn out to be far
too complex and extended over time to be classified with simple signal processing
techniques. Rather, we need to consider much smaller intervals of speech (and then, as
we see in a minute, model phonemes by HMMs over these values). Typically, the speech
signal is divided into very small segments (e.g., 20 millseconds), and these intervals often
overlap in time as shown in Figure 1. These segments are then classified into a set of
different types, each corresponding to a new symbol in a vocabulary called the
codebook. Speech systems typically use a vocabulary size between 256 and 1024. Each
symbol in the codebook is associated with a vector of acoustic features that defines its
prototypical acoustic properties. Rather than trying to define the properties of codebook
symbols by hand, clustering algorithms are used on training data to find a set of
properties that best distinguish the speech data. To do this, however, we first need to
design a representation of the speech signal as a relatively small vector of parameters.
These parameters must be chosen so that they capture the important distinguishing
characteristics that we use to classify different speech sounds. One of the most commonly
used features record the intensity of the signal over various bands of frequencies. The
lower bands help distinguish parts of voiced sounds, and the upper help distinguish
fricatives. In addition, other features capture the rate of change of intensity from one
segment to the next. These “delta” parameters are useful for identifying areas of rapid
change in the signal, such as at the points where we have stops and plosives. Details on
specific useful representations and the training algorithms to build prototype vectors for
codebook symbols will be presented in a later lecture.

Figure 2: Taking 20 ms segments of speech at 10ms intervals

Speech Recognition 5

How do we map from acoustic events (codebook symbols) to words?

Since there are many more acoustic events than there are words, we need to introduce
intermediate structures to represent words. Since words will correspond to codebook
symbol sequences, it makes sense to use an HMM for each word. These word HMMs
then would need to be combined with the language model to produce an HMM model for
sentences. To see this technique, consider a highly simplified HMM model for a word
such as “sad”, and a bigram language model for a language that contains the words
“one”, ”sad” and “but”, as shown in Figure 3. We can construct a sentence HMM by
simply inserting the word HMM’s in place of each word node in the bigram model.
Figure 4 shows an HMM where we have substituted just the word “sag”. To complete the
process we’d do the same from bus and one. Note that the probabilities from the bigram
model are used now to move between the word networks.

How can we train large vocabularies? Applications: Sub Word Models
When we are working with applications of a few hundred words, it is often feasible to
obtain enough training data to train each word model individually. As applications grow
into the thousands of words, or tens of thousands, it becomes impractical to obtain the
necessary training data. Say we need a corpus that has at least 5 instances of each word in
order to train reasonably robust patterns. Then for a ten thousand word vocabulary we
would need well over 50,000 training words as the words will not be uniformly
distributed. Besides being impractical to collect such data, this method would lose all the
generalities that could be exploited between words that contain similar sound patterns,
and make it very difficult to design systems that could adapt to a particular speaker. Thus,
large-vocabulary speech recognition systems do not use word based models, but rather
use subword models.
The idea is that we build HMM models for parts of words, which can then be reused in
different word models. There is a range of possibilities for what to base the subword units
on, including the following:

oneS0

sad

bus

.23
.4

.2

.2

.6

S1/sad

.66

.33
S2/sad

.84

.16
SFS0

1

Part of the Language Model

The word model for “sad”

Figure 3: A simple language model and word model

Speech Recognition 6

phoneme-based models;
syllable-based models;
demi-syllable based models, where each sound represents a consonant cluster
preceding a vowel, or following a vowel;
phonemes in context, or triphones: context dependent models of phonemes
dependent on what precedes and follows the phoneme;

There are advantages and disadvantages of each possible subword unit. Phoneme-based
models are attractive since there are typically few of them (e.g., we only need 40 to 50 for
English). Thus we need relatively little training data to construct good models.
Unfortunately, because of co-articulation and other context dependent effects, pure
phoneme-based models do not perform well. Some tests have shown they have only half
the word accuracy of word based models.
Syllable-based models provide a much more accurate model, but the prospect of having
to train the estimated 10,000 syllables in English makes the training problem nearly as
difficult as the word based models we had to start with. In a syllable based representation,
all single syllable words such as sad, would of course be represented identically to the
word based models.
Demi-syllables produces a reasonable compromise. Here we’d have models such as /B
AE/ and /AE D/ combining to represent the word bad. With about 2000 possibilities,
training would be difficult but not impossible.
Triphones (or phonemes in context, PIC) produce a similar style of representation to
demi-syllables. Here, we model each phoneme in terms of its context (i.e., the phones on
each side). The word bad might break down into the triphone sequence SILBAE BAED
AEDSIL, i.e., a B preceded by silence and followed by AE, then AE preceded by B and
followed by D, and then D preceded by AE and followed by silence. Of course, in
continuous speech, we might not have a silence before of after the word, and we’d then
have a different context depending on the words. For instance, the triphone string for the
utterance Bad art might be SILBAE BAED AEDAA DAAR AART RTSIL. In other words,
the last model in bad is a D preceded by AE and followed by AA. Unfortunately, with 50
phonemes, we would have 503 (= 125,000!) possible triphones. But many of these don’t
occur in English. Also we can reduce the number of possibilities by abstracting away the
context parameters. For instance, rather than using the 50 phonemes for each context, we
use a reduced set including categories like silence, vowel, stop, nasal, liquid consonant,
etc (e.g., we have an entry like VTV, a /T/ between two vowels, rather than AETAE,
AETAH, AETEH, and so on).
Whatever subword units are each, each word in the lexicon is represented by a sequence
of units represented as a Finite State Machine or a Markov model. We then have three
levels of Markov and Hidden Markov models which need to be combined into a large
network. For instance, Figure 4 shows the three levels that might be used for the word
sad with a phoneme-based model

Speech Recognition 7

oneS0

sad

bus

.23 .4
.2

.2

.6

Part of the Language Model

/s/S0
1.0

/ae/
1.0

/d/
1.0 1.0

The word model for “sad”

S1

A1,1

A1,2
S0 S2

A2,2

A2,FA0,1

The phoneme model for /s/
Figure 4: Three Levels in a Phoneme-based model

To construct the exploded HMM, we would first replace the phoneme nodes in the word
model for sad with the appropriate phoneme models as shown in Figure 5, and then use
this network to replace the node for sad in the language model as shown in Figure 6.
Once this is down for all nodes representing words, we would have single HMM for
recognizing utterances using phoneme based pattern recognition.

S1

A1,
1

A1,
2S

0
S2

A2,
2

A2,
F

A0,
1

SF/sad

S0/sad

1.0 1.0 1.0

1.0

S1

A1,
1

A1,
2S

0
S2

A2,
2

A2,
F

A0,
1

S1

A1,
1

A1,
2S

0
S2

A2,
2

A2,
F

A0,
1

Figure 5: The constructed word model for sad

Speech Recognition 8

one

S0
bus

.23

.4

.2

.2

.6

S1

A1,
1

A1,
2S

0
S2

A2,
2

A2,
F

A0,
1

SF/sad

S0/sad

1.0 1.0 1.0

1.0

S1

A1,
1

A1,
2S

0
S2

A2,
2

A2,
F

A0,
1

S1

A1,
1

A1,
2S

0
S2

A2,
2

A2,
F

A0,
1

Figure 6: The language model with sad expanded

How do we find the word boundaries?

We have solved this problem, in theory at least. If we can run a Viterbi algorithm on a
network such as that in Figure 6, the best path will identify where the words are (and in
fact provide a phonemic segmentation as well).

How can we train and search such a large network?

While we have already examined methods for searching and training HMMs, the scale of
the networks used in speech recognition are such that some additional techniques are
needed. For instance, the networks are so large that we need to use a beam or best-first
search strategy, and often will build the networks incrementally as the search progresses.
This will discussed in a future chapter.

