
Signal processing 1

Signal Processing for Speech Recognition

Once a signal has been sampled, we have huge amounts of data, often 20,000 16 bit numbers a
second! We need to find ways to concisely capture the properties of the signal that are important
for speech recognition before we can do much else. We have seen that a spectral representation
of the signal, as seen in a spectrogram, contains much of the information we need. We can obtain
the spectral information from a segment of the speech signal using an algorithm called the Fast
Fourier Transform. But even a spectrogram is far too complex a representation to base a speech
recognizer on. This section describes some methods for characterizing the spectra in more
concise terms.

1. Filter Bank Methods

One way to more concisely characterize the signal is by a filter bank. We divide the frequency
range of interest (say 100-8000Hz) into N bands and measure the overall intensity in each band.
This could be done using hardware or digital filters directly from the incoming signal, or be
computed from a spectral analysis (again derived using hardware or software such as the Fast
Fourier Transform). In a uniform filter bank, each frequency band is of equal size. For instance,
if we used 8 ranges, the bands might cover the frequency ranges

100Hz-1000Hz, 1000Hz-2000Hz, 2000Hz-3000Hz, ... , 7000Hz-8000Hz.

Consider a uniform filter bank representation of an artificially generated spectra similar to that
for the vowel IY shown in Figure 1. We can measure the intensity in each band by computing the
“area” under the curve. With a discrete set of sample points, we could simply add up all the
values in range, or compute a “power” measure by summing the squares of the values. With the
signal shown in Figure 1, we would get a representation of the spectra that consists of a vector of

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1000 2000 3000 4000

IY “beet”

Frequency

Figure 1: Uniform Filter Bank on Spectra for Vowel IY

Signal processing 2

eight numbers, in this case

(1.26, .27, 2.61, .62, .05, .04, .03, .02)

How would we know whether this is a good representation? We’d need to compare it to
representations of other vowels and see whether the vector reflects differences in the vowels. If
we do this, we’ll see there are some problems with a uniform filter bank. Specifically, we know
that much key information in vowels focuses around the formants, which should show up as
intensity peaks in various bands in the filter bank. But if we look back at the frequency ranges of
typical vowels in Table 1 we see a problem. The first format of all vowels will always be in
range 1 so the frequency differences in the F1 of the words will be reflected in the representation.
Then the second formant will almost always in in range 2, and the third formant is typically in
range 3. Thus we will get little information to help distinguish the vowels. If we classify each
vowel by three numbers indicating the filter banks that their formants fall into using the uniform
bank. This encoding separates the vowels into only four classes, with most vowels falling into
one class (all with their formants falling in banks 1, 2 and 3 respectively).

A better alternative is to organize the ranges using a logarithmic scale, and this actually agrees
better with human perceptual capabilities as well. We set the first range to have the width W, and
then subsequent widths are an*W. If a = 2 and W is 200 Hz, we get widths of 200 Hz, 400 Hz,
800 Hz, 1600 Hz, and so on. Our frequency ranges would now be

100Hz-300Hz, 300Hz-700Hz, 700Hz-1500Hz, 1500Hz-3100Hz, 3100Hz-6300Hz

With this set of banks, we see the F1 of vowels vary over three ranges, but F2 falls in only two
ranges, and F3 in one. If we lower the value of a (say to 1.5), we get ranges of widths 200, 300,
450, 675, 1012, 1518, with frequency bands starting at 100Hz, 300 Hz, 600 Hz, 1050 Hz, 1725
Hz, 2737 Hz, and 4255 Hz. With this each of the formants fall across three frequency ranges,
giving us good discrimination.

A R P A B E T Typical Word F 1 F 2 F 3 filter #s
IY beet 270 2290 3010 1, 3, 4
IH bit 390 1990 2550 1, 2, 3
EH bet 530 1840 2480 1, 2, 3
AE bat 660 1720 2410 1, 2, 3
AH but 520 1190 2390 1, 2, 3
AA hot 730 1090 2440 1, 2, 3
AO bought 570 840 2410 1, 1, 3
UH foot 440 1020 2240 1, 2, 3
UW boot 300 870 2240 1, 1, 3
ER bird 490 1350 1690 1, 2, 2

Table 1: Typical formants for vowels and where they fall in a uniform filter bank

Signal processing 3

The third method is to design a non-uniform set of frequency bands that has no simple
mathematical characterization but better reflects the responses of the ear as determined from
experimentation. One very common design is based perceptual studies to define critical bands in
the spectra. A commonly used critical band scale is called the Mel scale which is essentially
linear up to 1000 Hz and logarithmic after that. For instance, we might start the ranges at 200 Hz,
400 Hz, 630 Hz, 920 Hz, 1270 Hz, 1720 Hz, 2320 Hz, and 3200 Hz. The frequency bands now
look as shown in Figure 2. The Mel scale typically gives good discrimination based on expected
formant intensity peaks.

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1000 2000 3000 4000

IY “beet”

Frequency

Figure 2: A set of Mel scale frequency ranges

2. Designing a Good “Window” Function

If we simply take the samples as they are in a segment, when we apply a spectral analysis
technique like the Fast Fourier Transform, it acts like it is operating on a signal that is zero
before the segment starts and then abruptly jumps to the signal during the segment and then back
to zero when the segment ends. When the signal is 0 outside of the window and then jumps to the
actual values within the window, this introduces significant distortion of the signal, making it
appear like there is significant high frequency noise at the beginning and end points of the
window.

The typical method to alleviate this problem is to not count all values in a window equally. We
apply a function to the samples in the window so that the samples near the beginning and end of
the window slowly winnow down to zero. More specifically, if the original signal intensity is s(i)
at time i, we can represented the windowed signal as

s’(i) = s(i) * w(i)

Signal processing 4

where w(i) is the window function. In our segments above, w(i) was a square function that
jumped to 1 inside the segment and was 0 outside. Figure 4 shows a signal for a simple
sinusoidal curve after applying a window function.

1.00

0.00

-1.00

Figure 4: The effect of windowing with a square window function

A common window function that works well is called the Hamming Window and is defined by
the formula

w(i) = .54 - .46 cos(2pi/(N-1))

This function is shown in Figure 5.

1

0

Figure 5: The Hamming Window Function

Applying this to our sinusoidal wave above, it now looks shown in Figure 6. Compare this to
Figure 4 and see that the new signal is considerably smother at the ends. This produces a much
superior spectral analysis.

1.00

0.00

-1.00

Figure 6: Applying the Hamming Window to the Sinusoidal Function

Signal processing 5

3. LPC Analysis

Another method for encoding a speech signal is called Linear Predictive Coding (LPC). LPC is
a popular technique because is provides a good model of the speech signal and is considerably
more efficient to implement that the digital filter bank approach. With ever faster computers,
however, this is becoming less of an issue. The basic idea of LPC is to represent the value of the
signal over some some window at time t, s(t) in terms of an equation of the past n samples, i.e.,

s(t) = a1*s(t -1) + a2*s(t - 2) + ... + ap*s(t - p)

Of course, we usually can’t find a set of ai’s that give an exact answer for every sample in the
window, so we must settle for the best approximation, s’(t), that minimizes the error. We
typically try to measure error by the least-squares difference, i.e.,

St=1,w (s(t) - s’(t))2

If the signal is periodic and hence repeats in a pattern over the window, we can get very good
estimates. For instance, consider a 20 Hz square wave over a 100 ms window sampled at 200 Hz.
Thus there are 20 samples in a window and the wave contains two cycles (one every 50 ms).

The signal s(t) has the values: s(0) = 0, s(1) = 1, s(2) = 1, s(3) = 1, etc, producing the sequence of
values

1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0

Consider the errors obtained from some simple “displacement” approximations Di(t) = s(t - i),
i.e., ai = 1, and all other aj = 0. The error for the approximation D(1) would be

St=1, 20 (s(t) - s(t - 1))2 = (1 - 0)2 + (1 - 1)2 + (1 - 1)2 + (1 - 1)2 + (0 - 1)2 + (-1 - 0)2 ...

Most of these values are zero (a consequence of the exact nature of square waves), but 8 of them
are not and give an error weight of 1 each. Thus the error for this approximation is 8. Notice we
either need to start i samples into the window or we will need some values of the signal before
the window. For the moment, we allow ourselves to “peek” at the signal before the window.

 With a displacement of two, we get an even larger error from terms such as at position 6 with
value (-1 -1)2 = 4. Table 2 in column 2 below shows the error for the values 1 through 10.

Signal processing 6

Displacement Error
1 8
2 24
3 40
4 56
5 64
6 56
7 40
8 24
9 8
10 0

Table 2: Errors for different Displacements

Notice that we get an exact representation of the signal with D10 since s(t) = s(t - 10) (because it
20 Hz signal and thus takes 1/20 of a second, or 10 samples at 200 Hz sampling rate, to repeat.)

Of course, when using the LPC methods, we look for the best approximation with no restriction
to simple displacement functions. Typically, all coefficients ai will be non-zero. Each coefficient
will indicate the contributions of frequencies that repeat every i samples.

We haven’t discussed what value of p is reasonable? Given the relationship between the
displacement and the frequencies it detects, we should pick a p large enough to capture the
lowest frequencies we care about. If this is 200 Hz, then each cycle takes 1/200 of a second, or 5
ms. If we sample at 10 kHz, then 1/200 of a second involves 50 samples, so p should be at least
50. In practice, systems using LPC use even fewer parameters, with typical values between 8 and
16.
4. Building Effective Vector Representations of Speech

Whether we use the filter bank approach or the LPC approach, we end up with a small set of
numbers that characterize the signal. For instance, if we used the Mel-scale with dividing the
spectra into 7 frequency ranges, we have reduced the representation of the signal over the 20 ms
segment to a vector consisting of eight numbers. With a 10 ms shift in each segment, we are
representing the signal by one of these vectors every 10 ms. This is certainly a dramatic
reduction in the space needed to represent the signal. Rather than 10,000 or 20,000 numbers per
second, we now represent the signal by 700 numbers a second!

Just using the six spectral measures, however, is not sufficient for large-vocabulary speech
recognition tasks. Additional measurements are often taken that capture aspects of the signal not
adequately represented in the spectrum. Here are a few additional measurements that are often
used:

Power: a measure of the overall intensity. If the segment Sk contains N samples of this
signal, s(0),..., s(N-1), then the power power(Sk) is computed using power(Sk) = S i=1,N-
1s(i)2. An alternative that doesn’t create such a wide difference between low and soft sounds

Signal processing 7

uses the absolute value: Si=1,N-1 |s(i)|. One problem with direct power measurements it that
the representation is then very sensitive to how loud the speaker is speaking. To adjust for
this, the power can be normalized by an estimate of the maximum power. For instance, if P is
the maximum power within the last 2 seconds, the normalized power of the new segment
would be power(Sk)/P. The power is an excellent indicator of the voiced/unvoiced
distinction, and if the signal is especially noise-free, can be used to separate silence from low
intensity speech such as unvoiced fricatives.
Power Difference: The spectral representation captures the static aspects of a signal over the
segment, but we have seen that there is much information in the transitions in speech. One
way to capture some of this is to add a measure to each segment that reflects the change in
power surrounding it. For instance, we could set PowerDiff(Sk)= power(Sk+1)-power(Sk-1).
Such a measure would be very useful for detecting stops.

Spectral Shifts: Besides shifts in overall intensity, we saw that frequency shifts in the
formants can be quite distinctive, especially with diphongs and in looking at the effects of
consonants next to vowels. We can capture some of this information by looking at the
difference in the spectral measures in each frequency band. For instance, if we have eight
frequency intensity measures for segment Sk, fk(1),...,fk(8), then we can define the spectral
change for each segment as with the power difference, i.e., dfk(i) = fk-1(i)-fk+1(i)

With all these measurements, we would end up with a 18-number vector, the 8 spectral band
measures, eight spectral band differences, the overall power and the power difference. This is a
reasonable approximation of the types of representations used in current state-of-the-state speech
recognition systems. Some systems add another set of values that represent the “acceleration”,
and would be computed by calculating the differences between the dfk values.

Note that we do not need to explicitly store the delta parameters since they can be computed
quickly when needed. For instance, consider the following sequence of vectors

Power m1 m2 m3 m4 m5 m6 m7 m8
v1 (5, 0, 1, 0, 1, 0, 1, 0, 1)
v2 (3, 0, 0, 1, 0, 0, 1, 1, 1)
v3 (6, 2, 1, 1, 0, 1, 2, 1, 2)
v4 (30, 10, 10, 3, 1, 4, 6, 6, 6)
v5 (50, 15, 15, 5, 3, 8, 12, 12, 13)
v6 (52, 16, 15, 4, 3, 9, 13, 11, 13)
v7 (48, 15, 15, 6, 3, 9, 9, 11, 10)

We can expand these out “on the fly” to extend the current vector with the delta coefficients:
Dv2 (1, 2, 0, 1, -1, 1, 1, 1, 1)
Dv3 (27, 10, 10, 2, 1, 4, 5, 5, 5)
Dv4 (46, 13, 14, 4, 3, 7, 10, 11, 11)
Dv5 (22, 6, 5, 1, 2, 5, 7, 5, 7)
Dv6 (-2, 0, 0, 1, 0, 1, -3, 1, -3)

Signal processing 8

This example shows what we would expect to see in a voiced stop - a rapid increase in energy
peaking at Dv4 which then levels out.

5. Improving Vector Representations in Speech Recognition
If the vector representation is to be useful for speech recognition, then we’ll need to define a
distance metric that indicates how similar two vectors sound to each other. Note that there are
many possible distance metrics and only some will correspond to perceptual differences in the
signal. This section explores some of these issues.

A standard distance metric is a function d(vi,vj) with the following properties

The distance between two identical points is zero (i.e., d(vi,vi) = 0)

The distance between two different points is greater than 0 (i.e., d(vi,vj) > 0 for all i ≠ j)

Distances are symmetric (i.e., d(vi,vj) = d(vj,vi), for all i and j)

Distances satisfy the triangle inequality (i.e., d(vi,vk) ≤ d(vi,vj) + d(vj,vk))

A very common distance metric is the Euclidean distance, which is defined as

d(vi,vj) = SQRT(Sx=1,N (vi(x)-vj(x))2). where SQRT is the square root function.

Another common distance measure is the “city block” measure, where distance is measured in
terms of straight line distances along the axis. In two dimensions, this means you can only move
vertically or horizontally. The metric is

d(vi,vj) = Sx=1,N |vi(x)-vj(x)| (i.e., the sum of the absolute values for each dimension)

To enable accurate speech recognition, we would like to have a vector representation and a
distance measure that reflects perceptual differences found in humans. The current representation
used above falls short in a number of critical areas and would classify different spectra that are
perceptually quite similar to humans as quite different. For example, it makes little perceptual
difference to a human whether a person is speaking slightly more loudly or softly. A person
maybe able to notice the difference but it is not relevant to the speech sounds perceived. But
currently our vector quantization measure is quite sensitive to intensity changes. For the sake of
keeping the examples simple, lets consider a representation consisting of a 5 element vector
indicating the overall magnitude and 4 Mel scale frequency ranges

(30, 22, 10, 13, 5).

If this same sound was uttered but with twice the intensity (say the microphone was turned up
slightly), we might get measures that are essentially double, i.e.,

(60, 44, 20, 26, 10).

A Euclidean difference measure between these would give the value 40.96, the same as the
difference between the original vector and absolute silence (i.e., (0,0,0,0,0)). Clearly this is not a
good measure!

Signal processing 9

There are several things that can be done to get around this problem. First, we might consider
that human perceptual response to signals is more closely related to a logarithmic scale rather
than a linear scale. This suggests that we use a log filter bank model, which uses a logarithmic
scale for the values. One method would be to simply take the log of all values when we construct
the vectors. For the above example, our first vector would now be

(1.48, 1.34, 1, 1.11, .7)

and the vector at double the intensity would be

(1.78, 1.68, 1.3, 1.43, 1).

Now the Euclidean distance between the two vectors is .67 compared to the distance of 2.59
between the first vector and absolute silence. So this is a good step in the right direction.

Another method for compensating for differences in intensity is to normalize all intensities
relative the mean (or maximum) of intensities found in the signal, like we did with power in the
last section. As before, we can estimate the mean by finding the mean of the intensity measures
over some previous duration of speech, say 2 seconds. If the mean vector at time i is Fm, and the
filter bank values at i are the vector Fi, then our vector representation would be Fi-Fm, i.e.,

(Fi(1)-Fm(1), ..., Fi(k)-Fm(k)).

This introduces considerable robustness over differences caused by different speakers,
microphones and the normal intensity variations within the speech of a single person over time.

Perceptual studies have found other distortions of the signal that appear to have little perceptual
relevance to recognizing what was said, including

Eliminating all the frequencies below the first formant

Eliminating all frequencies above the third formant

Notch filtering: removing any narrow range of frequencies.

On the other hand, other apparently small changes in the spectra can make large perceptual
differences. Changing a formant frequency by as little as 5% can change the perceived phoneme.
Clearly such a difference is not going to create much distinction in our filter bank representation.
On the other hand, the three non-significant changes above could make significant changes to the
values in our representation.

There are several ways to compensate for this problem. One is to use a weighted Euclidean
distance measure (a commonly used measure is called the Mahalanobis distance), where
changes in some bands are much more critical than changes in other bands. For example, with
our 8 band Mel scale filter bank, we might weight the bands possibly involving the first formant
(e.g., 200-440, 400-630, 630-920) the most, and downplay the weight of the band above 3200
Hz. Thus we define distance as between vector vi and vx as

d(vi,vx) = SQRT(Sk wk* (vi(k) - vx(k))2

Signal processing 10

Of course, pulling the weights wk out of a hat is unlikely to produce the best performance, and a
good set of weights would be derived by empirical means by testing how different weights affect
the recognition rate.

Another technique that has proven to be effective in practice is to compute a different set of
vectors based on what are called the Mel Frequency Cepstral Coefficients (MFCC). These
coefficients provide a different characterization of the spectra than filter banks and work better in
practice. To compute these, we start with a log filter bank representation of the spectra. Since we
are using the banks as an intermediate representation, we can use a larger number of banks to get
a better representation of the spectra. For instance, we might use a Mel scale over 14 banks
(ranges starting at 200, 260, 353, 493, 698, 1380, 1880, 2487, 3192, 3976, 4823, 5717, 6644, and
7595). The MFCC are then computed using the following formula:

ci = Sj=1,14 mj * cos(p*i*(j - 0.5)/14) for i = 1, N

where N is the desired number of coefficients. What this is doing is computing a weighted sum
over the filter banks based on a cosine curve. The first coefficient, c0, is simply the sum of all the
filter banks, since i = 0 makes the argument to the cosine function 0 throughout, and cos(0)=1. In
essence its an estimate of the overall intensity of the spectrum weighting all frequencies equally.
The coefficient c1 uses a weighting that is one half of a cosine cycle, so computes a value that
compares the low frequencies to the high frequencies. These first two weighting functions are
shown in Figure 7.

1.00

0.00

-1.00

Figure 7: The weighting given to the spectrum for c0 and c1

Expanding out the equation, we get
c1 = 0.99*m1 + 0.94*m2 + 0.84*m3 + 0.71*m4 + 0.53*m5 + 0.33*m6 + 0.11*m7
 -0.11*m8 - 0.33*m9 - 0.53*m10 - 0.71*m11 - 0.85*m12 - 0.94*m13 - 0.99 * m14

The function for c2 is one cycle of the cosine function, while for c3 it is one and a half cycles,
and so on. The functions for c2 and c3 are shown in Figure 8.

Signal processing 11

1.00

0.00

-1.00

Figure 8: The weighting given to the spectrum for c2 and c3

This technique empirically gives superior performance and this representation is used in many
state-of-the-art recognition systems. In other words, an 8 element vector based on the MFCC will
generally produce better recognition than an 8 element vector based on Mel scale filter banks
plus the overall power. We don’t need an overall power measure in the MFCC since the power is
estimated well by the c0 coefficient. When using the MFCC we also need to use delta
coeeficients as well. These can be computed in the same way by substracting the values of the
previous frame from the values of the following frame. Combining the MFCC and its delta
coefficients, we end up with a 16 element vector representing each frame of the signal which is
quite effective in practice.

