
Lecture 16: Code Books -1- 10/21/03

Lecture 14: Characterizing the Speech Signal for Speech Recognition: Code Books

1. Vector Quantization

Once a distance metric is defined, we can further reduce the representation of the signal by
vector quantization. This approach classifies each frame into one of N categories, each
represented by canonical vector that is associated with a symbol in the code book. Once a frame
is classified by a codebook, can be represented by a single symbol that indicates which code
value it is closest to. Many speech recognition systems use code book representations, though not
all. In a later lecture we will see an approach that uses the vectors directly and does not need a
code book.

How many categories are needed to make a good code book? Ideally, we want enough elements
to capture all the significant different types of spectra that occur in speech. You might think that
we could base the code book on phonemes, and thus need only 40. But there are several reason
why this is a bad idea. First, a code book category represents a short segment of speech, say 20
ms, while phonemes typically cover longer stretches, sometimes up to 500 ms. Also, the sound
over the course of a single phoneme is not constant. Consider the signal over a stop - there is
silent section, an onset of signal and voiced or unvoiced segment that follows. This is far too
complex to represent as one canonical vector! To be effective, code books must be based on
acoustic properties, and we will need to develop additional mechanisms to identify phonemes
from a sequence of code book vectors. As a result, there is not necessarily a strong
correspondence between any one code book vector and a particular phoneme. A single code
book vector might play an important role in many different phonemes (e.g., a “silence vector
would play a key role in all stops). In practice, good recognition systems have been built that use
256 vector code books, though better recognition can be obtained by larger code books such as
512 or 1024. Counterbalancing the added precision we get with a larger code book size is the
problem of the added complexity in recognizing the phonemes from the larger code book.
Specifically, the larger the code book that larger the amount of training data we would have to
have to define the recognition system.

We could just make up our code book vectors, but it would be very unlikely that this set would
produce a good recognition system. Rather, code book vectors are defined by training on a
training corpus of speech that minimizes the overall distortion, which is the sum of each input
vectors’ distance from the code book vector that it is identified with. To see this, consider a 2-
dimensional example. Figure 1a shows a plot of four input vectors (the squares) classified into
two groups by two code book vectors (the circles). It also shows the distance between each input
vector and its associated code book vector. Figure 1b shows the same four input vectors with a
different pair of code book vectors. The accumulated distortion for the code book in 1a is 4.416,
while the accumulated distortion for 1b is 5.416. Thus the code book in 1a is better by this
measure. Note that if we evaluated code books by how evenly they divided up the space, we
would prefer code book 1b. But dividing up the space evenly is unlikely to be a reasonable goal
in itself as we would not expect the range of different speech sounds to be evenly distributed. It
is much better to obtain code book vectors that minimize the distortion as measured by the
distance function.

Lecture 16: Code Books -2- 10/21/03

(1,2)

(3,1)

(4,2)

(2,3)

(2,2)

(4,3)

1

1

1.416

1

(1,2)

(3,1)

(4,2)

(2,3)(1,3)

(4,0)

1

1

2

1.416

Figure 1: a. Code book Vectors: (2,2) and (4,3) b. Code book vectors: (1,3) and (4,0)

You may have noticed that there are better code book vectors for this example than shown in 1a.
For instance, the (4,3) vector could be moved to (4,2), giving no distortion for that point and
reducing the total accumulated distortion to 3.416. But an even better pair of code book vectors
would be (1.5, 2.5) and (3.5, 1.5), which would give a total distortion of 2.8 (i.e., each distance is
.7).
Given a specific code book, we can check if it can be improved by the following procedure.

For each code book vector, gather the training vectors that are closest to it.
Compute the centroid of this set, and make this the new code book vector.

The centroid is the value that minimizes the sum of the distances to each of a set of vectors. Thus
this technique can only improve the overall distortion measure. If the code book vector already is
the centroid, then this does not change the value. The method of computing the centroid differs
depending on the distance measure used. For the Euclidean metric we are using in this example,
the centroid is simply the mean vector, i.e., given a set of N vectors vi, each of form (vi(1), ...,
vi(k)), then the centroid vector is

(Si=1,Nvi(1))/N, ..., Si=1,Nvi(k))/N)

For example, consider the three training vectors classified with the code book vector (2,2) in
figure 1a: (2, 3), (1, 3), and (2, 1). The centroid is ((2 + 1 + 3) / 3, (2 + 3 + 1) / 2) = (2, 2). Thus
it can’t be improved. For the code book vector (1, 3) in Figure 1b we have the training vectors (1,
2) and (2, 3). The centroid of these two vectors is (1.5, 2.5), which does reduce the distortion.

These ideas can be generalized to produce an algorithm that iteratively improved the entire set of
code book vectors, called the K-means clustering algorithm. Given an initial set of N code
book vectors Ci and a set of training vectors, we do the following steps:

Classification: Cluster the training vectors by its closest code book vector according to
the distance function;

Centroid Update: Update each code book vector to be the centroid (relative to the
difference function used) of the training vectors assigned to it.

Iteration: If the improvement in overall distortion is greater than some threshold t, then
repeat from step 1.

Lecture 16: Code Books -3- 10/21/03

Consider an example. We can start this algorithm with code book vectors that are randomly
chosen from the training set. Consider this with six vectors shown in figure 2.

(1,2)

(3,1)

(4,4)

(2,3)

(2,2)

(1, 1)

Figure 2: Six training vectors

Say we randomly pick (1,1) and (1,2) as the initial code book vectors. We then get the following
clusters of points:

For (1,1): (1,1), (3,1)
For (1,2): (1,2), (2,2), (2,3), (4, 4)

The centroids of these sets give us the new code book vectors (2, 1) and (2.25, 2.75), and the
overall distortion is reduced from 8.02 to 6.71.

Reclassifying the training set we now get the following clusters:
For (2,1): (1,1), (3, 1), (1,2)
For (2.25, 2.25): (2,3), (4, 2), (4, 4)

The centroids of these sets give us the new code book vectors (1.66, 1.33) and (3.33, 3) and
reduce the overall distortion from 6.71 to 6.34.

Reclassifying the training set we now get the following clusters:
For (1.66, 1.33): (1, 1), (3, 1), (1, 2), (2,2)
For (3.33, 3): (2, 3), (4, 4)

The centroids of these sets give us the new code book vectors (1.75, 1.5) and (3, 3.5) and reduce
the overall distortion from 6.34 to 5.94. If we reclassify the training set again we obtain exactly
the same clusters and hence the estimates cannot be improved. In a realistic sized example, it
would be very unlikely not to change the clusters with each iteration and the algorithm would
continue until the improvement falls below the threshold set. Figure 3 summarizes the iteration
steps and the values of the code book vectors at each iteration.

Lecture 16: Code Books -4- 10/21/03

 Figure 3: The refinement of code book vectors

(1,2)

(3,1)

(4,4)

(2,3)

(2,2)

(1, 1)

While this algorithm works reasonably well most of the time, it is not guaranteed to find the
optimal set of code books. It is a hill-climbing algorithm and may find a set of code book vectors
that can’t be improved using the procedure and yet are sub optimal. There are methods to help
choose the initial codebook vectors to improve the chances of obtaining a good set. One
technique resembles a binary search. It first computes the best codebook of size 1, then uses this
to obtain the best of size 2, then 4 and so on. The best vector for a codebook of size one is simply
the centroid of the entire training set. This point is then split by adding or subtracting some small
increment I to the vector. The K-means iterative algorithm is then used to refine these estimates.
Then the resulting best values are split by adding or subtracting the same increment to each and
repeating the process. For example, with the above training set, the centroid is (2.17, 2.17). If we
split using an increment of .05, we get two starting points for the 2 vector codebook of (2.22,
2,22) and (2.12, 2.12). After clustering and computing the centroid we’d get the new values of
(1.75, 1.5) and (3, 3.5), which is the best answer obtained above. If we split again, we’d get four
vectors (1.70, 1.45), (1.8, 1.55), (2.95, 3.45), and (3.05, 3.55). With only six vectors, however,
there’s not much point in continuing the example!

Consider a slightly better example. Figure 4 shows a plot of 35 instances of the F1 and F2
frequencies of five different vowel sounds (UW, UH, AO, AH, ER). The centroid of these 35
points is (532,1167).

2000

1000

0

F
2

2000160012008004000
F1

Figure 4: Plot of F1,F2 for 35 vowels showing centroid at (532, 1167)

Lecture 16: Code Books -5- 10/21/03

If we split this into (531, 1166) and (533, 1168), they create two clusters of size 17 and 18. The
centroids of these produce the codebook vectors (418, 919) and (639,1400), which after one
iteration of the algorithm converges to (456, 926) and (620, 1452) and produces the partition
shown in Figure 5.

2000

1000

0

F
2

2000160012008004000
F1

Figure 5: The 2-vector partition

If we split these points to (455, 925), (457, 927), (619, 1451), (621, 1453) and reclassify the
training set, the centroids of the new clusters are (373, 762), (533,1074), (508, 1370), (764,
1557), which after five iterations produce the vectors (373, 762), (537, 1121). (505, 1535), (921,
1500). This partition consists of clusters of 9, 14, 8 and 4 training vectors respectively and is
shown in Figure 6.

2000

1000

0

F
2

2000160012008004000
F1

Figure 6: The 4 vector partitioning

If we now look at where each vowel in the original set falls, we see that the following
classification:

(373, 762): 5 UW, 1 UH, 3 AO
(537, 1121): 2 UW, 4 UH, 4 AO, 3 AH, 1 ER
(505, 1535): 2 UH, 6 ER
(921, 1500): 4 AH

Note the cluster tends to gather together instances of the same vowel (e.g., 6 out of 7 ER’s are in
the third cluster, but UH is spread across three clusters). There are two observations to make

Lecture 16: Code Books -6- 10/21/03

from this result. First, if we split the vectors another time to produce 8 code book vectors, we
probably would get better association between clusters and particular vowels. But we will never
find a set of clusters that uniquely identify the vowels as the ranges of the F1-F2 values for each
vowel overlap. If we had a higher dimension representation we might get better discrimination,
but some instances of different vowels will always be indistinguishable. In fact, vowels that are
in unstressed syllables tend to start to all look alike, converging on a neutral vowel sound often
called a “schwa”.

2. Multiple Codebooks
Many systems, allow the input to be analyzed along different aspects, sometimes called streams.
For instance, instead of using a vector of 21 elements (7 filter banks, seven delta, seven
acceleration), it allows the input to be represented as 3 vectors:

7-element static coefficients
7-element delta coeff
7-element accel. Coeff

What effect could this have? The claim is that it gives more uniform coverage. Why? Major
differences in one area might get smoothed by similarities in others. For instance, consider a
case with 2 element vectors, producing a vector of size 9. The combined vector would be (f1, f2,
d1, d2, a1, a2, e, de, ac). Say we have two instances of the same sound, but one instance was said
when a door slammed, causing a significant spike in the delta coefficients. Say the vector
without the noise was

V1 = (5, 8, 2, 1, 1, 0, 9, 2, 1)

and the vector with the door slam

V2 = (7, 10, 4, 6, 1, 0, 10, 4, 1).

Say we have two codebook vectors: A represented by (6, 7, 1, 1, 1, 1, 8, 2, 1) and B by (5, 5, 5,
5, 1, 2, 8, 1, 1). Using Euclidean distance, we find that the following distance measures

A B
V1 2.23 6.3
V2 7.2 6.9

As a result, V1 would be classified as an A, and V2 would be classified as a B.

Consider now the case where we have four streams, and vector V1 becomes V11 (first two
values), v12 (the delta values, 3rd and 4th), v13 (the acceleration values, 5th and 6th), and V14 (the
energy, delta energy and acceleration energy values, the 7th, 8th asnd 9th values), and we break up
V2 similarly. Similarly, the codebook symbols A and B break up into A1, A2, A3, A4, B1, B2
B3, and B4. The distances are then as follows. In stream one, the inputs are (5,8) and (7, 10) and
code A1 is (6, 7) and B1 is (5, 5). The distances are

Lecture 16: Code Books -7- 10/21/03

A1 B1
V11 1.4 3
V21 3.16 5.4

Thus, on stream one, both are classified as A1. Continuing for each stream, we get the
classifications shown here:

Vector Stream 1 Stream 2 Stream 3 Stream 4
V1 A1 A2 A3 A4
V2 A1 B2 A3 A4

With 4 streams, V1 and V2 are still classified by the same codebook symbols in 3 streams, and
differ only on one. We could then use these complex values in an HMM by having each node
emit four symbols rather than one at each time point, and the probability of a sequence would be
some combination of the probabilities of each stream.

3. Doing Without Codebooks: Continuous Density Models

There is another way to build HMMs that does not rely on a codebook at all. Rather than each
node having a probability distribution over a set of codebook symbols, the node has a probability
distribution over the vectors themselves. This is called a continuous density model, and is often
preferable because it avoids any errors that could be introduced in the quantization phase.
To implement this, we need to construct a probability density function over the vectors, which
because each vector in the training data may be distinct, cannot be done directly.
The space of elements is just too large (theoretically is infinite if we allowed arbitrary numbers
for each vector value). But even if we only allowed 256 values for each value, the number of
possible n element vectors would be 256n! Instead, we need to assume that the probability
density function takes a certain form, in practice the Gaussian or Normal distribution, and then
use the data to best estimate the parameters that define the distribution (namely the mean and
variance). The formula for the Normal distribution is

N(x, m, s) = 1 /(SQRT(2p)*s) * e-(x – m)2 / (2 s2)

Where m is the mean of the
distribution and s is the standard
deviation. This is the classic Bell
curve centered on m with s as a
measure of “width”. For instance,
figure 7 shows two normal
distributions, both with mean 5. The
first (blue) has a standard deviation of
2, and the second a standard deviation
of 1. Note that more probability mass
is distributed further from the mean as
the standard deviation gets larger.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

Series1
Series2

Figure 7: Two simple Normal Distributions

Lecture 16: Code Books -8- 10/21/03

A Simple Guassian Model of Points

Consider the simplest example of using Guassian distributions as a representation using 1-
element vectors (i.e., points). If the training data consists of the 2, 5, 9 and 10, then we can
construct a normal distribution that maximizes the probability of these values by computing the
mean and variance of the data using the formulas:

m = Si xi / N, where N is the number of samples
= 26/4 = 6.5

for the above four points. The formula for variance is

s = SQRT(Si (xi – m)2 / N)

Applying this to the four points, we get

=SQRT(((2 – 5.3)2 + (5 – 5.3)2 + (9 – 5.3)2 + (10-5.3)2) / 4)
= SQRT(10.25)
= 3.2

Using N(x, 6.5, 3.2) as the probability mass function, if we multiply the results for the four
values we get a corpus mass of 3.2e-5. It can be proven that no other Normal distribution would
assign a higher total probability to these four numbers.

Simple Guassian Mixtures

We could get a better approximation of this data if we allowed a more complex probability
density function. For instance, we could assume that the pdf is defined by a linear combination of
2 Guassians, N(x, m1, s1) and N(x, m2, s2), i.e.,

p(x) = l1 * N(x, m1, s1) + l2 * N(x, m2, s2) such that l1 + l2 = 1.
In practice, it is hard to estimate the lambdas, and so typically some prior, like the uniform
distribution, is used. So then our formula would be
p(x) = .5 * N(x, m1, s1) + .5 * N(x, m2, s2)

We can use a generalization of the K-means algorithm to find two reasonable normal
distributions that (locally) maximize the probability of the unseen data. Just by inspection, we
might pick two clusters, 2 and 5 in one, and 9 and 10 in another. With these we’d get

m1 = 3.5, s1 = 1.5 and
m2 = 9.5, s2 = .25.

With distribution one, the probability of 2 is 0, 5 is 0, 9 is .48 and 10 is .48. With distribution
two, the probability of 2 is .16, 5 is .16, 9 is .0003 and 10 is .00002.
Combing these two Guassians to obtain our probability distribution, we get:

P(2) = .5 * 0 + .5 * .48 = .24

Lecture 16: Code Books -9- 10/21/03

P(5) = .5 * 0 + .5 * .48 = .24
P(9) = .5 * .16 + .5 * .0003 = .1603
P(10) = .5 * .16 + .5 * .00002 = .16.

As is easily seen, this new model greatly increases the probability of seeing the unseen data
(consider the entropy calculation of (.05, .11, .09, .07) vs (.24, .24, .16, .16)).

Multivariate Guassian Models
To apply this technique to speech recognition, we need to generalize it to handle non-trivial
vectors. One way to generalize this would be to model each dimension of the vector by its own
Guassian. Thus, for a vector of size n, we would compute a mean mi and standard deviation si for
each of the n dimensions. Assuming independence of each dimension, the probability of a n-
dimensional vector v1 = (v1,1, v1,2, …,v1,n) would be

P(vi) = Pj N(vi,j , mj, sj)

We can do a little better than this, and relax the independence assumption a bit. This involves
computing a better variance model that captures correlations between different dimensions. This
is captured by the covariance matrix defined by

Cov(i, j) = Pk ((vk,i -mi) * (vk,j -mj))
Let the matrix defined by the covariance be S. Note that the diagonals of this matrix are the
variances of each dimension, i.e.,

Cov(i,i) = si
2

.

We can then define the multivariate normal distribution as
N(vi) = 1 / (SQRT(2pn

 * |S|) * e

|S| =

