
Lecture 16: Applications Using Ordered Alignment Models

Many of the problems we have seen so far can be seen as the translation of some source stream
of data into a target stream. For instance, in part of speech tagging we have a source stream of
words and an output stream of POS tags. In the tagging models we have seen there has been a
one to one correspondence between elements in the two streams (i.e., there is one tag for each
word). Additional complications arise when this restriction is relaxed and many elements in the
source stream might correspond to one element in the target stream (e.g., a many acoustic events
in a speech stream correspond to one word), or the corresponding elements may appear in
different orders in the two streams (e.g., the red house corresponds to la maison rouge in French,
but the second word in English, red, corresponds to the third word, rouge, in the French
sentence. In this lecture we will look at techniques for aligning two streams of data, i.e.,
identifying the correspondences. We will assume, however, that the alignments preserve order,
and discussion of more general alignment models until we discuss Machine Translation. This
will give us another opportunity to look at the EM algorithm for learning probabilistic models
from data when the alignment is not known.

1. Min-Edit Distance Models

One particular class of problems that use alignments involve comparing two streams and
determining how “different” they are. Typically, the distance measure is formalized in terms of
the cost of the editing operations required to transform one stream into the other. For example, in
a spelling correction application say we are given the input
SPECH and the dictionary includes the words SPEECH, SPEC, SPECK and SPECS. Which of
these is closest? If we look at each of these cases, we see different editing operations that we
would need.

Insertion: the difference between SPECH and SPEECH is that we have to insert a letter
(namely E).
Deletion: The difference between SPECH and SPEC is we have to delete a letter (namely
H).
Substitution: The difference between SPECH and SPECK is that we have to substitute
one letter (H) for another (K).

We could, of course, model a substitution operation as one delete and an insert, but by keeping it
as a separate operation allows to assign a cost to the operation independently of insertions and
deletions. We might, for instance, look at a corpus of spelling errors and find that insertion errors
occur most frequently, followed by substitutions, and finally deletions. We could set the costs of
these operations so that we would prefer the common types of errors over the rarely ones when
finding the word with the minimum edit-distance cost. Note that for spelling, we might have
other edit operations as well, such as transpositions (e.g., typing RG rather than GR), as we may
want to model this as an independent operation rather than as two substitution errors.

Note that we can represent deletion, insertion and substitution errors in terms of an alignment
between the two words that show how the letters correspond, using a special symbol e where
there is no corresponding letter. For example, consider the edit distance between SPEECH and
SPECKS as shown here:

S P E E C H e
| | | | | | |
S P E e C K S

In the fourth position we have a deletion operation, in the sixth a substitution operation and in the
seventh an insertion operation. If all these operations have the same cost, say 1, then the distance
between these words would be 3. But note that there are other possible alignments between these
words, not only

S P E E C H e
| | | | | | |
S P e E C K S

which has the same distance, but also strange alignments such as

S P e E E C H e
| | | | | | | |
S e P e E C K S

which has a cost of 5! So, when we talk of the difference between two streams we always want
to know the minimum edit distance. This means that we need an algorithm to find the minimum
edit difference. It might seem that this is a simple algorithm, but it can be complex. A decision
that looks good early on might lead to problems later on. For instance consider finding the
minimum cost alignment between SPEECH and SPSPEECH. Working left to right, it might
seem we can align the two initial S’s, followed by the two P’s, but this leads us to the alignments
like

S P E E C H e e
| | | | | | | |
S P S P E E C H

which contains 6 errors. When we have two letters that differ, how do we know if it would be
best to treat it as a substitution, insertion or deletion error?

This turns out to be another problem for which a dynamic programming algorithm (like the
shortest-distance graph search, and the Viterbi and Forward algorithms) is useful. As in the
Viterbi search of an HMM, this problem has the property that the shortest path to a state S is
always part of any solution of which state S is part. In fact, we can see this quite directly by
formalizing the algorithm as a search through a graph. The states of the search are a pair of
indices (i, j), which say we are currently at the i’th position in the source stream, and j’th position
in the target stream. For example, the state (1,3) with the SPEECH and SPSPEECH example
above would mean we are at the S in SPEECH and the second S in SPSPEECH. There are three

ways we could have got to this state, captured by
the following alignments, where errors are marked
by a thicker alignment marker:

S e e e S e e e S
| | | | | | | | |
S P S S P S S P S

If we assign a cost of 1 to all errors, then the first
possibility costs 2, the second 3 and the third 2. So
the minimum cost to state (1,3) is 2, and we could
have got there using the first or third alignment.
Which one we used to get to (1,3) does not affect
anything that can happen after, so we can just
remember one of these. The Min-Edit Distance Algorithm is show in Figure 1. Note that the
substitution cost would be 0 if the i’th letter in the source equals the j’th letter in the
target, and 1 (or whatever we set) if they are different. In addition, when find the minimum
length at each stage, we must remember which edit operation was used to produce extend the
search to the current state. This maintains a record of the search the same way that the Viterbi
algorithm saves a back pointer to the previous state on the the maximum probability path.
Essentially, this algorithm is simply finding the minimum cost path through the graph shown as
Figure 2.

We could of course generalize this model further. The substitution cost could depend on how
often the two letters are confused. The cost for an insertion or deletion might depend on the
symbol being deleted (say some letters are more commonly omitted than others), In any event,
we a fast method to computing edit distance, we can easily build a spelling correction algorithm.
When faced with an unknown word, we simply substitute the known word that is closest to it.

2. An Application of Min-Edit Distance: Accuracy Scores for Speech
Recognition

Besides spelling correction, min-edit algorithms are useful for other tasks. Here we look at one
more example, determining the accuracy of speech recognition systems. This maps to a min-edit

Let MinCost(i,j) be the minimum cost to state (i,j). Then we can compute the costs for all the states as
follows:

For i = 1, N
For j = 1, M

MinCost(i, j) = Minimum{ Insertcost + MinCost(i-1, j);
deleteCost + MinCost(i, j-1);
substituteCost(i,j) + MinCost(i-1, j-1)}

Figure 1: The Min Edit Distance Algorithm

(0,0)

(1,0)

(0,1)

(0.2)

(1,1)

(0,2)

(2,2)

(2,1)

(1,2)

i-cost

i-cost

i-cost

i-cost

i-cost

i-cost

i-cost

i-cost
d-cost

d-cost

d-cost

d-cost

d-cost

d-cost
d-cost

S-cost(1.1)

S-cost(1.2)

S-cost(2,1)

S-cost(2,2)

Figure 2: Viewing min-edit as a graph search

Figure 2: Part of the graph for MinEdit Search

distance problem easily: the source stream is the output of the speech recognizer, and the target
is an accurate transcription of the speech. Thus, the SR may have recognized

HE WORE TIES IN THE OLD STORE

whereas what was actually said was

HE SAW THE PIE IN THE STORE

We can measure the difference between these two streams using the edit distance idea, finding
the minimum cost sequence of insertions, deletions and substitutions to make the strings
identical. Assuming an equal cost of 1 for each error type, a minimum cost alignment is

HE WORE e TIES IN THE OLD STORE
| | | | | | | |
HE SAW THE PIE IN THE e STORE

There is one insertion error, one deletion and one substitution error in this minimum cost
alignment. The usual way to combine these numbers into a single score is called the word error
rate (WER) and it is defined as follows:

WER = 100 * (#insertions + #deletions + #substitution errors) / Length of transcript

So the word error rate on the above example is 300/7 = 42%. Note that while results are usually
reported in terms of percent, this is not technically accurate for WER can exceed 100! For
example, if the sentence was really HELLO, and the SR recognized HE WROTE, the WER
would be 200 “percent”.

3. Simple Translation Problems Using Alignment: Grapheme to
Phoneme Conversion

Alignment models are also useful in translation problems where there is not a one-to-one
correspondence between the words in the source language and words in the target language. For
example, say we are trying to build a program to derive phonetic pronunciations from English
word. The word KEY maps to the phoneme sequence /k/ /i/, and SEEK maps to /s/ /i/ /k/. We
like to develop a probabilistic model that provides us with the most likely translation, i.e., how
often does the letter E map to /i/ and how often to some other phoneme like /e/ as in GET. In
other words, we are trying to solve a problem of the form

 argmaxT P(T1,N | S1, M)

where T1,N is any sequence in the target language of length N and S1,M is the sequence in the
source language that we want to translate. As we have done many times before, we use Bayes
rule to rewrite it and then delete the denominator to produce

argmaxT P(T1,N) * P(S1,M | T1, N)

P(T1,N) is the language model (for pronunciations), and P(S1,M | T1, N) is called the translation
model, To apply this model, we need to estimate the two probability distributions from a
pronunciation dictionary that lists words and their pronunciations. Estimating P(T1,N) is
straightforward - we could use a n-gram model trained off all the pronunciations in the corpus.
So the problem remains to estimate

P(S1,M | T1,N)

We have to develop some method of handling the sequences of different length, and determining
the alignment so we know what letters correspond to what phonemes. We will do this by
introducing the notion of an alignment function ai. This function maps a position in the source
sequence into a position in the target, i.e., if ai(k) = l, then this means the k’th letter of the word
corresponds to the l’th letter of the sequence. We use a special value e that is used to signify
letters that don’t correspond to any phoneme. For the pronunciation task, we have a number of
constraints on what the alignment function can be which greatly reduce the number of
possibilities we have to consider.

1. Ordering constraint: For if j > k, and neither ai(j) nor ai(k) equal e, then ai(j) > ai(k) - i.e.,
the correspondences move through the sequences in a left to right manner;

2. Coverage constraint: For all k from 1 to N, there is an j such that ai(j)=k (i.e., every
phoneme is generated from some letter).

Note that these are strong constraints and imply that only single letters map to phonemes, and all
the extra letters are ignored. This is not very accurate as we all know that sequences of letters
often correspond to a single phoneme. For instance, rather than saying that EE can map to /i/ in
the word seek, we will have to pick one E to map to /i/ and map the other to e. This means we
will have difficulty modeling some examples well, but such models are often used because of
their simplicity.

We now can try estimating P(S1,M | T1,N) using the unigram approximation Pj P(Sj| Tai(j)) . For
example, given an alignment function that maps 1 to 1, 2 to 2 and 3 to e, the probability of P(K E
Y | /k/ /i/) would be

P(K | /k/) * P(E | /i/) * P(Y | e)

But this is only one possible alignment. A better estimate, given we don’t know what the right
alignment is, would be the sum over all possible alignments. In other words, we estimate P(S1,M |
T1,N) with the formula

Si Pj (Sj | Tai(j))

where A=(ai} is the set of all possible alignment functions. Thus, our better estimate of P(K E Y |
/k/ /i/) sums over the three possible alignments

P(K | /k/) * P(E | /i/) * P(Y | e) +
P(K | /k/) * P(E | e) * P(Y | /i/) +
P(K | e) * P(E | /k/) * P(Y | /i/)

Note the parallel with the forward probability for HMMs. Just as the forward probability is the
probability of obtaining the output and ending in a state (computed by summing over all possible
paths to that state), this estimates the probability of the phoneme sequence for the word by
summing over all possible alignments of the phoneme sequence to the word. In fact, we can
design an min-edit analogue to the forward (or Viterbi) algorithms that incrementally compute
the probability to alignment states (i, j), where i indicates we are at position i in the source (i.e.,
Si) and j indicates we are at position j in the target (i.e., Tj). We can consider the possible
transitions between states: We can get to state (i, j) only from states (i-1, j-1) (with “transition”
probability P(Si | Tj)) or (i-1, j-1) (with “transition” probability P(Si | e)). For the Viterbi
analogue, we take the max probability sequence so far, and for the forward analogue, we sum the
probabilities of the paths.

4. Training Alignment Based Models

We have a problem similar to when we wanted to train an HMM from a corpus. We could find
the maximum probability phoneme sequence if we could estimate the distribution P(letter |
phoneme), but we can’t learn this distribution unless we know the alignment function used. The
solution to this problem is the same as before - we the EM algorithm where the hidden data is the
alignment function. It is instructive to observe we could try to rephrase this problem with an
HMM as shown in Figure 3. Each phoneme is represented as a state, as well as e. The output
probabilities would be the probabilities of the letters for each phoneme ph P(L | ph). The problem
with this model is with the transitions. For instance, given (SEEK, /s//i//k/), there are only two
legal paths through the network, also shown in Figure 3. Because we aren’t considering all paths,

/s/ /k/

 e

/i/

/
s
s
/

/
k
/

e

/
i
/

s
t
a
rt

e
n
d

/
s
s
/

/
k
/

e

/
i
/

e
n
d

Figure 3: An HMM Approximation of the Alignment, and the possible paths allowed

/
s
s
/

/
k
/

e

/
i
/

/
s
s
/

/
k
/

e

/
i
/

we can’t directly use the Baum-Walch method. Rather, we will resort back to applying the EM
brute force.

Remember that the EM algorithm starts with some guess at a distribution and then improves it by
iterating over two steps:

1. Use the current distribution to estimate the probabilities of each possible alignment
2. Use a count weighted by the alignment probabilities to re-estimate the distribution.

Let’s consider an example. Say we want to estimate the distribution given a two word training
corpus: KEY -> /k/ /i/ and SEEK -> /s/ /i/ /k/. Let us initially assume a uniform distribution for
P(Letter | Phoneme) - i.e., each letter has a probability of 1/26 (= .038) given any phoneme.
There are three possible alignments for KEY (each with a prob of 5.6 * 10-5 of generating KEY)
and four for SEEK (each with a prob. of 2.1 * 10-6 of generating SEEK). We can now count all
the correspondences present over the alignments and weight them by these probabilities. For
example, the K - /k/ correspondence occurs twice in the alignments for KEY, each with a weight
of 5.6e-5, and 3 times in alignments for SEEK, each with a weight of 2.1e-6, giving us a total of
1.2e-4. All the counts are shown in Figure 4.

Weight S /s/ S e E /i/ E e E /k/ E /s/ K /k/ K e Y /i/ Y e
SEEK, /s/ /i/ e /k/ 2.1e-6 1 1 1 1
SEEK, /s/ /i/ /k/ e 2.1e-6 1 1 1 1
SEEK, /s/ e /i/ /k/ 2.1e-6 1 1 1 1
SEEK, e /s/ /i/ /k/ 2.1e-6 1 1 1 1
KEY, /k/ /i/ e 5.6e-5 1 1 1
KEY, /k/ e /i/ 5.6e-5 1 1 1
KEY, e /k/ /i/ 5.6e-5 1 1 1
Weighted Totals 6.3e-

6
2.1e-
6

6.4e-
5

6.0e
-5

5.8e-5 2.1e-
6

1.2e-4 5.8e
-5

1.1e-
4

5.6e-
5

Figure 4: Computing the weighted counts given the uniform distribution

From there, we can re-estimate the probabilities. For P(K | /k/) would be 1.2e-4 divided by the
sum of all probabilities of form P(x | /k/), which is 1.2e-4+5.8e-5=1.6e-4, giving us a new
estimate of .74. The complete set of numbers is shown in Figure 5 (as Iteration 1). As we
continue to iterate, notice that the correspondence between K and /k/ continues to grow, as does
the correspondence between E and /i/ and between S and /s/. Note also that we are training the
probabilities for letters to be ignored, i.e., P(letter | e), after 3 iterations P(K | e) = .32, P(E | e) =
.34 and P(Y | e) = .32 and P(S | e) = .02.

Iteration 0 Iteration 1 Iteration 2 Iteration 3
P(K | /k/) .038 .67 .78 .94
P(E | /k/) .038 .33 .22 .06
P(E | /i/) .038 .37 .52 .70
P(S | /s/) .038 .75 .996 .999

Figure 4: Selected probabilities for the first three iterations

5. More General Models of Alignment

A more general approach to this problem, intuitively better suited to the grapheme to phone
conversion problem, is to view and alignment as associating subsequences together. The
approach above is a specific instance of this in which all subsequences must be of length one.
The advantage is that we don’t need to use the e value to ignore letters. For instance, our
alignment of KEY would be (K, /k/) (EY, /i/), i.e., the letter sequence EY corresponds to the
phoneme /i/. Similarly, SEEK would have the intuitively correct alignment of (S, /s/) (EE, /i/) (K
/k/), associating the
sequence EE with the phoneme /i/. Of course, when we don’t know the alignment to start with,
we would have to consider all possible alignments: i.e., for SEEK we’d also have the alignments
(SE, /s/) (E, /i/) (K /k/) and (S, /s/) (E, /i/) (EK /k/). The alignment function in this case would
identify a sequence of such pairs <l-seq, p-seq>, the then we would estimate the probability of a
letter sequence given a phoneme sequence as

P(L1,N | Ph1. M) =Si PjP(al
i(j) | aph

i(j))

where i ranges over all possible alignment functions and al
i(j) is the letter sequence of the j’th

element of the i’th alignment function, and aph
i(j) is the phoneme sequence of the same element.

Grapheme to Phoneme models based on this more general model outperform the simpler
alignment
functions described above.

We will see yet more complicated alignment functions when we consider Machine Translation.

