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Lecture 18: Vector Space Approaches to classifying
documents

Information Retrieval
When we start trying to classify large sets of documents, rather than sentences or small
sets of words, there are some problems that need to be overcome with vector
representations of documents. First, because in many applications the documents being
retrieved are fairly large, they need to consider whether the fact that a word appears
multiples times in a document is useful information. The second issue is that, while it is
clear that some words are more salient than others in distinguishing documents, currently
all words are weighted equally in the vector representation and affect the distance
measure to the same extent. For instance, consider a set of documents D1,.., D10 and the
occurrence of six words shown in  table 1.

On the first problem, we need to consider how relevant it is that a word occurs multiple
time sin a document, The general consensus in the field is that while the number of times
a word occurs in relevant, its relevance decreases as the numbers get larger. Thus the first
step taken is usually to reduce this impact. Typical measures include taking the square
root of the count, or 1 plus the log of the count. Introducing some notation used in the
information retrieval literature, for a word wi and document dj, the term frequency tfi,j is
the number of times wi appears in dj. If weighti,j is the i’th value of the vector
representation of document dj, then we are suggesting that weighti,j = SQRT( tfi, j ) or
weighti,j= 1+log(tfi,j) as values for the vectors.  In the following we will use the latter.

The second problem is how informative a word is. We would, for instance, consider the
fact that a document contains the word computer as providing more information than the
fact that a document contains the word want. An obvious way that we might use to
measure informativeness would be the entropy of the probability distribution P(D |
W=wi) for each word. A high entropy word would tend to be evenly distributed among
documents, whereas a low entropy word would occur in few documents. For instance, say
we have 10 documents, and computer occurs once in two of them, and want occurs once
in 8 of them. Then the probability distribution over the documents given computer would
have two non-zero terms (.5 each). The probability distribution over documents given
want would have 8 non-zero values (.125 each). The entropy calculations are

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
frog 1 2 1
snake 3 1 1
computer 4 1
user 1 1 1 1 1 1
want 4 5 7 1 2 4 3 1
try 1 1 4 1 3 2 1

Table 1: Word counts (term frequencies) in documents (tfi)
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straightforward

H(P(D | computer)) = 1
H(P(D | want)) = 3

We could adjust the weight formula to account for relevant by dividing by the entropy
measure of the word. Thus, computer would roughly have three times the influence as the
word want. In practice, information retrieval approaches don’t compute entropy and
simply use what is called the document frequency, dfi, which is he number of
documents that word wi appears in. Then the weight is adjusted by some function
inversely related to the document frequency, such as log(N/dfi).  This weighting scheme
is often called the inverse document frequency (idf) weighting. For the example above,
the factor for computer would be log(10/2) = 2.3 and for want it would be log(10/8) =
.32. Note there is a factor of about 7 difference using the idf compared to a factor of 3 for
the entropy measure. What formula (of these of other variants) produces the best results
is an empirical matter. Bringing this all together, we get the tf.idf weighting scheme as
follows:

weighti, j = (1+ log(tfi))log(N/dfj) if tfi,j >0 and 0 otherwise

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 dfi log(N/dfi)
frog 1 2 1 3 1.74

snake 2.58 1 1 3 1.74
computer 3 1 2 2.32

user 1 1 1 1 1 1 6 .74
want 3 3.3 3.8 1 2 3 2.6 1 8 .32
try 1 1 3 1 2.6 2 1 7 .51

Table 2: Computing the weights from the tfi,j): Showing 1+log(tfi) and dfi factors

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
frog 1.74 3.48 1.74

snake 2.58 1 1
computer 6.96 2.32

user .74 .74 .74 .74 .74 .74
want .96 1.06 1.11 .32 .64 .96 .83 .32
try .51 .51 1.53 .51 1.32 1.02 .51

Table 3: the tf.idf vectors

These could then be used as before. If we normalize them, we can use the dot-product
measure (i.e., the cosine measure) to compare the vector computed from a query to the
documents in the database.  Table 4 shows how similar each document is to d1 using the
cosine measure.
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As you can see, document d1 is closest to d5, and then to d3. This might seem
counterintuitive because d3 shares two significant words with d1, namely frog and snake.
The reason d5 is preferred is that is has fewer words in its vector, so the one instance of
snake in d5 accounts for most of the length in its normalized vector (in fact, it is .94). D1
correspondingly, has most of its length in snake as well because of the three instances.
Thus we get the high cosine score.

Reducing the Size of Vectors

In many applications we would like to reduce the size of the vectors used in the
representation. Consider in a general information retrieval task we would need vectors
that are as long as there are words in the language! This might be done not only to save
on storage and computation time, but also to smooth the representation and better capture
generalities. For instance, one document might contain the word computer while another
contains computation. Currently, these would seem unrelated.

The most common initial technique used is to first eliminate a fixed set of words that are
clearly not related to semantic content such as the function words the, a, some, of, and so
on. Typically, there might be about 100 of these and they are usually referred to as the
stop list. While this eliminates a vast number of tokens in the corpora, it doesn’t reduce
the size of the vectors significantly. Another technique is to use some stemming program
to collapse different word forms to a common root. For instance, all the different forms of
a verb, say walk, walks, walked, and walking, would get mapped to the root walk. This
significantly reduces the size of the vectors, but they still remain unwieldy for most
applications.

Next we could try to eliminate the terms that are not informative. We could, for instance,
set some threshold on the document frequency (or the entropy of the conditional
distribution), and any word that exceeds the threshold would be dropped. But this has a
problem. Say we want a vector consisting of only 1000 words. If we took the 1000 words
with the lowest entropy measures (as measured over their distribution over documents),
we’d end up with a list of words that occurred only in one or two documents! While very
distinctive in the training corpus, since they don’t occur in many documents, they
probably would into be very useful in classifying new documents. To help with this
problem, words that occur only once are often discarded as the information they provide
is considered unreliable. But whatever limit we set on how many times a word occurs, the
words just above that number will tend to be the ones that have the lowest entropy.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
d1 1.0 .05 .7 .24 .91 .22 .38 .19 .22 .07

Table 4: The closeness measure between D1 and the other documents
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Word Clustering
We could also reduce the size of vectors by clustering similar words into groups. For
instance, rather than looking at the information in Table 3 as a representation of
documents as a vector of words, we could look at it as a representation of words as
vectors over the documents. Thus, each word is represented as a ten-element vector. We
could then see which vectors are closest using some similarity metric, and merge the two
closest words into a single class. We could iterate this procedure until we’ve reduced the
size of our vectors to the desired size. This approach has another advantage besides
reducing the size of the vectors. By grouping words into similar classes we are smoothing
the data as well. For instance, say we merge computer and CPU into the same class. Now
a document that only contains computer will still have some similarity with a document
that only contains CPU. Thus we are starting to obtain a representation that generalizes
over useful semantic categories.

The success of this approach depends on the similarity metric used. One obvious
approach is to use the cosine measure, which will tend to cluster vectors that have similar
overlaps. Note you might think that the presence of 0’s in vectors would allow the other
vector to have values for that word without hurting the score. But this is not the case for
the vectors are normalized. For instance, consider vectors of length 5 for documents
A,B,C,D and E. Say word x only occurs once in A, while y occurs in A and C. Then the
normalized vectors are (1,0,0,0,0) and (.71,0,.71,0,0) and so the cosine score is .71. A
word that occurs in all documents would be (.45,.45,.45,.45,.45) and thus would have a
score of .45. So the cosine score does capture somewhat our intution. One might argue,
however, that the difference between the two is not as large as we would like.

There are many other metrics we could use. These are usually expressed in terms of the
similarity between probability distributions. To make the transition, observe that we can
view a vector as a set of counts that can be used to compute a probability distribution
over documents of form P(D=di | W=wi). For instance, starting from the raw counts in
table 1, we could  estimate the distribution P(D|frog) as follows: P(d1 | frog) = 1/4; P(d3 |
frog) = 1/2; P(d7 | frog) = 1/4 and P(di frog) =0 for all others.  Given these probability
distributions, we could now devise some sort of similarity measure to find which two
distributions are most similar. There are a number of measures used in practice. The
simplest one, called the L1 Norm, is the sum of the absolute values of the probabilities:

L1(p, q) = Si| pi - qi |

With this measure, we get the similarities between the words shown in Table 5. From
this, we see that want and user have the most similar distributions, and so would be a
good candidate to merge. Once we merge these two, redo the counts, and then recompute
the similarity measure (now with the class containing want and user being one element).
We could continue the collapse the most similar classes until we find a vector of the
desired size.
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Several other measures have been proposed as well. The Kullback-Leiber divergence
(KL divergence) uses the following formula:

D(P || Q) = Si pi log(pi/qi)

This can be viewed as measuring how much information is lost when we assume
distribution q and the real distribution is p. We could also use the cross entropy of p and q
to obtain another quite similar measure. The problem with both of these is that they are
undefined if there is a qi = 0. In addition, they are suspect as measures of similarity
because they are not symmetric, i.e.,

D(P||Q) ≠ D(Q || P).

A more intuitive measure, the Information Radius (IRad) is a symmetric version which
compares each distribution to their average distribution:

IRad(P, Q) = D(P || (P+Q)/2) + D(Q || (P + Q)/2)

where (P+Q)/2 is simply the average distribution, i.e., the probability of x is
(P(x)+Q(x))/2.

In an evaluation of difference measures in 1997, the IRad measure consistently
performed better on a word sense disambiguation task (Dugan, 1997).

Dimensionally Reduction

Yet another way to reduce the size of the vectors is to compute lower dimension vectors
that best approximate the higher dimension one. To understand this, let’s consider the
two dimensional case. Say we have a vector space with three values, (1, .75), (2, 1) and
(4, 2.5). In this case, we could fit a line that passes through each point, with the formula
.75x -.5. Given this, we could produce an exact representation of these three points by
just encoding the first dimension, and using this formula for the second. i.e., we use x to
represent the vector (x, .75x-.5). As you can see, x=1, would give the vector (1, .75), x=2
would give (2, 1) and x=3 would give (4, 2.5). Furthermore, we could use distance
measures in one dimension to measure closeness (i.e., point 1 is closer to 2 than 2 is to 4,

frog snake computer user want try
frog 0
snake 1.1 0
computer 2 2 0
user 1.33 1.67 1.33 0
want 1.7 1.63 1.56 .81 0
try .92 1.29 1.85 1.05 1.32 0

Table 5: The L1 Norm comparing the similarity of word distributions
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just as (1, .75) is closer to (2,1) than (2,1) is to (4, 2.5). Of course, usually we don’t have
such regularities in data, and must compute approximations rather than exact lower
dimension approximations. In that case, we then want to find lower dimensional
representations that minimize the distortion (i.e., the error when we convert to the lower
dimension representation and then convert back to the higher dimension representation).
The classic approach to finding the best approximation for a set of points is linear
regression, which finds a line that minimizes the overall distance of the points to the line.

There is a well-known set of formulas for computing the best fit line equation: mx+b. Let
mx be the mean of the x dimension, and my be the mean of the y dimension, then

m =SI (mx - xi )( my - yi)
b = my – m*mx

Using this formula, we can collapse a two dimensional point (x, y) to the value x (which
would map back to the point (x, mx+b). Hence we introduce a distortion error of SQRT(y
- mx - b)2) if we  are using Euclidean distance measure.

There is a technique, called Singular Value Decomposition (SVD) which applies similar
ideas to higher dimensional spaces, and reduces an n-dimensional vector (where n is the
number of words) to a k-dimensional vector much smaller than n. The application of this
technique to information retrieval is called Latent Semantic Indexing (LSI), reflecting
the intuition that the dimensionally reduction will tend to cluster words of similar
distributions in documents, which presumably reflect semantic similarity. The advantage
for information retrieval is improved recall. A query involving the term dining might
return documents containing restaurant reviews even if the word dining does not appear
in it. If there is enough similarity between the documents indexed for dining and the
terms in reviews such as restaurant, then these similarities will tend to be reflected in one
of the reduced dimensions. Of course, with improved recall, we may have a problem with
maintaining good precision.

(1,1)
(2,1)

(2,2)
(3,2)

Figure 1: The least squares fit line


