
Lec 8 Using HMMs for tagging 1

Lecture 8: Using HMM for Tagging Applications
Readings: Manning & Schutze, Section 7.3
Jurafsky and Martin, Chapter 9
Many problems can be cast as tagging problems. In a tagging problem, we need to
associate a value (a tag) with each element in a corpus. We have already seen some
simple techniques for part-of-speech tagging (see sample tag set in Figure 1) using
probabilistic models based on the word. Tagging can be used for many purposes, such as
the following:

1. We could identify word boundaries in language like Japanese where spaces are
not used as we do in English. In this case, we’d be tagging each letter as to
whether it begins a new word or not;

2. We could identify noun phrases in a corpus by labeling each word as to whether
it begins an NP, is in an NP or ends an NP;

3. We could tag words as to whether they are part of a self-correction or not, and
what role they play in the correction (e.g., I want a coffee ah a tea).

1. Probability Models for Tagging Problems
Consider the tagging problem in general: Let W1,T = w1, ..., wT be a sequence of T words
(or letters or any other element in a corpus). We want to find the sequence of tags C1,T =
c1, ..., cT that maximizes the probability of the tag sequence given the word sequence,
i.e.,
1. argmax C1,T P(C1,T | W1,T) (i.e., P(c1, ..., cT | w1, ..., wT))

Lec 8 Using HMMs for tagging 2

Unfortunately, it would take far too much data to generate reasonable estimates for such
sequences, so direct methods cannot be applied. There are, however, reasonable
approximation techniques that produce good results. To develop them, we restate formula
(1) using Bayes’ rule, which says that conditional probability (1) equals
2. argmax C1,T (P(C1,T) *!P(W1, T | C1,T)) / P(W1,T)
Since we are interested in finding the C1,T that gives the maximum value, the common
denominator in all these cases will not affect the answer. Thus the problem reduces to
finding the sequence C1,T that maximizes the formula

argmax C1,T P(C1,T) *!P(W1,T | C1,T)
There are still no effective methods for calculating the probability of these long
sequences accurately, as it would still require far too much data! Note also that the
techniques we have developed so far all depend on the Markov assumption of having a
limited context, and we have not yet made this assumption in this problem as currently
formulated. So we must approximate these probabilities using some independence
assumptions that will limit the context. While these independence assumptions may not
be really valid, the estimates appear to work reasonably well in practice. Each of the two
expressions in formula 3 will be approximated. The first expression, the probability of the
sequence of categories, can be approximated by a series of probabilities based on a
limited number of previous categories. We can develop this idea by first noting that using
the Chain Rule we know that P(C1,T) is equal to

P(cT | c1, …, cT-1) * P(cT-1 | c1, …, cT-2) * … * P(c1)
We then simplify this formula by assuming that an element only depends on only the n
most recent categories. The bigram model looks at pairs of categories (or words) and

1. CC Coordinating conjunction 19. PP$ Possessive pronoun
2. CD Cardinal number 20. RB Adverb
3. DT Determiner 21. RBR Comparative adverb
4. EX Existential there 22. RBS Superlative Adverb
5. FW Foreign word 23. RP Particle
6. IN Preposition / subord. conj 24. SYM Symbol (math or scientific)
7. JJ Adjective 25. TO to
8. JJR Comparative adjective 26. UH Interjection
9. JJS Superlative adjective 27. VB Verb, base form

10. LS List item marker 28. VBD Verb, past tense
11. MD Modal 29. VBG Verb, gerund/pres. participle
12. NN Noun, singular or mass 30. VBN Verb, past participle
13. NNS Noun, plural 31. VBP Verb, non-3s, present
14. NNP Proper noun, singular 32. VBZ Verb, 3s, present
15. NNPS Proper noun, plural 33. WDT Wh-determiner
16. PDT Predeterminer 34. WP Wh-pronoun
17. POS Possessive ending 35. WPZ Possessive wh-pronoun
18. PRP Personal pronoun 36. WRB Wh-adverb

Figure 1 The Penn Treebank tagset

Lec 8 Using HMMs for tagging 3

uses the conditional probability that a category Ci will follow a category Ci–1, written as
P(Ci | Ci–1). The trigram model uses the conditional probability of one category (or
word) given the two preceding categories (or words), that is, P(ci | ci–2 ci–1). These
models are called n-gram models, in which n represents the number of words used in the
pattern. Using bigrams, the following approximation can be used:

P(C1,T) @ ∏i P(ci | ci–1)

To account for the beginning of a sentence, we posit a pseudo-category ø as the value of
c0. Thus the first bigram for a sentence beginning with an ART would be P(ART | ø).
Given this, the approximation of the probability of the sequence ART N V N using
bigrams would be

P(ART N V N) @ P(ART | ø) * P(N | ART) * P(V | N) * P(N | V)

The second probability in formula 3, i.e.,
P(w1, ..., wT | c1, ..., cT)

can be approximated by limiting the context used for each wi. In particular, using the
chain rule again we know this formula is equal to

P(wT | w1, ..., wT-1, c1, ..., cT) * P(wT-1 | w1, ..., wT-2, c1, ..., cT) * P(w1 | c1, ...,

Why do we always apply Bayes’ Rule?

You will see that in almost all case, the first thing done in creating a viable
probabilistic model is to apply Bayes Rule. Thus, to formulate a model of

(a) argmax C1,T P(C1,T | W1,T)
we rewrite it as

(b) argmax C1,T (P(C1,T) *!P(W1, T | C1,T)) / P(W1,T).
Why is this? To explore this question, let’s expand P(C1,T | W1,T) using the Chain
rule:

(c) P(cT | W1,T C1, T-1) * P(cT-1 | W1,T C1, T-2)*…* P(c1 | W1,T)
We now make independence assumptions to produce model we can reasonably
estimate. The analog to the simple bigram model we develop in the text would
have ci independent of everything except ci-1 and wi, and thus our model would be

(d) Pi P(ci | ci-1 wi)
Note the main difference here is that this model requires a joint distribution across
three random variables, whereas the Bayes formulation breaks the problems into
estimate two distributions with two random variables each. Furthermore, note that
this model is conditioned on Wi, which has a very large vocabulary. This would
make it hard to construct good estimates. In applications where there is sufficient
data, however, there is no reason why models along these lines would not be just
as effective. The other thing to note about this formulation is that there is also not a
straightforward mapping to HMMs or the Noisy Channel Model. While not
necessarily a flaw, it means that the development of a Viterbi style algorithm for
searching this model would be a little harder to motivate.

Lec 8 Using HMMs for tagging 4

cT)

Here we could make assumptions that combine say, n previous words and m previous
categories. The simplest such model is to assume that a word appears in a category
independent of whatever the preceding words and categories are. With this assumption,
the formula would be approximated by the product of the probability that each word
occurs in the indicated part of speech, that is, by

P(w1, ..., wT | c1, ..., cT) @ ∏i=1,T P(wi | ci)

With these two approximations, the problem has changed into finding the sequence such
that

argmax C1,T Pi=1,T P(ci | ci–1) * P(wi | ci)
This in the classic bigram model of tagging. The probabilities involved can be readily
estimated from a corpus of text labeled with parts of speech. In particular, given a
database of text, the bigram probabilities can be estimated simply by counting the number
of times each pair of categories occurs compared to the individual category counts. The
probability that a V follows an N would be estimated as follows:

P(Ci=V | Ci–1=N) @
Count(N!at!position!i–1!and!V!at!i)

Count(N!at!position!i–1)

Figure 2 gives some bigram frequencies computed from an artificially generated corpus
of simple sentences. The corpus consists of 300 sentences but has words in only four
categories: N, V, ART, and P. The artificial corpus contains 1998 words: 833 nouns, 300
verbs, 558 articles, and 307 prepositions. The first column is the tag at position i-1, and
the second is how many times it occurs. The third column gives the bigrams, and the
fourth the count of bigrams. From these two counts, the MLE probability estimate for the
conditional probabilities in column 5 is given in column 6. To deal with the problem of
sparse data, we could use one of the techniques from last time. For this example,
however, let’s just assume give any unseen event a token probability of .0001.

Context Count at i-1 Pair Count at i-1,i Bigram Estimate
ø 300 ø, ART 213 P(ART | ø) .71
ø ø, N 87 P(N | ø) .29

ART 558 ART, N 558 P(N | ART) 1
N 833 N, V 358 P(V | N) .43
N N, N 108 P(N | N) .13
N N, P 366 P(P | N) .44
V 300 V, N 75 P(N | V) .35
V V, ART 194 P(ART | V) .65
P 307 P, ART 226 P(ART | P) .74
P P, N 81 P(N | P) .26

Figure 2 Bigram probabilities from the generated corpus

Lec 8 Using HMMs for tagging 5

The lexical-generation probabilities, P(wi | Ci), can be estimated simply by counting
the number of occurrences of each word by category. Figure 3 gives some counts for
individual words from which the lexical-generation probability estimates in Figure 4 are
computed. Note that the lexical-generation probability is the probability that a given
category is realized by a specific word, not the probability that a given word falls in a
specific category. For instance, P(the | ART) is estimated by Count (# times the is an
ART) / Count (# times an ART occurs). The other probability, P(ART | the), would give
a very different value.

Lec 8 Using HMMs for tagging 6

2. Finding the Maximum Probability Sequence
Once we have a probabilistic model, the next challenge is to find an effective algorithm
for finding the maximum probability tag sequence given an input. It should be clear that
an algorithm that enumerates every possible path will run in exponential time, for there
are NT possible path sequences of length T given N possible tags. Luckily we do not need
to enumerate these paths because the nature of the models allows us to construct a
dynamic programming algorithm, which for HMMs is called the Viterbi Algorithm.
This can be explored most intuitively by mapping the problem to an HMM in which the
categories ci become the states, the category bigrams become the transition probabilities,
and P(wi | ci) are the output probabilities. Figure 5 show the state transition probabilities
as a finite state machine derived from the bigram statistics shown in Figure 2.
Given all these probability estimates, we can now return to the problem of finding the
sequence of categories that has the highest probability of generating an observed
sequence of outputs? This problem is related to the calculation of forward probabilities
that we discussed earlier. (Remember, the forward probability Forward(S, o1, …, oT) was
the probability that a machine would be in state S at time t after outputting each oi at time
i.) But this time we are looking for the single maximal probability path.

N V ART P TOTAL

flies 21 23 0 0 44
fruit 49 5 1 0 55
like 10 30 0 21 61
a 1 0 201 0 202
the 1 0 300 2 303
flower 53 15 0 0 68
flowers 42 16 0 0 58
birds 64 1 0 0 65
others 592 210 56 284 1142

TOTAL 833 300 558 307 1998

Figure 3 A summary of some of the word counts in the corpus

P(the | ART) .54 P(a | ART) .360
P(flies | N) .025 P(a | N) .001
P(flies | V) .076 P(flower | N) .063
P(like | V) .1 P(flower | V) .05
P(like | P) .068 P(birds | N) .076
P(like | N) .012

Figure 4 The lexical-generation probabilities

Lec 8 Using HMMs for tagging 7

Shortest Path Algorithms
In order to develop the core intuition about this algorithm, consider first a related
algorithm that finds the shortest path between distances. Say we want to find the shortest
path from Rochester (R) to New York City (NYC) using the map shown in Figure 6. We
can find the best path by searching forward in a “breadth-first” fashion over the number
of legs in the trip. So from R, we know we can get to M or C in one leg, and the distance
to M is 30, and to C is 90. We record the shortest distance to a location and also, to
remember how we got there, we record the city that we came from. Thus, we have the
following state record after one leg:

M: 30 (R) “Manchester, 30 miles coming from Rochester)
C : 90 (R)
I: 110 (R)

R

C NYCB

I

M S A30 40 150

160
90

60

130

120
160

130

Figure 6: Getting from Rochester to New York City

110

30

Now we expand out another leg from each of these cities. From M we get to S in 70, and
I in 90. Since this is better than the previous distance found (110 miles from R), we
replace the old estimate with the new one. From C we get to B in 220, and to I in 120.

S0 .29

1.0

.26
N

.71

P

VART

.44

.65

.43 .35

.13

.74

Figure 5 The HMM transitions capturing the bigram probabilities

Lec 8 Using HMMs for tagging 8

Since the distance to I is worse than our best estimate so far, we simply ignore it. From I
we can get to B in 230 miles (the old route to I + 120). Thus is worse than the existing
estimate so we ignore it as well. Thus we have the following

S: 70 (M)
I: 90 (M)
B: 220 (C)

Now we expand out the third leg. From S, we can get to B in 200. Since this is better than
the previous route found to B via C, we update what is the best route for B.
When we expand out the legs from I, we also get to B, but this time the distance, 210, is
not better than what we’ve already found, so we ignore it. The record after expanding all
possible leg 3 will be:

B: 200 (S)
A: 220 (S)

The final round of expansions gets us to NYC from B with 360 miles, better than the 380
miles coming from Albany. Once we have complete the search, we can then find the best
route but searching backwards through the record of previous cities. We got to NYC from
B, to B from S, to S from M, and to M from R. Thus our route is R M S B NYC.

The Viterbi Algorithm
We now want to develop a similar algorithm for HMMs. Consider searching the above
HMM on the input flies like a flower. We immediately see that there are a number of
differences to deal with:
1. We are computing a maximum probability rather than a minimum distance. This is

simple to change the formulas used in the algorithm.
2. With finding routes, we know where we are at each point in time. With an HMM we

don’t. In other words, seeing the first word flies doesn’t tell us whether we are in state
N, V, ART or P. We need to generalize the algorithm to deal with probability
distributions over states.

3. With finding routes, we never had to visit the same state twice. With HMMS, we do.
We will account for this but keeping a separate record for each state at each time
point – thus state N at time 2 will have a different record than state N at time 1.

4. With HHMs, we don’t necessarily have a known final state, we may be looking for
the best path no matter what state it ends in.

But none of these problems modify the algorithm in any substantial way. We can view
the algorithm as filling in a chart of the following form, with time running horizontally
and the states vertically, where each value indicates the maximum probability path found
so far to this state at this time, and a pointer to the previous state at time t-1 on the
maximum path. We show the results from the first iteration, where we compute the
probability of the transition to each state from the starting state ø, times the output
probability of flies given the state.

Flies Like A flower
N 7.25 * 10-3, ø

Lec 8 Using HMMs for tagging 9

V 7.6 * 10-6, ø
ART 7.1 * 10-5, ø
P 1 * 10-8, ø

Developing this more carefully, let MaxProb(Si, o1 … ot) be the maximum probability of
a path to Si at time t that has output o1 … ot. We know that the output at time 1 is flies,
and the maximum probability path to each state is simply the initial probability
distribution, which we are modeling as the bigram conditional probability P(Si | ø) times
the output probability:

MaxProb(si, flies) = P(si | ø) * P(flies | si)
(Which, written more precisely using random variables Ci for the state at time i and Oi
for the output at time i is

MaxProb(si, flies) = P(C1=si | C0=ø) * P(O1=flower | C1=si))
Using this we compute the following:

MaxProb(N, flies) = .29 * .025 = 7.25 * 10-3

MaxProb(V, flies) = .0001 * .076 = 7.6 * 10-6

MaxProb(ART, flies) = .71 * .0001 = 7.1 * 10-5

MaxProb(P, flies) = .0001 * .0001 = 1 * 10-8

We fill in the rest of the chart using an iterative process, where at each stage of the
iteration, it uses the maximum probability of paths found to the states at time i to
compute the maximum probability of paths for the states at time i+1.
We now can compute the probability for subsequent times using the formula

MaxProb(si,w1 … wt) = Maxj(MaxProb(sj,w1 … wt-1) * P(Ct=si | Ct-1 = sj))
 * P(Ot=wt|Ct=si))

i.e., the maximum path to si at time t will be the path that maximizes the maximum path
to a state sj at time t-1, times the transition from sj to si times the output probability of wt
from state si.
Consider using this formula to compute MaxProb(V, flies like), we take the maximum of
four possible values:

Maximum
{MaxProb(ART, flies) * P(V | ART), MaxProb(N, flies) * P(V | N),

MaxProb(V, flies) * P(V | V), MaxProb(P, flies) * P(V | P)} * P(like | V)}
The maximum of these will be the path that comes from N, which is

MaxProb(V, flies like) = .00975 * .43 * .1 = .00042.
We would likewise compute the probabilities of the maximum paths to states N, P and
ADJ, and then repeat the process for time step 3. As before, the amount of computation
required at each time step is constant, and proportional to N2, where N is the number of
states.

How Good are the Basic Tagging Models?

Lec 8 Using HMMs for tagging 10

Tagging algorithms using the Viterbi algorithm can perform effectively if the probability
estimates are computed from a large corpus of data that is of the same style as the input to
be classified. Researchers consistently report part-of-speech tagging accuracy for a well-
trained bigram model of around 95 percent or better accuracy using trigram models.
Remember, however, that the naive algorithm picks the most likely category about 90
percent of the time.

The Viterbi Algorithm in Detail
We will track the probability of the best sequence leading to each possible category at each
position using an N¥T array, where N is the number states and T is the number of words in the
sequence. This array, st (i), records the probability for the best sequence up to position t that ends
in state i at time t. To record the actual best sequence for each category at each position, it suffices
to record only the one preceding category for each category and position. Another N¥T array,
BACKPTR, will indicate for each state in each position what the preceding state produced
sequence at position t-1

Given word sequence w1, ..., wT, output types L1, ..., LN, output
probabilities P(wt | Li), and transition probabilities P(Li | Lj), find the
most likely sequence of states S1, ..., ST for the output sequence.

Initialization Step
For i = 1 to N do

s1 (i) = P(w1 | Li) * P(Li | ø)
BACKPTR(i, 1) = 0

Iteration Step
For t = 2 to T

For i = 1 to N
st (i) = MAX j=1,N(SEQSCORE(j, t–1) *

P(Li | Lj)) * P(wt | Li)
BACKPTR(i, t) = index of j that gave the max above

Sequence Identification Step:
S(T) = i that maximizes sT (i)
For i = T–1 to 1 do

S(i) = BACKPTR(PATH(i+1), i+1)

