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1. Introduction

Different researchers use the term "dialogue system" in different ways. Beyond the belief that a

dialogue system interacts with a human, there seems little commonality. For some, a dialogue sys-

tem involves some mechanism to constrain the interaction, such as a script that specifies system

prompts and user responses. The most common example of this type of system in use are the tele-

phone interfaces based on keyed or spoken menu selection (e.g., "if you want your account balance,

press or say 1, ...”). The goal here is to restrict the user's options in the interaction to simplify the

language processing. For others, dialogue work aims to produce machines that can mimic human

conversation. Work in this area aims to provide intuitive access to a wide range of applications, ei-

ther over the telephone using voice only, or with multi-modal interaction at a computer worksta-

tion. The goal of this approach is to expand the user's options in the interaction.

We have the latter goal. We believe that such systems could be both feasible and cost-

effective within the next decade. While speech-driven "menu-style" dialogue systems are growing

in use today, they have their limitations. Unless the user needs to perform the most common and

expected tasks, and can adapt to the preset method of performing those tasks, such interfaces can be

a source of frustration. In addition, it appears that more complex tasks will be impossible to per-

form using such limited dialogue interaction. To support effective dialogue, the input language

must be sufficiently general to express a wide range of different goals and courses of action. Effec-

tive interaction also requires an ability to support "mixed-initiative" interaction. The user must be

able to "lead" the conversation in ways that best accomplish their goals, and the system should be
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able to take the initiative to speed up the solution when opportunities arise. Finally, in all but the

simplest tasks, the system must be concerned with grounding: it must efficiently signal that the user

was understood, and it must recognize when the user signals understanding or non-understanding.

But we are faced with a problem. Allowing unrestricted natural language dialogue would

appear to require full human conversational competence, which does not seem feasible in the fore-

seeable future. We believe this argument is flawed, and that the required levels of conversational

competence can be achieved in applications in the foreseeable future and at reasonable cost. The

reason is that applications of human-computer interaction all involve dialogue focussed on accom-

plishing some specific task. We believe that the goal-seeking nature of such conversations naturally

creates a specific genre of conversation, which we call practical dialogues. A practical dialogue

could involve tasks such as performing a simple transaction (e.g., ordering some merchandise), in-

formation-seeking (e.g., determining the arrival of flights, accessing medical information), engag-

ing in problem solving (e.g., designing a kitchen), command and control (e.g., managing the re-

sponse to a natural disaster), or tutoring (e.g., teaching basic concepts of mathematics). Our opti-

mism depends on two hypotheses. The first concerns the complexity of practical dialogue:

The Practical Dialogue Hypothesis: The conversational competence required for practical

dialogues, while still complex, is significantly simpler to achieve than general human con-

versational competence.

Even though a practical dialogue system might be possible to construct, however, it might still be

too expensive to construct in practice. Again, based on our experience of building experimental

systems in a number of domains, we believe that it will not. This suggests our second hypothesis:

The Domain-independence Hypothesis: Within the genre of practical dialogue, the bulk of

the complexity in the language interpretation and dialogue management is independent of

the task being performed.
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If these hypotheses are true, then it should be possible to build a generic dialogue shell for practical

dialogue. By “dialogue shell” we mean the full range of components required in a dialogue system,

including speech recognition, language processing, dialogue management and response planning,

built in such a way as to be readily adapted to new applications by specifying the domain and task

models. This paper documents our progress and what we have learned so far based on building and

adapting systems in a series of different problem solving domains. The first system was built in

1995, and the task was to find efficient routes for trains (the TRAINS domain).  In 1996 and 1997,

we evaluated the TRAINS system (Allen et al, 1996, Stent & Allen, 1997). The users had to find

efficient routes for a group of trains (typically 3 trains) and avoid problem areas as they were dis-

covered (e.g., congestion, tracks out). In a controlled experiment involving 80 sessions with 16 us-

ers who received less that three minutes of training, over 90% of the dialogue sessions resulted in

successful plans without any intervention at all from the experimenter.

Based on this experience, we designed a new architecture to better support handling different do-

mains. This resulted in TRIPS (The Rochester Interactive Planning System). TRIPS is designed to

support plan-based tasks, and we have built versions of the system in several domains. TRIPS-

PACIFICA involves evacuating people off an island in the face of an impending hurricane and is

robust for naïve users.  TRIPS-CpoF was a limited scripted-only demonstration system that in-

volved planning the deployment of troops. TRIPS-AMC involves planning airlifts and investigates

how “third-party” back-end systems could be integrated into the TRIPS architecture. The Monroe

domain, under current development, involves coordinating emergency vehicles in response to

simulated 911 calls and serves as our current experimental domain. This is an exercise in scalability

as the task involves building and evaluating a robust system in a significantly larger domain than

we have previously worked on. Table 1 summarizes the domains and the status of each project.
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2. A Generic Dialogue Shell

In designing our architecture, we have kept the following challenges in mind:

• Intuitive Natural Input: Whether using the keyboard or speech, a human must be able to specify

their needs simply and directly. Unconstrained natural language is one of the few viable op-

tions, especially for telephone-based interfaces.

• Robustness: The system must continue the dialogue coherently despite speech recognition er-

rors and misunderstandings, and resolve such problems within the dialogue itself.

• Mixed-Initiative Interaction: The system must support mixed-initiative interaction, in which

either the system or user may take "control" of the dialogue at different times and have freedom

to direct the conversation towards best achieving their goals.

Domain Date Task Goal Status

TRAINS 1995-7 Finding efficient

routes for trains

Robust performance on a very

simple task

Robust performance

(>90% success rate)

PACIFICA 1997-8 Evacuating people

from an island

Robust performance in  a task re-

quiring explicit planning

Demonstration sys-

tem supports un-

trained users

CpoF 1998 Deployment of troops

in a military situation

Scripted demonstration in a mili-

tary relevant task

Scripted interaction

only

Monroe 1999- Coordinating re-

sponses to emergen-

cies in Monroe County

Robust performance on a dynamic,

mixed-initiative task involving

planning, monitoring and replan-

ning, larger domain

In development for

robustness evaluation

AMC 1999- Planning airlifts using

an airlift planning

system

Demonstrate capability to use

“third-party” planning systems

Initial demonstration

completed, work on

extensions continuing

Kitchen planned Planning Kitchen De-

sign

Robust performance on a signifi-

cantly different task

Planned for devel-

opment

Table 1: The Different Task Domains
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• Intention Recognition: The system must be able to identify the user's intention, namely, to rec-

ognize what the user wants to do. In domains with fairly limited tasks, this may be simple to do.

In more complex domains, the problem becomes quite challenging.

• Effective Grounding: The system must be able to maintain a sense of mutual understanding us-

ing methods that are natural to human conversation.  It must be able to clarify situations and

correct misunderstandings, and recognize when the user does so.

• Topic Tracking: In the simplest domains, there may be only one task and the topic of conversa-

tion remains essentially fixed. In all other cases, the system will need to identify topic flow

during the conversation.

• Dialogue-based Response Planning: The system must be able to provide appropriate levels of

information in its responses, possibly in an incremental fashion in an extended sequence of in-

teractions.

• Portability:  Dialogue system components should either be usable in any domain as is, or be

easily adaptable to work in new domains.

In the remainder of this paper we will address architectural concerns in designing and building a

generic dialogue shell. We will first describe the component-level architecture, which reflects our

experience in building systems, with a special focus on the need to separate domain-independent

aspects of the system from the domain-specific components that create a specific application do-

main.  We then describe our programming level architecture, which has proven very effective in

supporting system development and porting to new applications. Finally, we will describe a few

specific components in the system to illustrate our approach of developing domain-independent

components that can then be rapidly tailored to a specific domain.

3.  A Generic Architecture for Dialogue Systems

Simple dialogue systems may consist of a fixed sequence of processing stages, starting with speech

recognition, then parsing/analysis, dialogue management and response generation. As the dialogues
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to be handled become more complex, however, such a simple architecture does not work effec-

tively. For instance, our current system shell under development has six separate modules that to-

gether provide the dialogue management: discourse context management, reference resolution,

intention recognition, the behavioral agent, the plan manager, and response planning. Each of these

plays a distinct role, and while they could be collapsed together for a particular application (as we

did in the original TRAINS system), such monolithic modules are hard to construct and debug, and

are difficult to modify for a new task and domain. Figure 1 shows the core set of modules in the

generic dialogue shell, and Table 2 gives a brief description of each. The heavier arrows in Figure 1

show the main flow of processing from an input utterance to a response, and the lighter arrows in-

dicate the main interactions along the way. In addition, all modules have access to a common se-

Parser

Speech
Recognition

Discourse Manager

Behavioral Agent

Reference

Discourse Context
Manager

Content Planning

Speech Synthesizer

Display Manager

Plan Manager
Response Planning

Syste

ms
Back End Systems

Figure 1: The Abstract Architecture of the Dialogue Shell
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mantic hierarchy and to a world KB manager that handles queries about the current situation, man-

aging the interfaces to domain dependent reasoners and knowledge bases as needed.

One of the key things to note about this architecture is the separation of the basic dialogue system

components from the more domain-specific components that provide the application (shown within

the dotted lines at the lower left corner of Figure 1). To illustrate this separation, consider a specific

example: a travel-agent application. The back-end would provide schedule and reservation infor-

mation, booking, and so on, much as current computer systems provide to human travel agents. The

behavioral agent and plan manager would be driven from a specification of desired behavior of the

system as a travel agent, including the actions it typically will be asked to perform (e.g., what in-

formation is relevant to the customer when planning a trip), what obligations it has (e.g., find the

Module Function

Speech Recognition (SR) Transforming speech input into a word stream or word lattice

Parser Transforming the SR output into interpretations, each a set of conventional speech
acts, using full and robust parsing techniques

Reference Manager (REF) Identifying the most salient referents for referring expressions such as noun
phrases

Discourse Context Manager Maintaining the global (topic flow) and local (salience with a topic) discourse
context

Discourse Manager (DM) Identifying the intended speech act, current task, current step in the current task,
and system obligations arising from the dialogue

Behavioral Agent (BA) Determines system actions (e.g., answer a question, notify of a problem, request
clarification); Manages the interface to the back-end systems.

Plan Manager Constructing, modifying, evaluating, and executing plans (whether they are the
subject of the conversation or the task being executed)

World KB Maintains a description of the current state of the world under differing assump-
tions (e.g., based on different plans or hypotheses)

Response Planner Determining the best communicative act(s) (and their content) to accomplish the
system’s current goals and discourse obligations

Content Planner Determining how to realize the planned speech acts

Display Manager Managing the visual presentations given the available hardware.

Table 2: The Key Modules in the Dialogue Shell in the Abstract Architecture
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customer the most convenient flights, say cheapest, or fastest), and a specification of how to per-

form actions (e.g., to book a ticket, first get credit card information, then interact with the reserva-

tion system, confirm booking with user, etc). As another example, in the TRIPS-PACIFICA sys-

tem, the back-end systems included a movement planner (choosing movement actions including the

vehicles and cargoes involved), route planning (based on map and vehicle capabilities), and sched-

uling (based on nominal travel times). The Behavioral agent knew the various operations a person

might request (e.g., introduce a new subgoal, modify an existing plan, evaluate a plan, e.g., how

long will that take?), as well as how to perform actions (e.g., to develop a plan, first determine the

movement actions required, then call router to find routes, and then call the scheduler to produce a

time-line), and then convey this information back to the user.

Separating the Behavioral Agent from the dialogue management is also key to supporting mixed-

initiative interaction. The behavioral agent may have goals independent of the current conversation

that might influence its response. For example, in an emergency management task, the behavioral

agent may decide that it is more important to notify the user that an ambulance has become inop-

erative rather than to answer the user's current query about the weather forecast. Thus it might ig-

nore the question temporarily (still retaining the obligation to answer later). Determining when to

do this, of course, will be a domain-specific decision.

The Behavioral Agent also serves to encapsulate the domain-specific information, for the rest of the

system interacts with the back-end systems only via the behavioral agent. By defining a generic in-

terface to the behavioral agent in terms of plans, action, goals, and so on, most of the system can be

built independent of any specific domain. For example, The Discourse Manager (DM) coordinates

a range of processes to recognize the user's intentions underlying the utterance and to compute new

discourse obligations (e.g., if asked a question, one should respond (cf. Traum & Allen, 1994)). The

DM first receives input in the form of surface speech acts that are computed by the parser using the

output from the speech recognition system. It is driven by a set of interpretation rules that match the

surface speech acts and invoke modules such as the Reference Manager, Context Manager, Plan
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Manager and the Behavioral Agent to produce and/or evaluate possible interpretations. It might

seem that the DM needs domain-specific information to perform its task. Instead, however, it deals

with abstract intentions such as introducing a new goal, modifying an existing plan, and requesting

background information. Intentions of this form are evaluated by the behavioral agent and plan

manager with respect to the specific domain and the results are passed back to the DM. The DM

does not have to know the details of the specific domain.

4. Program Level Infrastructure

We now turn to the second level of architecture, namely the programming infrastructure used to

build dialogue systems. Portability to new domains and flexibility in accommodating new compo-

nents requires a clear and explicit separation of responsibilities between the components. Not coin-

cidentally, this is also good software engineering practice. Importantly for our team of researchers,

it also allows work on individual components or small groups of components to proceed independ-

ently, with later integration into the complete system (possibly even at run-time).

Our program-level architecture consists of a set of loosely-coupled, heterogenous components that

communicate by exchanging messages. Over the past several years, we have developed an exten-

sive robust infrastructure for deploying components.

Why a message-passing architecture?

Before describing the infrastructure, it is worth considering why we chose an explicit message-

passing framework for inter-component communication rather than an alternative such as RPC or

object-oriented method calls.

The first reason is that explicit message-passing provides platform- and language-independence. In

our work, we use a variety of languages and platforms including Lisp, C, C++, Java, and Perl on

Unix, Windows, and Macintosh platforms. TRIPS components can also communicate with other

systems via agent frameworks such as the Open Agent Architecture (OAA) (Cohen et al, 1994) and
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object frameworks such as CORBA. From the outset, we didn't want to restrict ourselves to a par-

ticular object framework or communication model.

The second reason for using explicit message-passing is the separation of transport and content in-

formation. The transport mechanisms and protocols are supported (and enforced) by the infra-

structure, while the content is negotiated between the components. This negotiation can be at com-

pile-time, in the case of objects, or at run-time in the case of agents. But the fact that message-

passing separates transport and content decisions allows us to build a robust communication infra-

structure without requiring prior universal agreement about content.

Third, and extremely important for us as researchers and system developers interested in rapid

portability, is that explicit message-passing provides easy access to information needed for debug-

ging. The message traffic in a run of the system is logged and can be used for post-mortem debug-

ging and even replaying entire sessions.

Syntax and Semantics of Messages

In the TRIPS message-passing framework, components exchange messages using either the

Knowledge Query and Manipulation Language (KQML) (Labrou and Finin, 1997), designed as

part of the DARPA Knowledge Sharing Effort, or the Agent Communication Language specified

by the Foundation for Intelligent Physical Agents (FIPA ACL, 1999). These languages are quite

similar and 

speech acts (e.g., Searle, 1969).

A message in these languages consists of a verb (or performative), indicating the speech act in-

tended by the message, followed by a set of parameters specifying particulars of the message. Ex-

amples of KQML performatives include "TELL" and "ASK-IF”. Messages can be addressed to

other agents, and there is support in the specifications for connecting individual messages into con-

versational threads.
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Importantly, neither KQML nor FIPA ACL specifies the semantics of the content of the messages.

That is, there is a parameter with which the content of the message can be specified, but this pa-

rameter is not interpreted by the message-passing infrastructure. While this makes it difficult to

specify and verify agents in terms of their communicative behaviors, it does make it possible to use

these frameworks without solving a host of difficult problems in reasoning about other agents (cf.

Cohen and Levesque, 1990). The fact that components developed using KQML or FIPA ACL share

a syntax and a basic agreement about the meaning of the performatives generally makes their inte-

gration easier than if they communicated only via

The TRIPS Facilitator

The TRIPS message-passing infrastructure is based on a hub topology. The central node in the net-

work of components is the TRIPS facilitator. The choice of a hub topology was a pragmatic one.

While such an organization does lead to a possible single point of failure for the network if the hub

goes down, in practice the advantages (such as support for validation and logging) are more im-

portant for a research system.

The main job of the Facilitator is to route each message to its intended receiver. In so doing, it per-

forms full syntactic validation of the message with respect to the underlying protocol (e.g.,

KQML). This again simplifies component development by removing much of the burden of proto-

col-level error-checking.

or more names. The Facilitator also allows the online specification of "client groups" to which in-

dividual clients can subscribe. In the TRIPS prototype system, these groups are used to describe

categories of services, such as "user input" or "display". The Facilitator accepts group names (i.e.,

service classes in the TRIPS prototype) as valid recipients for messages, and routes such messages

to all members of the group.

These capabilities support an extended form of point-to-point addressing between components ex-

changing messages. However, in a system like TRIPS where the components are effectively mem-
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bers of an agent society, broadcasting is a common way of informing other agents of new informa-

tion or requesting services. The TRIPS Facilitator therefore supports two separate forms of broad-

cast: 1) a "true" broadcast, which is used for various control messages, such as to indicate that a

conversation is starting or has ended, and 2) a "selective broadcast", a subsumption mechanism in

which components can indicate interest in the output of a particular client or client group. Com-

bined with the use of client groups, selective broadcast provides a powerful and flexible communi-

cation framework (for example, the Parser can indicate interest in the "user input" group, of which

the Speech Recognizer is a member, along with other clients).

In summary, the TRIPS Facilitator provides robust message-passing facilities built on TCP sockets.

It provides naming services, content- and service-based addressing, broadcast, selective broadcast,

and logging. It has many similarities with agent-based communication languages like OAA and can

easily be extended to interact with OAA agents. We differ significantly from the Communicator

Architecture (Goldschen & Loehr) in that we do not have any concept of programming the Hub.

We believe that the communication infrastructure should be general and all control issues should be

handled within the modules.

5. Issues in Porting to New Applications

The final issue we will discuss is the issue of adapting the shell to new domains. As discussed

above, our general strategy is to develop generic components that are domain-independent yet lim-

ited to practical dialogues. In some cases, a generic component can work “as is” in domain. In oth-

ers, we need techniques for rapidly specializing the components to perform effectively in each spe-

cific domain. We will discuss a few specific examples here as there is not the space to cover every

aspect of the system.

Speech Recognition

We use a general-purpose speech recognizer, Sphinx-II (Huang1993) and generic acoustic and pro-

nunciation models to achieve generality. We then tailor the lexicon and the language model to the
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task domain in order to achieve good recognition performance. This is especially important because

our dialogues involve more spontaneous speech than applications such as dictation.

Most approaches to building language models for new domains are framed as adaptation

problems: assume the availability of a good general model that can be made more specific by in-

corporating knowledge from a text corpus in a new domain. However, these approaches require the

existence of a corpus for the new domain, which may become prohibitively lengthy and expensive.

We have successfully built language models for new domains in a very short time by applying two

techniques (Galescu et al, 1998). First, in the absence of text data in the task domain, we generate

an artificial corpus from a hand-coded context-free grammar (CFG) that is easily adaptable to new

domains, and train a language model on this corpus. Second, we use a class-based approach to LM

adaptation from out-of-domain corpora that allows us to re-use the dialogue data collected from

other practical dialogue domains to build models for new domains.

The first technique involves generating an artificial corpus by Monte Carlo sampling from a

hand-coded task-specific context-free grammar The purpose of the artificial corpus is to provide a

source of plausible word collocations for the new domain. As such, a simple grammar based on a

blend of syntactic and semantic categories is sufficient, and has the advantage of being very easy to

write. Our grammars contain just a few hundred rules. We built the first CFG (for the Pacifica do-

main) starting from a few sentences (e.g., from a script) in a manner similar to that suggested by

Rayner (1997).

The second technique we use to obtain training material for language modeling is based on

reusing data from other domains. Language models trained on the data from other domains might

actually give worse performance than not using any language model at all. Therefore, we need to

provide a transformation between language models in the remote domain and language models in

the target domain. To do this we use a class-based approach. The general procedure for generating

class-based n-gram models (Issar 1996) follows three steps: 1) Tagging the corpus according to

some predefined word-class mapping; 2) Computing a back-off n-gram class model from the
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tagged text corpus; and 3) Converting back to a word model using the word-class mappings in the

class tag dictionary.  We achieve the adaptation by using a tag dictionary specific to the remote

domain for tagging the corpus (in step 1), and using a tag dictionary specific to the target domain to

obtain a word-based LM from the class-based LM (in step 3). The success of this technique de-

pends heavily on the compatibility between the two tag dictionaries being used. To achieve this

kind of compatibility, we maintain a domain-independent tag dictionary (containing function

words, pronouns, many common-use words and phrases of basic conversational English), and a

specialized tag dictionary for each task domain. Thus, whenever we work on a new domain, we

only need to adapt the specialized tag dictionary.

One disadvantage of this approach is that no statistics are available for words in the target

domain associated with tags that don't appear in the remote corpus. We alleviate this problem by

interpolating language models from several practical dialogue domain.

We have used the above techniques for building initial language models in all domains to

which we have recently ported the TRIPS system (see Table 1). The most thorough evaluation was

done on the Pacifica domain. We summarize in Table 3 the main results. Full details can be found

in (Galescu et al, 1998). Listed are perplexity (PP) and word error rate (WER) figures for various

models1. 1) NULL - no model is used. This would be the default when no information about the

new domain is available; 2) artificial corpus - the initial model built from an artificial corpus; 3)

adapted OOD data - the initial model built using the class-based adaptation from out-of-domain

(OOD) corpora. The corpora used were: the ATIS corpus (Dahl et al, 1992) , the TRAINS95 trans-

portation scheduling domain corpus (Allen et al, 1996), and the TDC human-human spoken dia-

logue corpus (Heeman & Allen, 1995); 4) combined - an initial model that combines by linear in-

terpolation the two other initial models. The interpolation weights were chosen to optimize PP on

the transcriptions of the first few conversations with the system. Choosing equal weights provided

                                                
1 All models are open vocabulary bigram back-off models, with Witten-Bell discounting (Witten & Bell, 1991) and

built with the CMU Statistical Language Model Toolkit (Clarkson & Rosenfeld, 1997) and tools of our own.
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close performance figures; 5) Pacifica - a model built from transcriptions of actual conversations

with a fully operational system in which the language model was the combined model.

As can be seen from Table 3, the techniques described above for building initial models for

new domains provide reasonable performance. After deploying the system, as text from the target

domain becomes available, it can be used for building a domain-specific model. This may be used

for further adaptation of the initial model (Rudnicky, 1995), or, if reliable enough, it may replace

the initial model.

Model PP WER
NULL 1862.0 56.9

Artificial corpus 57.94 28.2

Adapted OOD data 92.01 33.7

Combined 32.86 26.3

Pacifica 15.92 18.8

 Table 3: Performance of the various initial models compared to the NULL and Pacifica models.

Parsing

Working with real-time dialogue places many demands on the parser. If an analysis can be found, it

must be done quickly so that the user does not have to wait too long. At the same time, we want the

grammar to cover a wide range of grammatical constructs, but extending the grammatical coverage

often decreases the efficiency of the parser. We address this problem by extensive use of selectional

(i.e., semantic) restrictions. While it has been argued that selectional restrictions are problematic as

a general theory of semantics, we have found them to be practical and effective for specific do-

mains. The challenge is to keep a general domain-independent grammar and lexicon for portability

and then adapt it to a new domain for accuracy and efficiency. The parser uses a chart-based best-

first algorithm that accepts input incrementally. The grammar is a fairly standard feature-based

context-free formalism. The parser and grammatical formalism are based on Allen (1995).

We start with a grammar and a core lexicon that describes general English usage in practical dia-

logues and then obtain a domain-specific parser by compiling in a domain semantics. For example,
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there are general patterns for the syntax of a verb phrase: a verb can only take a certain number of

complements that are well-defined constituents. Princeton WordNet (Miller, 1995) identifies 35

verb frames encountered in English. While some domains may not involve all these frames, it is

reasonable to assume that the number and syntactic types of verb arguments is domain independent.

Therefore, they are part of the core lexicon and grammar. Similarly, there are semantic properties

that stay the same in all domains. A car is a physical object in all domains, and it cannot conceiva-

bly be a living entity.

Specific domains differ primarily in the semantics they assign to lexical items. Not only do words

have different meanings in different domains, but the notion of a relevant semantic property varies.

For example, in the Pacifica domain it is important to distinguish fixed objects such as cities from

movable objects such as people and cargo. On the other hand, in a kitchen design system we will

need to distinguish between furniture and appliances, something that is not at all important in

Pacifica, where they will be all treated as cargo. In a similar vein, the verb "move" in Pacifica refers

to a transportation action, whereas in the Kitchen design domain it refers to a change in the kitchen

plan, and transportation actions are unknown. In Pacifica, a window in a house would be fixed (not

movable), whereas in the Kitchen domain it is movable (in the design plan).

To build a domain specific grammar, we define mappings from the domain-independent represen-

tations to domain-specific predicates. For example, the generic grammar contains a domain-

independent verb class “MOVE”. In the Pacifica domain, transportation actions are important and

defined by a domain-specific predicate TRANSPORT. As a result, we produce domain-specific

semantic restrictions on the roles for MOVE-class verbs: e.g., the Instrument is required to be a ve-

hicle, the Theme is restricted to be movable (also a domain-dependent feature that selects the set of

objects that can be moved in the domain). We have now significantly reduced the number of sen-

tences that could be parsed, which increases the efficiency of the parser, improves structural disam-

biguation, and provides strong semantic guidance for robust processing to recover from speech rec-

ognition errors. In the kitchen domain, on the other hand, MOVE would map to a kitchen plan
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modification action, where the agent can only be one of the dialogue participants, the Theme is a

"movable" design element in the design plan, while the instrument will be always absent. The

grammars that result from those two specializations result in very different sentences being under-

standable, giving us the advantage of domain-specific semantic grammars without the complexity

of having to define different grammar rules by hand.

Reference Resolution

Resolution of referring expressions is part of the semantic interpretation phase of the DM. In our

implementation, referring expressions are resolved by first constructing a list of known properties

of the referent, calling knowledge managers within the system (such as the context manager and

display manager) to return entities matching those properties, then calculating a confidence rating

that each matching entity is the correct referent. By depending on other knowledge managers for

any domain-specific information, the reference resolution module can remain effectively domain-

independent in generating possible candidates.

Calculation of the confidence rating varies depending on the form of the referring expres-

sion (RE) used (e.g., pronoun, definite description, indefinite) and is domain independent. Return-

ing a list of possible referents, rather than just the one most probable referent, gives the DM more

flexibility in combining the results with information from other sources.

Resolution of referring expressions can take advantage of semantic information if it is

available in the system. For example, verb semantic restrictions computed by the parser can be used

to limit the possible semantic type of allowable referents. To do this requires access to a semantic

hierarchy that is shared by all modules in the system.

In practical dialogues, we find a larger variety of referring expressions and referring be-

havior than one finds in other language genres. Our team at the University of Rochester analyzed

two spoken corpora for their referential behavior (Byron, 1999a). While 89% of the pronouns in

our spoken monologue corpus were co-referential with a noun phrase, only 25% of the pronouns in
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our practical dialogue corpus were. That means that using a pronoun resolution technique that relies

solely on identifying noun phrase antecedents in the prior discourse (a commonly used technique in

language understanding systems) is entirely inadequate for practical dialogs. In practical dialogues,

reference to events, propositions, entire stretches of discourse, etc. is much more common, there-

fore the pronoun resolution technique must allow a wide variety of candidate referents. Practical

dialogues also contain much more demonstrative reference. In the TRAINS corpus (Heeman &

Allen, 1995), 50% of the pronouns are demonstratives, compared to less than 10% in the spoken

monologue corpus. This is important because demonstrative pronouns can refer to a wider range of

entities than can definite pronouns (Byron & Allen, 1998), and resolution of demonstrative pro-

nouns is very rarely addressed in the literature. A much more sophisticated model, one that com-

putes a semantic interpretation of the input text, is needed to resolve demonstrative pronouns (cf.

Byron, 1999, Eckert & Strube 1999).

Content planning and generation

In the current TRIPS system, the response planner receives conversational goals from the discourse

manager (which is driven by directions from the behavioral agent). It selects content for output and

passes the generator a set of role-based logical forms with associated speech acts. The generator

decides which logical forms to produce and how to sequence them, and then passes commands on

to modality-specific generators (prosodically-annotated textual sentences are sent to the speech

synthesizer; commands to display maps and charts are sent to the Display Manager).

Our current language generator uses a domain-specific template-based approach. Templates work

well in near-fixed-initiative situations where there are few types of system utterances; they are fast

and flexible.  Grammar-based approaches work well when broad language coverage is needed, but

are not usually fast enough for use in real-time dialog systems.

Our goal in the next version of TRIPS is to develop a conversational agent capable of generating

varied and complex content in a mixed-initiative fashion. Accordingly, our proposed generation
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framework differs significantly from our existing one.  It is based on theoretical and empirical un-

derstandings of what dialog contributions involve (Traum & Hinkelman, 1991) and is designed to

support incremental, real-time generation; broad language coverage; and flexibility in modifying

system behavior and switching to new domains. We consider the three stages of generation (plan-

ning intentions, planning content and planning form) as three different aspects of utterances that

have to be planned, possibly simultaneously (Reithinger, 1990, Desmedt et al, 1993).  Grounding

and turn-taking acts, for instance, involve the planning of intentions only. Also, these acts often be-

gin a turn, so generating these acts quickly can give a conversational agent time to produce other

acts that may involve more processing. Because the form of such acts can be selected from a set of

conventional forms, a template-based approach can both be domain-independent and be fast

enough for real-time interaction.

 Those utterances that speakers produce to fulfill intentions arising directly from the domain or the

task being solved often have content that must be expressed. The form may or may not be impor-

tant. We will generate these types of utterances using templates when the forms are limited, but use

grammar-based generation in the more complex cases. Other utterances are produced primarily to

complete an argumentation act. Their production involves the planning of intentions, semantic

content and surface form, and they would usually need to be generated using a grammar.

Our proposed generator architecture is described in detail in Stent 1999a. The new response planner

will plan the system's intentions for the continuing dialogue by considering a set of possible inter-

pretations from the DM and the Behavioral Agent.  It must ensure that none of the selected goals

conflict or are redundant. Generation goals are represented as sets of intention by content pairs.

The generator maintains a list of these sets (we call this list the intention-set). Each set is sent to all

the generation modules. The output from each module is a surface form and a set of intentions ful-

filled by that form. A gate-keeper at the end removes intentions from the intention-set as they are

fulfilled. It can also add sets of intentions to the intention-set, for instance to keep the turn or if the
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agent is interrupted. Finally, it can minimize over-generation by selecting which results to produce,

if it gets simultaneous results that satisfy the same intentions.

Consider an example. Imagine a user has just made a statement to the agent.  The agent wants to

acknowledge part of the statement (grounding) and ask a question about another part. So the inten-

tion-set looks like: {take-turn, acknowledge(Utt1), info-request(Content)) (items with initial capital

letters are variables). This set gets passed to all modules. The turn-taking module returns "Uh" for

take-turn and the grounding module returns "Okay" for take-turn and acknowledge(Utt1). The gate-

keeper therefore removes take-turn and acknowledge(Utt1) and produces "Okay". If a pause of

more than, say, half-a-second ensues, the gate-keeper might add the intention keep-turn to the in-

tention-set which will feed it to the various modules. However, happily the gate-keeper quickly re-

ceives a result for info-request(Content) which it produces, removing that intention (and therefore

the whole set) from the intention-set.

 Real-time generation is very important in the context of dialog. We believe our architecture will

allow for real-time responses with grounding and turn-taking acts, “buying” the system more time

to plan utterances that convey complex content.

Conclusions

The TRIPS project is very much a work in progress, and many of our ideas presented here still

await a rigorous formal evaluation. The architecture described here was developed and refined in

response to the problems we found when building end-to-end systems, and in porting the system to

new domains. The TRIPS project shares many of the goals of the Communicator project (Seneff et

al, 1998). In fact, we have demonstrated that we are able to meet many of these goals: we currently

support four domains; the KQML communication language and agent architecture of our system

allows us to use a plug-and-play approach to development and facilitates the incorporation of dif-

ferent modalities; and we have identified and developed key domain-independent components that

can be specialized to new domains fairly easily.
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