Advanced Search
Hill climbing, simulated annealing, genetic algorithm

Lecturer: Ji Liu
Thank Jerry Zhu for sharing slides

[Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]
Optimization problems

- Previously we want a **path** from start to goal
 - **Uninformed search**: $g(s)$: Iterative Deepening
 - **Informed search**: $g(s)+h(s)$: A*

- **Now a different setting**:
 - Each state s has a **score** $f(s)$ that we can compute
 - The goal is to find the state with the **highest score**, or a reasonably high score
 - Do not care about the path
 - This is an **optimization problem**
 - Enumerating the states is intractable
 - Even previous search algorithms are too expensive
Examples

- N-queen: $f(s) = \text{number of conflicting queens in state } s$

Note we want s with the lowest score $f(s)=0$. The techniques are the same. Low or high should be obvious from context.
Examples

- **N-queen**: $f(s) =$ number of conflicting queens in state s

 Note we want s with the lowest score $f(s)=0$. The techniques are the same. Low or high should be obvious from context.

- **Traveling salesperson problem (TSP)**
 - Visit each city once, return to first city
 - State = order of cities, $f(s) =$ total mileage
Examples

• N-queen: \(f(s) = \) number of conflicting queens in state \(s \)

 Note we want \(s \) with the lowest score \(f(s)=0 \). The techniques are the same. Low or high should be obvious from context.

• Traveling salesperson problem (TSP)
 - Visit each city once, return to first city
 - State = order of cities, \(f(s) = \) total mileage

• Boolean satisfiability (e.g., 3-SAT)
 - State = assignment to variables
 - \(f(s) = \) # satisfied clauses

\[
\begin{align*}
A & \lor \neg B \lor C \\
\neg A & \lor C \lor D \\
B & \lor D \lor \neg E \\
\neg C & \lor \neg D \lor \neg E \\
\neg A & \lor \neg C \lor E
\end{align*}
\]
1. HILL CLIMBING
Hill climbing

• Very simple idea: Start from some state s,
 ▪ Move to a neighbor t with better score. Repeat.

• **Question**: what’s a neighbor?
 ▪ You have to define that!
 ▪ The *neighborhood* of a state is the set of neighbors
 ▪ Also called ‘move set’
 ▪ Similar to successor function
Neighbors: N-queen

- Example: N-queen (one queen per column). One possibility:

\[f(s) = 1 \]

\[s \]

Neighborhood of \(s \)
Neighbors: N-queen

- Example: N-queen (one queen per column). One possibility:
 - Pick the right-most most-conflicting column;
 - Move the queen in that column vertically to a different location.

![Diagram showing the concept of neighbors in the N-queen problem.](image-url)
Neighbors: TSP

- state: A-B-C-D-E-F-G-H-A
- $f =$ length of tour
Neighbors: TSP

- state: A-B-C-D-E-F-G-H-A
- \(f = \) length of tour
- One possibility: 2-change

\[
\begin{align*}
\text{A-B-C-D-E-F-G-H-A} \\
\text{flip} \\
\text{A-E-D-C-B-F-G-H-A}
\end{align*}
\]
Neighbors: SAT

- State: (A=T, B=F, C=T, D=T, E=T)
- $f =$ number of satisfied clauses
- Neighbor:

\[
\begin{align*}
A & \lor \neg B \lor C \\
\neg A & \lor C \lor D \\
B & \lor D \lor \neg E \\
\neg C & \lor \neg D \lor \neg E \\
\neg A & \lor \neg C \lor E
\end{align*}
\]
Neighbors: SAT

- State: (A=T, B=F, C=T, D=T, E=T)
- $f =$ number of satisfied clauses
- Neighbor: flip the assignment of one variable

\[
\begin{align*}
(A &= F, \ B = F, \ C = T, \ D = T, \ E = T) \\
(A &= T, \ B = T, \ C = T, \ D = T, \ E = T) \\
(A &= T, \ B = F, \ C = F, \ D = T, \ E = T) \\
(A &= T, \ B = F, \ C = T, \ D = F, \ E = T) \\
(A &= T, \ B = F, \ C = T, \ D = T, \ E = F)
\end{align*}
\]
Hill climbing

- **Question**: What’s a neighbor?
 - (vaguely) Problems tend to have structures. A small change produces a neighboring state.
 - The neighborhood must be small enough for efficiency
 - Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.

- **Question**: Pick which neighbor?

- **Question**: What if no neighbor is better than the current state?
Hill climbing

- **Question:** What’s a neighbor?
 - (vaguely) Problems tend to have structures. A small change produces a neighboring state.
 - The neighborhood must be small enough for efficiency
 - Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.

- **Question:** Pick which neighbor? The best one (greedy)

- **Question:** What if no neighbor is better than the current state? Stop. (Doh!)
Hill climbing algorithm

1. Pick initial state s
2. Pick t in neighbors(s) with the largest $f(t)$
3. IF $f(t) \leq f(s)$ THEN stop, return s
4. $s = t$. GOTO 2.

- Not the most sophisticated algorithm in the world.
- Very greedy.
- Easily stuck.
Hill climbing algorithm

1. Pick initial state s
2. Pick t in neighbors(s) with the largest $f(t)$
3. IF $f(t) \leq f(s)$ THEN stop, return s
4. $s = t$. GOTO 2.

- Not the most sophisticated algorithm in the world.
- Very greedy.
- Easily stuck.

your enemy:

local optima
Local optima in hill climbing

- Useful conceptual picture: f surface = ‘hills’ in state space
- But we can’t see the landscape all at once. Only see the neighborhood. Climb in fog.
Local optima in hill climbing

- Local optima (there can be many!)

 Declare top-of-the-world?

- Plateaux

 Where shall I go?
Local optima in hill climbing

- Local optima (there can be many!)
- Plateaus

Declare the top of the world?

The rest of the lecture is about

Escaping local optima

Where shall I go?
Not every local minimum should be escaped
Variation 1: hill climbing with random restarts

- Very simple modification
 1. When stuck, pick a random new start, run basic hill climbing from there.
 2. Repeat this k times.
 3. Return the best of the k local optima.

- Can be very effective
- Should be tried whenever hill climbing is used
Variations 2 and 3 of hill climbing

• **Question**: How do we make hill climbing less greedy?
 - Stochastic hill climbing
 • Randomly select among better neighbors
 • The better, the more likely
 • Pros / cons compared with basic hill climbing?
Variations 2 and 3 of hill climbing

- **Question**: How do we make hill climbing less greedy?
 - **Stochastic hill climbing**
 - Randomly select among better neighbors
 - The better, the more likely
 - Pros / cons compared with basic hill climbing?

- **Question**: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)
Variations 2 and 3 of hill climbing

• **Question**: How do we make hill climbing less greedy?
 ▪ Stochastic hill climbing
 • Randomly select among better neighbors
 • The better, the more likely
 • Pros / cons compared with basic hill climbing?

• **Question**: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)
 ▪ First-choice hill climbing
 • Randomly generate neighbors, one at a time
 • If better, take the move
 • Pros / cons compared with basic hill climbing?
Variation 4 of hill climbing

- We are still greedy! Only willing to move upwards.
- Important observation in life:

| Sometimes one needs to temporarily step back in order to move forward. |
| = |
| Sometimes one needs to move to an inferior neighbor in order to escape a local optimum. |
Variation 4 of hill climbing

WALKSAT [Selman]

- Consider 3 neighbors
- If any improves f, accept the best
- If none improves f:
 - 50% of the time pick the least bad neighbor
 - 50% of the time pick a random neighbor

This is the best known algorithm for satisfying Boolean formulae.

$A \lor \neg B \lor C$
$\neg A \lor C \lor D$
$B \lor D \lor \neg E$
$\neg C \lor \neg D \lor \neg E$
$\neg A \lor \neg C \lor E$
2. SIMULATED ANNEALING
Simulated Annealing

anneal

• To subject (glass or metal) to a process of heating and slow cooling in order to toughen and reduce brittleness.
Simulated Annealing

1. Pick initial state s
2. Randomly pick t in neighbors(s)
3. IF $f(t)$ better THEN accept $s \leftarrow t$.
4. ELSE /* t is worse than s */
5. accept $s \leftarrow t$ with a small probability
6. GOTO 2 until bored.
Simulated Annealing

1. Pick initial state s
2. Randomly pick t in neighbors(s)
3. IF $f(t)$ better THEN accept $s \leftarrow t$.
4. ELSE /* t is worse than s */
5. accept $s \leftarrow t$ with a small probability
6. GOTO 2 until bored.

How to choose the small probability?

idea 1: $p = 0.1$
Simulated Annealing

1. Pick initial state s
2. Randomly pick t in neighbors(s)
3. IF $f(t)$ better THEN accept $s \leftarrow t$.
4. ELSE /* t is worse than s */
5. accept $s \leftarrow t$ with a small probability
6. GOTO 2 until bored.

How to choose the small probability?

idea 1: $p = 0.1$

idea 2: p decreases with time
Simulated Annealing

1. Pick initial state s
2. Randomly pick t in neighbors(s)
3. IF $f(t)$ better THEN accept $s \leftarrow t$.
4. ELSE /* t is worse than s */
5. accept $s \leftarrow t$ with a small probability
6. GOTO 2 until bored.

How to choose the small probability?

idea 1: $p = 0.1$
idea 2: p decreases with time
idea 3: p decreases with time, also as the ‘badness’ $|f(s) - f(t)|$ increases
Simulated Annealing

- If $f(t)$ better than $f(s)$, always accept t
- Otherwise, accept t with probability
 \[
 \exp \left(- \frac{|f(s) - f(t)|}{\text{Temp}} \right)
 \]
Simulated Annealing

- If $f(t)$ better than $f(s)$, always accept t
- Otherwise, accept t with probability

$$
\exp \left(- \frac{f(s) - f(t)}{\text{Temp}} \right)
$$

- Temp is a temperature parameter that ‘cools’ (anneals) over time, e.g. $\text{Temp} \leftarrow \text{Temp} \times 0.9$ which gives $\text{Temp} = (T_0)^{\text{iteration}}$
 - High temperature: almost always accept any t
 - Low temperature: first-choice hill climbing
- If the ‘badness’ (formally known as energy difference) $|f(s) - f(t)|$ is large, the probability is small.
SA algorithm

// assuming we want to maximize f()
current = Initial-State(problem)

for t = 1 to ∞ do

 T = Schedule(t) ; // T is the current temperature, which is monotonically decreasing with t

 if T=0 then return current ; //halt when temperature = 0

next = Select-Random-Successor-State(current)

deltaE = f(next) - f(current) ; // If positive, next is better than current. Otherwise, next is worse than current.

if deltaE > 0 then current = next ; // always move to a better state

else current = next with probability p = exp(deltaE / T) ; // as T → 0, p → 0; as deltaE → -∞, p →0

end
Simulated Annealing issues

- Cooling scheme important
- Neighborhood design is the real ingenuity, not the decision to use simulated annealing.
- Not much to say theoretically
 - With infinitely slow cooling rate, finds global optimum with probability 1.
- Proposed by Metropolis in 1953 based on the analogy that alloys manage to find a near global minimum energy state, when annealed slowly.
- Easy to implement.
- Try hill-climbing with random restarts first!
GENETIC ALGORITHM

http://www.genetic-programming.org/
Evolution

- Survival of the fittest, a.k.a. natural selection
- Genes encoded as DNA (deoxyribonucleic acid), sequence of bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)
- The chromosomes from the parents exchange randomly by a process called crossover. Therefore, the offspring exhibit some traits of the father and some traits of the mother.
 - Requires genetic diversity among the parents to ensure sufficiently varied offspring
- A rarer process called mutation also changes the genes (e.g. from cosmic ray).
 - Nonsensical/deadly mutated organisms die.
 - Beneficial mutations produce “stronger” organisms
 - Neither: organisms aren’t improved.
Natural selection

- Individuals compete for resources
- Individuals with better genes have a larger chance to produce offspring, and vice versa
- After many generations, the population consists of lots of genes from the superior individuals, and less from the inferior individuals
- Superiority defined by fitness to the environment
- Popularized by Darwin
- Mistake of Lamarck: environment does not force an individual to change its genes
Genetic algorithm

- Yet another AI algorithm based on real-world analogy
- Yet another heuristic stochastic search algorithm
- Each state s is called an individual. Often (carefully) coded up as a string.

![Chessboard Diagram]

- The score $f(s)$ is called the fitness of s. Our goal is to find the global optimum (fittest) state.
- At any time we keep a fixed number of states. They are called the population. Similar to beam search.
Individual encoding

- The “DNA”
- Satisfiability problem
 \[(A \land B \land C \land D \land E) = (T \land F \land T \land T \land T)\]
- TSP
 \[A-E-D-C-B-F-G-H-A\]
Genetic algorithm

- Genetic algorithm: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.
Genetic algorithm

- **Genetic algorithm**: a special way to generate neighbors, using the analogy of **cross-over**, **mutation**, and **natural selection**.

![Diagram showing the process of genetic algorithm with numbers and percentages]

- Number of non-attacking pairs
- prob. reproduction \propto fitness

(a) Initial Population
(b) Fitness Function
(c) Selection
Genetic algorithm

- **Genetic algorithm**: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.

Number of non-attacking pairs

prob. reproduction \propto fitness

\Rightarrow Next generation
Genetic algorithm

- **Genetic algorithm**: a special way to generate neighbors, using the analogy of **cross-over**, **mutation**, and **natural selection**.

![Diagram of Genetic Algorithm]

- **Initial Population**
- **Fitness Function**
- **Selection**
- **Cross-Over**
- **Mutation**

Number of non-attacking pairs

prob. reproduction \(\propto \) fitness

→ Next generation
Genetic algorithm (one variety)

1. Let s_1, \ldots, s_N be the current population
2. Let $p_i = f(s_i) / \sum_j f(s_j)$ be the reproduction probability
3. FOR $k = 1; k<N; k+=2$
 - parent1 = randomly pick according to p
 - parent2 = randomly pick another
 - randomly select a crossover point, swap strings of parents 1, 2 to generate children $t[k], t[k+1]$
4. FOR $k = 1; k<=N; k++$
 - Randomly mutate each position in $t[k]$ with a small probability (mutation rate)
5. The new generation replaces the old: $\{ s \} \leftarrow \{ t \}$. Repeat.
Proportional selection

- \(p_i = \frac{f(s_i)}{\sum_j f(s_j)} \)
- \(\sum_j f(s_j) = 5+20+11+8+6=50 \)
- \(p_1 = \frac{5}{50} = 10\% \)

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>40%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>22%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>16%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>12%</td>
</tr>
</tbody>
</table>
Variations of genetic algorithm

- Parents may survive into the next generation
- Use ranking instead of $f(s)$ in computing the reproduction probabilities.
- Cross over random bits instead of chunks.
- Optimize over sentences from a programming language. Genetic programming.
- ...

Genetic algorithm issues

- State encoding is the real ingenuity, not the decision to use genetic algorithm.
- Lack of diversity can lead to premature convergence and non-optimal solution.
- Not much to say theoretically.
 - Cross over (sexual reproduction) much more efficient than mutation (asexual reproduction).
- Easy to implement.
- Try hill-climbing with random restarts first!