Can Decentralized Algorithms Outperform Centralized Algorithms?
A Case Study for Decentralized Parallel Stochastic Gradient Descent

Executive summary
- In large scale machine learning, instead of using only one machine, we distribute data into multiple machines and let them collaborate on solving the following optimization problem:

$$\min \mathcal{f}(\mathbf{x}) := \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\mathbf{y} \sim p_{\mathbf{y}}(\mathbf{x}; a)} f_{i}(\mathbf{x}) = f(\mathbf{x})$$

- Based on our case study, the decentralized algorithm may not need more iterations to converge than its centralized counterpart.
- Decentralized algorithms outperform centralized algorithms for networks with low bandwidth and high latency.

Background: Centralized Method 1 (Parameter Server)

Centralized Method 2 (AllReduce)

Our Proposal: Decentralized Method

Algorithm (Decentralized Parallel SGD)

$$\mathbf{x}(1) = \mathbf{x}(2) = \ldots = \mathbf{x}(N) \quad \mathbf{W}$$

Theoretical Results

- Assumptions
 - Lipschitzian: $f(\mathbf{x})$ is with L-Lipschitzian gradient
 - Bounded variance: the variance of each worker's partial gradient is bounded
 - Spectral gap: $\rho = \max(\lambda_{i}(\mathbf{W})|i=1, \ldots, k) < 1$

- The following rate holds:
 $$\mathbb{E}[(f(\mathbf{x}) - f^{*})^{2}] \leq \frac{L}{N} + \frac{1}{2} \rho^{2} + \frac{1}{2} (1-\rho^{2})^{2}$$

Evaluation: Proprietary dataset and model (IBM Watson Natural Language Classifier)

Evaluation: Public dataset and model (CIFAR10/ResNet)

Future work
- Asynchronous parallelism for decentralized algorithms.
- Investigate new topologies to improve communication efficiency.

Executive summary
Decentralized algorithms outperform centralized algorithms for networks with low bandwidth and high latency.