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Abstract

Object detection in streaming videos has three require-
ment: consistency, online and real time. For consistency, we
adopt incremental Seq-NMS [9] to link the current bound-
ing boxes with previous ones to see whether the object is
new or not. And we adopt Deep Feature Flow (DFF) [34]
to achieve on-line and real time. However, DFF is sensi-
tive to the selection of a good key frame, so we proposed
the Differential Network (DiffNet) to achieve an automatic
key frame scheduling. DiffNet combines both information
from raw image and optical flow to tell whether two frames
need to transfer feature, which is applied ahead of the de-
tection pipeline. We firstly evaluate the classification abil-
ity of DiffNet and then examine such method on ImageNet
VID dataset and compare it with the fixed-step key frame
scheduling.

1. Introduction

Recent years have witnessed significant progress in ob-
ject detection [16]] in still images. It is natural for people
to extend the detection task from image domain to video
domain. However, such extension will introduce new chal-
lenges. First, applying the deep networks on each video
frame leads to prohibitive computational cost. Second,
recognition accuracy suffers from deteriorated appearances
in videos that are seldom observed in still images, such as
motion blur, video defocus, rare poses, etc. Third, adjacent
frames has strong temporal correlation which might play a
latent role to improve the detection result in video domain.
There have been few works on video object detection.

Recently Deep Feature Flow (DFF) [34] proposed a view
trying to address above challenges. It exploits data re-
dundancy between consecutive frames to reduce the expen-
sive feature computation on most frames and improves the
speed. This method divides all frames into two sets: key
frame sets and non-key frame sets. The deep network is ap-
plied only on key frames to compute their feature. To obtain
the features at a non-key frame, an optical flow network [3]]
estimates the motions between the nearest key frame and
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the non-key frame. The feature map of key frame is warped
to the non-key frame according to the flow motion. The
warped feature is shown in Fig. [T{b). Hence, DFF transfers
the cumbersome calculation of deep network to the much
lighter calculation of optical flow on non-key frame, en-
abling the detection pipeline with faster speed.

However, the features for non-key frames are only ap-
proximated and error-prone; thus hurting the recognition
accuracy in further extend. A major limitation of DFF is
that the detection accuracy of a non-key frames depends
heavily on the feature quality of its corresponding key frame
and the reliability of the motion field between them. To put
it more concrete, a deteriorated frame as a key frame will
propagate its poor feature to others and jeopardize the fea-
ture of non-key frames. Likewise, a bad optical flow esti-
mation will distort the feature from the key frame and con-
tribute to a bad feature propagation. Thus, how to choose
the key frame plays a critical role in DFF. However, DFF
just adopts fixed key frame selecting scheme and fails to
take account of the quality of both key frame and the op-
tical flow. Thus it is necessary to formulate a key frame
scheduling.

Our model construction obeys two rules: 1) update a
new key frame when the estimation of optical flow is bad;
2) the key frame should not be a deteriorated frame. Fur-
ther we unify the two rules into one principle — the frame
with transfered feature should have comparative detection
accuracy as it with its own feature. In this work, we pro-
pose a Differential Network (DiffNet) to remedy improper
selection of key frames by following the above principle.
DiffNet is applied ahead of the detection network. It takes
key frame and current frame as input and outputs a binary
classification of whether these two frames should pass fea-
ture or not. We firstly generate the passing label for each
frame pairs and then use them to train DiffNet. This tech-
nique embodies the scheduling principle in the ground truth
labeling process. It makes the key frame usage more effi-
cient. The experiments show the classification accuracy for
DiffNet is 76% and achieved mAP of 70.7% combined with
detection pipeline, which is still 0.5% lower than detection
by fixed step key frame scheduling. We expect the results



to be further improved by feature aggregation and box-level
inference.

The contribution of this paper is 1) train the DiffNet to
formulate an automatic key frame scheduling. 2) propose
an adaptive sampling method to remedy the unbalanced
classification problem. 3) further combine the image-level
and box-level feature to strength the classification ability of
DiffNet.

2. Related Work

Speed/accuracy trade-off in object detection. As [16]
indicates that speed/accuracy trade-off of modern detection
system can be achieved by different feature networks [27,
29,112,128, 30, 11512} 1141 131]] and detection networks [} {11,
7,125, 13,122,104 4], or varying some critical parameters such
as image resolution, box proposal number. PVANET [20]
and YOLO [23]] even design specific feature networks for
fast object detection. By applying several techniques (e.g.
batch normalization, high resolution classifier, fine-grained
features and multiscale training), YOLO9000 [24] achieves
higher accuracy.

Since our proposed method only considers how to com-
pute higher quality feature faster by using temporal infor-
mation, and is not designed for any specific feature net-
works and detection networks, such techniques are also suit-
able for our proposed method

Video object detection. Existing object detection meth-
ods incorporating temporal information in video can be
separated into box-level methods [19, 18| 9, 21, 17, |6]
and feature-level methods [34) [33] (both are flow-based
methods). Box-level methods usually focus on how to
improve detection accuracy considering temporary con-
sistency within a tracklet. T-CNN [18, [19] first propa-
gates predicted bounding boxes to neighboring frames ac-
cording to pre-computed optical flows, and then generates
tubelets by applying tracking algorithms. Boxes along each
tubelet will be re-scored based on the tubelet classification
result. Seq-NMS [9] constructs sequences along nearby
high-confidence bounding boxes from consecutive frames.
Boxes of the sequence are re-scored to the average confi-
dence, other boxes close to this sequence are suppressed.
MCMOT [21] formulates the post-processing as a multi-
object tracking problem, and finally tracking confidence are
used to re-score detection confidence. TPN [[17] first gener-
ates tubelet proposals across multiple frames (< 20 frames)
instead of bounding box proposals in a single frame, and
then each tubelet proposal is classified into different classes
by a LSTM based classifier. D&T [6] simultaneously out-
puts detection boxes and regression based tracking boxes
with a single convolutional neural networks, and detection
boxes are linked and re-scored based on tracking boxes.
Feature-level methods usually use optical flow to get pixel-
to-pixel correspondence among nearby frames. Although
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Figure 1. Illustration of video recognition using per-frame network
evaluation (a) and deep feature flow (b). (figure cited from [33]])

feature-level methods are more principle and can further in-
corporate with box-level methods, they suffer from inaccu-
rate optical flow. Still ImageNet VID 2017 winner is pow-
ered by feature-level methods DFF [34] and FGFA [33].
Our proposed method is an improvement of a feature-level
method, which introduces a DiffNet to select the key frames
to pass the feature. The most similar work of this paper is
[32]. It introduces Spatially-adaptive partial feature updat-
ing to fix the inaccurate feature propagation caused by inac-
curate optical flow. However, this method uses pixel-wise
information to indicate the incorrect optical flow of each
pixel and just sum up the bad pixel of the whole image to
schedule key frame selection, but fail to consider the box-
wise information. In our work, not only the image-level, but
the box-level information is used to select the key frame.

3. Methods
3.1. Deep Feature Flow

Deep feature flow [34] introduces the concept of key
frame for video object detection. The motivation is that sim-
ilar appearance among consecutive frames usually results in
similar features, which is demonstrated by experiment that
the feature warped by optical flow can still lead to a good
detection. It is therefore unnecessary to compute features
on all frames.

DFF Structrue. Structure of DFF is shown in Fig [I}
During inference, the expensive feature network N Feat 18
applied only on sparse key frames (e.g., every 10 frames).
The feature maps on any non-key frame ¢ are propagated
from its preceding key frame k by per-pixel feature value
warping and bilinear interpolation. The between frame
pixel-wise motion is recorded in a two dimensional motion
field M;_,;.. The propagation from key frame k to frame ¢



Method mAP(%)

Frame 73.9 1.52
DFF 73.1 20.25

runtime (fps)

Table 1. The comparison of DFF (key frame step 10) and detec-
tion by frame on ImageNet VID. We can see DFF has much faster
speed than detection by each frame while maintaining a relative
high mAP. Thus DFF is a good method to accelerate detection task
in video.

is denoted as
Fri = W(Fg, M) (D

where WV represents the feature warping function, which is
a bilinear sampler. Then the detection network Ny.; works
on Fj_,; , the approximation to the real feature F; , instead
of computing F; from Ny.q.

The motion field is estimated by a lightweight flow net-
work, Nyiow(Ik, I;) = M, [5], which takes two frames
Iy, I; as input. End-to-end training of all modules, in-
cluding N0, greatly boosts the detection accuracy and
makes up for the inaccuracy caused by feature approxima-
tion. Compared with the single frame detector, the com-
putation of N0, and Eq. [I]is much cheaper than feature
extraction in Ny.q;. The speed and accuracy comparison
can be seen from Table [Tl

Module Design. The featrue extraction network\seq:
is ResNet-101. The feature warping function WV is bilinear
sampler. The flow network N flow 18 specifically FlowNet-S
in [3]. Here DFF is tasked for detection, thus Ni,sx is de-
tection network Ny.; which is implemented by R-FCN [3].

3.2. Differential Network

DFF [34] adopts fixed-step key frame scheduling, which
might impede the detection result by selecting bad key
frames. A good key frame shoulders twofold responsibili-
ties. One is to end the feature transferring from the previous
key frame due to large pixel difference and bad quality of
optical flow. Another is to restart a good new feature that
can be well transfered to its followers. Hence both histori-
cal and future information should be considered to draw a
decision. However, in the real-time detection system only
historical frames are available and the future information
can only be inferred from history, rendering the task very
hard. Formally, the possibility for current frame I; to be a
key frame is in condition of whole history and is expressed
as Pyey (I;) = P(L;| 11, I2, ..., I;_1). To reduce computation
complexity, we treat the I; only dependent on its nearest
previous key frame I, and the dependency is modeled as

Prey(L;) = P(Li|Ik) = 1 — Naigp (L, I, Mi—;) (2)

where Ny; s is Differential Network (DiffNet) and Mj,_,;
is optical flow from Ij to I;. DiffNet takes as input cur-

rent frame, last key frame and optical flow between them
and outputs the possibility for them to pass feature. If not
passing feature, I; becomes a new key frame.

Network Structure. Fig. 2]and Fig. 3| show the struc-
ture of DiffNet. It firstly concatenates I; and I as an early
fusing to get more fine-grained difference feature, and uti-
lizes features and optical flow from FlowNet to learn the
quality of motion field. The concatenated feature later goes
into the tail part and passes Rol pooling layer to get a uni-
form size of 7 x 7, due to varied sizes of inputs. Finally a
probability output is obtained through a fully-connect layer
followed by a sigmoid function.

Get the training label for the differential network.
We label the passing ground truth by the principle that the
frame with transfered feature should have comparative de-
tection accuracy as it does with its own feature. Specifically,
we start by randomly selecting two frames (I, and I;) in a
video. And we pass these two frame to feature extraction
network to calculate their own features F} and F;. Then we
use to get I;’s transfered feature Fy_,;. With Fj_,; and
F;, we compare the number of detected objects whose IoU
score with the ground truth are greater than 0.5. The label-
ing method is shown in Table [2] If the number of detected
objects from F}_,; is no less than that from F;, we label
passing; if no object is detected from both F; and F}_,;, we
abandon such training pair (because there is no information
in this situation); else we label not passing.

Adaptive sampling method. Random sampling in
videos faces the problem of class unbalance, that is to say,
the number of positive samples (passing feature) is much
more than the number of negative samples (not passing
feature), which is explained by the slow motion in many
videos. We address such problem by an adaptive sampling
method that can adjust the interval between a pair of images
so as to modulate the label for such pair. In each video, 20
image pairs are sampled. In order to make the samples cover
the entire video, the first 10 pairs are sampled from the start
to the end of the video with equal interval d = | £ |, where
D is the length of the video and | -] is rounding down. The
latter 10 pairs are sampled with adaptive interval that is re-
currently updated as d < | ad], where « is defined as

if #(positive sample) = #(negative sample)
if #(positive sample) > #(negative sample)

Q
\
o= N =

if #(positive sample) < #(negative sample).

And if the number of sample pairs in one class exceeds 10,
we reject sampling that class until both classes are balanced
or exceed maximum sampling count.

Training. DiffNet can be regarded as a stand alone
module and can be trained separately from the detection
part. Let y,, i, = Naigs(Li, s In, s My, i, ), and ty, i,
be the ground truth label for passing feature. Cross-entropy



condition label

Nk >Ny &n; >0
Ng—i < Ty
Ng—; =M =0

pass feature
not pass feature
no label

Table 2. Labeling method for key frames, where ny_,; and n; are
the number of detected objects from Fj_,; and Fj, respectively

loss is used for training and is written as

N
L= % lthaoin l0gYr,—i,) +
n=1
(1 — th,—i,) log(L = yr, —i,)] 3)

where n and N represent the index of sample pairs and total
number of samples, respectively.

4. Incremental Seq-NMS

In order to find the new object in the video, linking boxes
into tubes is a common way to maintain the trajectory his-
tory. Seq-NMS [9] provide an suppression method that can
link the objects among frames and do a better suppression
job. We further modify Seq-NMS into incremental way and
thus can link the bounding boxes into cubes with streaming
video data.

S. Experiments

The whole detection pipeline is divided into head part
(DiftNet) for key frame selection, and body part (R-FCN
and FlowNet) for object detection. During training, the pa-
rameters in the head part are trained and those in body part
remain the same as [34].

5.1. Datasets and Evaluation

We perform experiments on ImageNet VID dataset [26],
which is a prevalent large-scale benchmark for video object
detection. Model training and evaluation are performed on
the 3,862 video snippets from the training set and the 555
snippets from the validation set, respectively. The snippets
are fully annotated at frame rates of 25 or 30 fps in general.
There are 30 object categories, which are a subset of the
categories in the ImageNet DET dataset.

To evaluate our method, the DiffNet was firstly tested on
classification [5.3] and then tested on detection pipeline

5.2. Implementation Details

When generating label, we set the detection confidence
0.7 to calculate the number of detected objects. 80K image
pairs are sampled from training set with ratio of positive
number to negative number 2 to 1, due to some short videos
whose positive number cannot be sampled as In training

DiffNet, images are resized to have the shorter side of 600
pixels and then center cropped into size of 600 x 600, so
as to be trained in minibatch with batchsize 4. In testing,
the image is resized with either shorter side of 600 pix-
els or longer side of 1000 pixels to maintain the aspect ra-
tio, and the batchsize is 1. We implement the model using
MxNet [[1]. The DiffNet is optimized by Adam, where 3
epoch are performed on 4 GPUs to a convergence with loss
0.3. Testing time is measured on a Tesla K80 GPU.

5.3. Testing DiffNet

Since DiffNet is a stand alone module, it can be tested
separately from detection pipeline. Thus we firstly sam-
ple 8.5K image pairs from validation set using the adaptive
sampling and cut them into equal number of positive and
negative samples, to compose a testing set for DiffNet. A
good classification result for DiffNet is the premise for a
good key frame scheduling and better detection result. Dif-
ferent structures for DiffNet are explored and the result is
shown in Table [d] where the classification threshold is set
as 0.5. Binary classification is sensitive to data imbalance;
thus sensitivity and specificity are utilized for better evalu-
ation. The best classification test accuracy is 76.7% using
structure B in Fig.[2]and C1 in Fig.[3]

Need we balance the number of samples in two classes
the same in training data? Due to some short videos (e.g.
less than 20 frames) and slow motion videos, we cannot
sample as much as negative samples as positive samples
rendering the ratio of them 2 to 1. We duplicate the neg-
ative samples to overcome such class imbalance, which is
the experiment (2) in Table d] Comparison of experiment
(1) and (2) indicates such balance will worsen the classifi-
cation accuracy.

Tune or fix the FlowNet? Comparison of experiment
(1) and (3) in Table [] shows fixing FlowNet will decrease
the accuracy about 5%. Thus when we train the DiffNet
while tuning the FlowNet. However, the FlowNet tuned in
DiffNet cannot guarantee the quality of optical flow, thus
we use two FlowNets, one for DiffNet and one for warping
feature.

Rol pooling or global average pooling? Experiment
(4) and (6) in Table [ use Rol pooling and global aver-
age pooling respectively, telling global average pooling has
lower accuracy than Rol pooling.

Early fusion or late fusion? Considering DiffNet is
used for see the difference between two frames and tell
passing feature or not, the stage when the features of these
two frames merge is studied in experiment (3) and (4).
Structure B1 uses late fusion that merges the features of two
frames in conv4 layer in Fig. [2] Results show early fusion
is better.

Need we reduce the channel number of features to
concatenate optical flow? Since the channel of optical flow



model mAP %

NMS 72.93
Incre Seq-NMS  73.88

Table 3. Comparison of Incremental Seq-NMS and vanilla NMS

is 2, directly concatenate it to features with large number of
channels might dwarf the effect of optical flow. In experi-
ment (4), channel number in conv4 layer is reduced to 16,
compared with experiment (5) where the channel number is
256. The result shows more channel number lead to better
classification result.

5.4. Detection Pipeline

Having tested the classification performance of DiffNet,
we then apply it as a head network to the detection pipeline,
and the detection result is shown in Table[Sl If we maintain
the classification threshold for DiffNet 0.5, the key frames
update at average step of 26, much larger than updating at
fixed step 10, but have a lower mAP. In order to have a fair
comparison between DiffNet and fixes step method, we ad-
just threshold of DiffNet to 0.7 and obtains an average step
of 18, compared with fixed step 17. But the results reflect
that DiffNet still cannot compete fix step method. Thus bet-
ter methods are needed.

Because we use FlowNet twice in DiffNet detection
pipeline, it consumes more time than fixed step method.
The time consumption is shown in Table 5] We can see
the data loader consume much time, which can be better
engineered. And the FlowNet need to be further trained end
to end thus it can be shared by DiffNet and DFF to reduce
computing burden.

Some detections are visualized in Fig. [4] Four pairs of
images are shown and in each pair the left uses DiffNet and
the right uses fixed step method. Green boxes are GT and
red ones are detections.

5.5. Test Incremental Seq-NMS

Incremental Seq-NMS are tested on fixed key frame
scheduling at 10 steps on ImageNet VID. Table [3] shows
the comparison of Incremental Seq-NMS and vanilla NMS
and indicates the improvement of mAP for 0.95.

6. Improvement
6.1. Object specific Feature

We suspect that the DiffNet only seeing the whole im-
age cannot provide enough cue for the appearance change
of each object, thus we implement a method that uses the
object specific area information rather than the whole im-
age. The change is we do not pass the whole image into
roipooing layer, but send each object region into roipooling

and merge the feature after roipooling into uniform-size fea-
ture. Firstly, we use GT boxes as the region constraint and
test it on classification task. The result is shown in Table
We can see DiffNet using object specific feature gets a bet-
ter accuracy with FlowNet fixed compared with that using
the whole image feature. However if we train using object
specific feature with flownet tuned , the performance will
decrease. Thus this method needs further consideration.

6.2. Feature aggregation

Inspired by [13}32], features for key frames can be ag-
gregated. In [32]], the feature for the current key frame are
iteratively aggregated by the feature of preceding key frame,
and such method shows an improvement.

7. Conclusion

This paper proposes DiffNet to achieve adaptive key
frame schilling, which is a stand alone module. It takes
two frames, see the “difference” between them and judge
whether passing feature or not. For labeling, an adaptive
sampling method is introduced to balance two classes. We
show our DiffNet have an mAP 0.5% lower then fixed step
method at average step 18, indicating such method needs
further improvement.
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0.0181 0.0064 10.71 21.14
0 0.0065 13.37 33.55
0 0.0065 13.10 30.96

Table 5. The result of detection pipeline on different key frame scheduling, and time consumption on different modules for a single frame.
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Training Set

Testing Set

Models Accuracy  Sensitivity ~ Specificity | Accuracy  Sensitivity  Specificity | Loss
B+Cl.flowtune 86.2% 86.7% 85.6% 76.7% 84.2% 69.3% 0.33
B+C1,flowtune,objspec(without train) 84.9% 86.2% 83.6% 76.6% 84.3% 69.0% -
B+C1,flowtune,objspec(trained) - - - 66.6% 55.8% 77.5% 0.56
B+Cl1.flowfix 74.93% 79.43% 70.51% 71.27% 80.00% 62.55% 0.49
B+C1,flowfix,objspec(trained) 78.4% 77.4% 79.3% 75.2% 78.9% 71.5% 0.46

Table 6. The result of object-level DiffNet



