[C15)

UMELIORA J7

UNIVERSITY of
<y ROCHESTER

Transforming Code to Drop
Dead Privileges

Xiaoyu Hu Jie Zhou Spyridoula Gravani John Criswell
BitFusion.io Inc University of Rochester University of Rochester University of Rochester

Least Privilege Principle

“Every program and every user of the system should operate using the least
set of privileges necessary to complete the job.”

Saltzer, Jerome H., and Schroeder, Michael D. "The protection of information in computer systems."
Proceedings of the IEEE 63, no. 9 (1975): 1278-1308.

An Example of An Over-Privileged Program

ping: send ICMP packets to a network host

privileges needed: open a raw socket

socket (AF INET, IPPROTO ICMP) ;

some other network related privileges Iin

setsockopt (1cmp sock, SOL SOCKET,
setsockopt (1cmp sock, SOL SOCKET,

(char *)&hold, sizeof (hold)):;
&mark, sizeof (mark));

However

$ file /bin/ping
/bin/ping:LF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamicall
y linked, interpketer /1ib64/1d-1inux-x86-64.s0.2, for GNU/Linux 2.6.24, BuildID][

shall=c525a765d86{gbelbdb61f56a497e6113871ef37b, stripped
jie@zimmer: ~
$ ls -1 /bin/ping

—rwsr-xr-x 1Croot root>44168 May 7 2014

Privileged Programs

In L1nux,
Privilege: the ability to override kernel’s access control rule

Privileged Program: program with one or more privileges

Linux Capabilities

CAP_DAC_READ_SEARCH

/ CAP NET RAW

CAP_DAC_OVERRIDE

5

Linux Capabilities

effective set permitted set

CAP_NET_RAW CAP_NET_RAW
CAP_CHOWN CAP_SETUID CAP_CHOWN CAP_SETUID

CAP_FOWNER CAP_SYS_TIME

priv_raise: copy a privilege from permitted set to effective set
priv_lower: delete a privilege from effective set temporarily
priv_remove: remove privilege from permitted set permanently

6

Linux Capabilities

ping: send ICMP packets to a network host

privileges needed: open raw socket

socket (AF_INET, @ IPPROTO_ICMP) ;

some other network related privileges Iin

setsockopt (1cmp sock, SOL SOCKET,

(char *)&hold, sizeof (hold)):;
setsockopt (1cmp sock, SOL SOCKET,

&mark, sizeof (mark));

two steps

1. figure out which privileges a program requires
2. do priv_remove on a privilege when it’'s no longer needed

A Simple Program

int main(int argc, char xargv[]) {

void foo() {

. // use privilege P1
} priv_remove(P1)

O

f11
P4

It’s difficult to manually figure out when we can remove which capabilities permanently.

We need a tool!

AutoPriv

e | LVM-based compiler
e uses data-flow analysis techniques to analyze and

transform programs
e drops privileges when they are no longer needed

10

Outline

* Design

* Implementation

* Performance Experiments

e Conclusion

11

Outline

* Design

12

Design

Live Privilege: privilege that may be used along some path in the future

Live: P1

// require P1
open(...);

13

Design

source program —_—

Interprocedural Live
Privilege Analysis

Live Privilege
Sets

AutoPriv Architecture

14

Privilege Removal
Transformation

Program
Executable

Design

Live Privilege Analysis

e |terative
* inter-procedural
e context-insensitive

* Propagate Privileges
* within basic blocks (BB)
* pbetween successors BB to predecessors BB
* callees to callers

* Remove Privileges

15

An Example Program

main

/

use Pl

\

use P2

D

call foo

/

call bar

16

foo

use P3

bar

use P2

Local Privilege Analysis

main

In: P1

use Pl

A

In:

B| use P2

call foo

.

D

call ba

r

17

foo

In: P3

use P3

bar

In: P2

use P2

Interprocedural Privilege Analysis

main requires

In: P1

use Pl

A

In:

B| use P2

call foo

.

D

call ba

r

18

f00 requires P3

In: P3
use P3

bar requires

In: P2
use P2

Interprocedural Live Privilege Analysis

main requires P1 P2 P3

In: P1

use Pl

VAN

B| use P2

call foo

N,

call bar

Out:

19

foo requires P3

In: P3

use P3 E
Out:

bar requires P2

In: P2
use P2 F
Out:

Propagate: Successor to Predecessors

main requires P1P2P3 foo requires P3
In; P1
In: P3
use P1
use P3 E
Out:
Out:
In: P2 In:
B| use P2 call foo |C
bar requires P2
\ In: P2
call bar use P2 F
out: Out:

20

Propagate: Out to In

main requires P1 P2 P3

In: P1

use Pl

Out: P2
In: P2 In:

B| use P2

call foo

\ Out:
In:

call bar

Out:

21

foo requires P3

In: P3
use P3
Out:

bar requires P2

In: P2
use P2
Out:

Propagate: Callee to Caller

main requires P1P2P3 foo requires P3
In: P1 P2
In: P3
use P1
use P3
Out:
ut:P2 Out:
In: P2 In:
B| use P2 call foo |C
bar requires P2
\ In: P2
call bar use P2
out: Out:

22

Propagate lteratively

main requires P1 P2 P3

In: P1 P2

use Pl

A
(0)
In: P2

ut:P2P3

In: P3

B| use P2

call foo

Out: Out: P2
In; P2

call bar

Out:

23

foo requires P3

In: P3
use P3
Out:

bar requires P2

In: P2
use P2
Out:

Propagate: Caller to Callee’s Exit

main requires P1P2P3 foo requires P3
Int P1 P2 P3
A In: P3
use P1 ee Pa
Out:P2P3 T
In: P2 In: P3 P2
B| use P2 call foo |C
Out:P2 Out: P2 bar requires p2
In: P2 In: P2
call bar use P2
Out: Out:

24

Remove Dead Privileges (In - Out)

main requires P1 P2 P3

In: P1 P2 P3

use Pl

B| use P2 call foo

Out:P2 Out: P2 PrAV_ré
In: P2

call bar

A
Out: P2P3 priv remove
In: P2 In: P3 P2

C

Out: priv_remove(P

(P1)

rmove (P3)

2)

25

foo requires P3

In: P3 P2
use P3

E

Out: P2 priv_nremove(P3)

bar requires P2

In: P2
use P2

Out: priv_rem

F

bve (P2)

Outline

* [mplementation

20

Implementation

Privilege Primitives

priv_raise(int cap_num, int capability, ..):copy a set of privileges from the
permitted set to effective set. The permitted set remains unchanged.

priv_lower(int cap_num, int capability, ..): delete a set of privileges from
the effective set temporarily.

priv_remove(int cap_num, int capability ..):remove a set of privileges from
both the effective set and the permitted set permanently.

27

Implementation

Manually put a pair of priv_raise() and priv_lower () around a system call or library
function call that uses some privilege(s), e.g.,

priv_raise(1, CAP_NET_RAW);
icmp_sock = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);
priv_lower(1l, CAP_NET_RAW);

Program Version SLOC Number of Privilege-Bracketing Function Calls
passwd 4.1.5.1 51,371 29
su 4.1.5.1 51,371 34
ping s20121221 12,001 6
sshd 6.61p 82,376 59
thttpd 2.26 8,367 8

Number of Required Privilege-Bracketing

28

Implementation

5LLVM IR passes

ok~

Split basic blocks

Local Privilege Analysis
Interprocedural Privilege Analysis
Interprocedural Live Privilege Analysis
Privilege Removal Instrumentation

29

Outline

* Performance Experiments

30

Performance Experiments

e Compiler overhead induced by program analysis and instrumentation
* Program overhead induced by raising, lowering, and removing privileges

Experiment Setup

o | |LVM: 3.7.0

e 0S: 64-bit Ubuntu 16.04

e CPU: Intel Core 15-6600 3.30GHZ
e RAM: 8GB

e Disk: 256GB SSD

31

Test Programs

Program Version SLOC Description
passwd 4.1.5.1 51,371 Password change utility
su 4.1.5.1 51,371 Run programs as another user
ping s20121221 12,001 Send ICMP packets to a remote host
sshd 6.61p 82,376 Remote login server with encrypted connection
thttpd 2.26 8,367 a lightweight HTTP server

Test Programs

32

Compiler Overhead

1. Use Clang to compile programs with —02 to LLVM bitcode

2. Run LLVM’s opt with and without our passes
3. Run opt’s —time—passes to measure the user and system execution time

Ran experiments 20 times for each program

Program Version Average | Standard Deviation| Overhead
wons | Q50 (ST SEme | e
o | D G iem | e
m | G REm dw | e
o | 0 mEm G | e
mos | 0% Si%m Gem | v

Compiler Overhead

33

Application Overhead

Program Configuration Repetition
passwd change current user’s password 200
su ran echo as another user 200
ping ping -c 10 localhost 50
sshd ran scp to fetch files from 16 KB to 16 MB 500
thttpd ab -c 32 -n 10000 60

How We Ran Each Test Program

34

Application Overhead

Program Version Average |Standard Deviation// Overhead\
Original 36.29 ms 3.75 ms 0
passwd | A itoPriv | 36.66 ms 2.94 ms / 0.01%
Original 7.74 ms 0.05 ms o
su AutoPriv =~ 7.78 ms 0.04 ms \ 0.01%
| Original 9,211.49 ms 0.82ms | 000
bing AutoPriv | 9,211.42 ms 0.79 ms \ ° /

Performance of passed, su, and ping

35

N

Application Overhead

135000 T T T T T T T T T T T
Original_sshd ==
i []

120000 F Priv_sshd

105000 [
Q)
(a8
\!_/ 90000
<
= 75000 [
©
c
©
0 60000 [
(D)
(@®)]
© i
S 45000
>
<

30000 [

15000 [

0
16 32 64 128 256 512 1024 2048 4096 8192 16384
File Size (KB)

sshd performance

36

Application Overhead

Average Bandwith (MB/s)

4800 T n T
Original_thttpd S—
Priv_thttpd e—

4200

3600

3000

2400

1800

1200

600

16

128 256 512 1024 2048 4096 8192 16384
File Size (KB)
thttpd performance

37

Outline

e Conclusion

38

Conclusion

e AutoPriv - an LLVM-based compiler that transforms

code to drop dead privileges
* on average 19% overhead during optimization
e no overhead in the programs that AutoPriv transforms

. https://qgithub.com/jtcriswell/AutoPriv/tree/AutoPriv

39

https://github.com/jtcriswell/AutoPriv/tree/AutoPriv

How More Secure Is AutoPriv’ed Program?

We measured how many dynamic instructions are executed with each privilege

available in the permitted set.

Program | CAP_CHOWN | CAP_SETUID CAP_SYS_CHROOT | CAP_NET_BIND_SERVICE

CAP_SETGID

thttpd | 323 (0.00%) @ 323(0.00%) | 4,686,266 (9.82%) 4,686,627 (9.82%)

4,693,826 (9.84%)

Program | CAP_DAC_READ_SEARCH | CAP_SETUID

CAP_CHOWN |CAP_DAC_OVERRIDE

CAP_FOWNER

passwd 2,654(3.81%) 43,952(63.02)

43,952(63.02) 69,582(99.77)

69,582(99.77)

How Did You Handle Function Pointers?

Our call graph is conservative.

e | LVM’s built-in call graph
e Data Structure Analysis (DSA)

I’'m Still Concerned With Manual Bracketing ...

It’s very difficult for a compiler to figure out which function call needs
which privileges.

For instance,

open(...)

