Transtorming Code to Drop Dead Privileges

Xiaoyu Hu Jie Zhou

Spyridoula Gravani

John Criswell

BitFusion.io Inc. Department of Computer Science Department of Computer Science Department of Computer Science

University of Rochester

Abstract—To help programmers write programs that follow
Saltzer and Schroeder’s Principle of Least Privilege, modern
operating systems divide the power of the administrative user
into separate privileges which applications can enable on demand
and permanently discard when no longer needed. However, using
such privileges requires tedious temporal reasoning of program
behavior.

This paper describes a compiler, named AutoPriv, that helps
programmers use privileges more easily. AutoPriv uses whole-
program analysis during link-time optimization to determine
where programs use privileges; it then transforms programs
to remove unnecessary privileges during their execution. We
tested AutoPriv on several privileged open-source programs that
typically run as root. Qur results show that AutoPriv increases
optimization time by 19% on average but that transformed
programs exhibit practically no overhead.

I. INTRODUCTION

Saltzer and Schroeder’s Principle of Least Privilege [1]
dictates that software should only have the privileges that it
needs to operate correctly. To help programmers adhere to
this principle, modern operating systems like Linux [2], Win-
dows [3], and Solaris [4] divide the power of the administrative
user into separate privileges. In these operating systems, a
process has an effective set of privileges that the operating
system kernel consults during access control checks and a
maximum privilege set which the process can reduce but never
increase [2], [3], [4]. This design allows processes to raise a
privilege from the maximum set into the effective set so that
it can selectively use privileges when needed. It also allows
processes to permanently remove a privilege from both the
effective and maximum sets so that the process can never use
the privilege again.

For example, the Linux kernel provides separate privileges
for binding to privileged TCP ports and overriding access
controls when opening files for reading [5]. A network server
that only needs to bind to privileged TCP ports need not have
the ability to read any file on the system. Furthermore, once
the server has bound all of its listening sockets to privileged
TCP ports, it can permanently remove its ability to bind to
privileged ports so that an attacker that exploits the server
cannot use the privilege.

Permanently removing privileges is especially important for
programs written in type-unsafe programming languages. If
such a program has a memory safety error, an attacker could
use a return-to-libc [6] or return-oriented programming [7]
attack to raise privileges that have been temporarily disabled
(or lowered [8]) in the effective set but that still remain in the

University of Rochester

University of Rochester

maximum set. Removing privileges from both the effective
and maximum sets prevents such privilege escalation attacks.

Programmers face a challenge when writing programs that
use a minimum of privilege. Since a process can misuse any
privilege in its maximum privilege set (even if the privilege
is lowered), programs need to permanently remove privileges
as soon as they can. Determining when a program can safely
remove a privilege requires reasoning about the program’s use
of system calls across function boundaries and compilation
units. Programmers need an automated tool that locates pro-
gram points at which privileges can be disabled permanently.

In this paper, we present a tool named AutoPriv that aids
programmers in solving this challenge. AutoPriv is a compiler
that takes, as input, a program that raises and lowers operating
system privileges and outputs a transformed program that
keeps those privileges in the maximum privilege set only as
long as they may be needed. AutoPriv utilizes inter-procedural
compiler analysis to determine where privileges are used and
at what program points they can be safely removed from the
maximum privilege set.

Our contributions are as follows:

o We develop an inter-procedural analysis that determines
when privileges can safely be removed from a program
without altering its behavior.

o We develop an inter-procedural compiler transform that
modifies a program to permanently remove operating
system privileges granted to it when the privileges are
no longer needed.

« We tested our prototype on five open-source programs
that typically run as the root user. We show that trans-
forming programs to use the least operating system
privilege increases optimization time by 19% on average
across our benchmarks but practically induces no over-
head on compiled programs.

The rest of this paper is organized as follows: Section II
discusses the Linux privilege system. Section III presents our
attack model. Section IV discusses our privilege analysis and
transformation algorithms. Section V describes our prototype’s
implementation, and Section VI describes our prototype’s per-
formance. Section VII describes related work, and Section VIII
describes future work and concludes.

II. LINUX PRIVILEGES

Traditional Unix discretionary access controls allow a pro-
cess running with an effective user ID of zero, i.e., the
root user, to bypass all access control checks [9], [2]. Linux

Global Live
Privilege Analysis

Live Privilege
Sets

Privilege Removal
Transformation

Program
Executable

Fig. 1: AutoPriv Architecture

separates the powers of the root user into separate privileges
(which Linux calls capabilities) [S]. Each privilege overrides
a subset of the discretionary access control rules; for example,
the CAP__CHOWN capability allows a process to change a file’s
owner while CAP_NET_BIND_SERVICE allows a process to
bind to a privileged TCP/UDP port [5]. We will use privilege
and capability interchangeably due to the Linux nomenclature.

All Linux processes have three capability sets: the effective
set, the permitted set, and the inheritable set [5]. The effective
set is the set of capabilities which the kernel checks when
determining if a process is allowed to override an access con-
trol; the permitted set is a superset of both the inheritable and
effective sets [5]. The inheritable set is the set of capabilities
that the process retains if it executes a new program and the
attributes on the executable file in the file system permit the
process to retain those capabilities [5]; it provides a way for a
subset of capabilities to “carry over” an exec () system call.

Linux processes can modify their privilege sets using the
cap_set_flag () system call [5]. The inheritable and ef-
fective sets can be changed to a subset of the permitted set,
and a process can always reduce its permitted set to a subset of
the current permitted set; only processes with the appropriate
capability can add new capabilities into their permitted set [5].

A program designed to follow the Principle of Least Priv-
ilege will only enable capabilities in the effective set for
system calls in which it needs to override an access control
rule and disable the capability in its effective set when it
does not need to use it; following the terminology from the
Compartmented Mode Workstation [8], we call this raising
and lowering a privilege, respectively. Such a program will
also remove capabilities from the effective and permitted sets
when the program will no longer use those capabilities. We
call this removing the privilege.

Refactoring a program to raise and lower capabilities around
system calls is straight-forward as the set of Linux capabili-
ties [2] is small and easy to understand. Removing capabilities
requires temporal and inter-procedural reasoning about a pro-
gram’s behavior; if a process may use the capability later in
its execution, it must keep the capability in the permitted set
until the very last use.

III. ATTACK MODEL

Our attack model assumes that the processor and operating
system kernel are implemented correctly and are part of the
Trusted Computing Base (TCB). However, an attacker can
corrupt an application’s control-flow and data-flow to alter
the inputs to systems calls and to execute system calls in
an order not possible in the original program [10], [11], [7].
Since processes use system calls to raise privileges into the
effective privilege set, our attack model permits attackers to

raise and use any privilege that is present in the process’s
permitted privilege set. To prevent attacks from raising and
abusing its privileges, a program should remove privileges
from its permitted set as soon as possible.

IV. DESIGN

Figure 1 shows AutoPriv’s overall design. Given a program
that has been refactored to raise and lower privileges before
and after system calls and library calls that use privileges,
AutoPriv will analyze the privilege use within the program,
compute the sets of privileges that are live on entry and exit
to each basic block i.e., the live privilege sets in Figure 1, add
code to remove privileges when they are no longer needed,
and generate a final executable.

AutoPriv makes a few assumptions about how programs use
privileges. First, AutoPriv assumes that each program has a
known set of privileges that it needs to execute; privileges
are not inherited across programs via the exec () family
of system calls. In Linux, this means that processes have
an empty inheritable set. Second, AutoPriv assumes that a
programmer has added code to raise and lower privileges
(known as privilege bracketing [8]). Third, AutoPriv assumes
that external library code does not raise and lower privileges.
Rather, the programmer brackets calls to external library
functions needing privileges with calls to raise and lower
privileges. In our experience, libraries such as the C library
do not raise and lower privileges.

A. Privilege Primitives

To provide a simpler interface for manipulating process
capability sets, we created a library to wrap the Linux
cap_get_flag() and cap_set_flag() system calls. This
library provides a set of privilege manipulation primitives that
we use throughout our work. We based these primitives after
those in the PitBull Foundation system [12] (which, in turn,
are based on those provided by Berger et al. [8]). Our privilege
primitives are as follows:

1) priv_raise (int cap_num, int capability, ...): The
priv_raise primitive takes a list of capabilities and
adds them to the process’s effective capability set. The
permitted set remains unchanged.

2) priv_lower (int cap_num, int capability, ...): The
priv_lower primitive takes a list of capabilities and
removes them from the process’s effective capability set.
The permitted set remains unchanged.

3) priv_lowerall (): The priv_lowerall primitive
disables all capabilities in the process’s effective capa-
bility set. The permitted set remains unchanged.

4) priv_remove (int cap_num, int capability, ...):
The priv_remove primitive removes all the specified

Algorithm 1 Local Privilege Analysis Algorithm

Algorithm 2 Global Privilege Analysis Algorithm

1: CAPUse: Map from basic blocks to used capability sets

2:
3: function LOCALPRIVILEGEANALYSIS(CAPUse)

4 for all functions F in program do

5 for all basic blocks BB in function F do

6: for all calls C to priv_raise in BB do

7: PrivSet « privileges raised in C

8 CAPUse[BB] « CAPUse[BB] U PrivSet
9

: end for
10: end for
11: end for
12: return

13: end function

capabilities from both the effective and permitted capa-
bility sets. Once a capability is removed, the process can
never possess it again.

To refactor a program, the programmer adds calls to
priv_raise and priv_lower around system calls and
library calls that need to use capabilities. AutoPriv adds calls to
priv_remove to permanently disable capabilities when they
are no longer needed; it also adds a call to priv_lowerall
within the program’s main () function to ensure that all
capabilities are lowered upon program start.

Adding calls to priv_remove burdens programmers. A
call to priv_remove can safely occur only at points in
the program in which the removed privileges will not be
used again. Determining such points requires global rea-
soning about the program; local examination of a function
or method alone does not suffice for determining where
to insert priv_remove calls. Additionally, small changes
to a program can drastically change the points at which
priv_remove can be safely called (because an additional
function call can increase the program points at which a
privilege is still needed).

To ease programmer burden, we have developed a compiler
analysis and transformation that automatically inserts calls to
priv_remove.

B. Live Privilege Analysis

To determine at which points in a program to add calls to
priv_remove, AutoPriv must determine which privileges
can still be used at each point in the program. We define the
live capabilities at a program point p to be the capabilities
that may still be used (via a priv_raise) along some path
in the program. Our live capabilities definition is analogous to
the definition of live variables in live variable analysis [13].

We have developed an inter-procedural, flow-insensitive,
context-insensitive live capability (i.e. live privilege) analysis
based on the standard iterative data-flow analysis framework
developed by Kam and Ullman [13]; this analysis computes
the live capability sets at the beginning and end of each basic
block. Our compiler then uses this information to locate points
in a program at which the live capability sets change in order
to locate where it can safely insert calls to priv_remove.
To simplify the presentation of our algorithms, we assume
that each basic block contains only a single instruction. Our

1: CAPUse: Map from basic blocks to used capability sets
2: funcOut: Map from functions to used capability sets

function GLOBALPRIVANALYSIS(CAPUse, funcOut)
for each function F in program do
funcOut[F] «— &
for each basic block BB in F do
funcOut[F] « funcOut[F] v CAPUse[BB]
end for
end for

repeat
changed « False
for each function F in program do
for each child CF of F in the call graph do
if funcOut[CF] & funcOut[F] then
funcOut[F] < funcOut[F] U funcOut[CF]
changed < True

N Y G G UG VY
CORXIJQNAERN QOO0 RXINNRW

end if
end for
21: end for
22: until changed = False

23: return
24: end function

prototype implementation described in Section V relaxes this
requirement.

To eliminate imprecision due to infeasible paths, our global
live privilege analysis uses a global privilege analysis algo-
rithm to compute function summaries of privilege use for each
function. Specifically, it computes a summary of the privileges
used by a function and the functions it can call (either directly
or transitively). The global privilege analysis algorithm, in
turn, uses a helper analysis called the local privilege analysis
algorithm to find which privileges are raised in each basic
block within the program.

1) Local Privilege Analysis: The local privilege analysis
algorithm determines which privileges are raised by each basic
block. Described by Algorithm 1, the analysis locates all
calls to priv_raise and examines the privileges enabled
at each call to priv_raise. The analysis then records the
mapping between basic blocks that call priv_raise and the
privileges enabled by those calls.

Algorithm 1 provides a straightforward, compiler-agnostic
algorithm for the analysis. Compilers that maintain explicit
definition-use chains in their intermediate representations
(such as LLVM [14]) can optimize Algorithm 1 by finding all
uses of the priv_raise function that are call instructions.
While both algorithms are linear-time (with respect to program
size), the latter can be more efficient.

2) Global Privilege Analysis: Once the Local Privilege
Analysis pass has computed which privileges are used within
each basic block, the Global Privilege Analysis pass can
compute the privileges used by a function and all of its callees
(i.e., which privileges could ever be used when a function is
called).

Algorithm 2 provides pseudo-code for the Global Privilege
Analysis pass. This algorithm creates a map between functions
and the capabilities that they use (either directly or transi-
tively). Algorithm 2 first aggregates the capabilities used in

Algorithm 3 Global Live Privilege Analysis Algorithm

1: BBIn: Map from basic blocks to capability set live on entry to block
2: BBOut: Map from basic blocks to capability set live on exit from block
3: funcOut: Map from functions to used capability sets

4:
5: function GLOBALLIVEPRIVILEGEANALYSIS(funcOut, BBIn, BBOut)
6: repeat
7: changed « False
8: for all functions func in program do
9: repeat
10: bbChanged «— False
11: for all Basic Blocks BB in func do
12: oldIn < BBIn[BB]
13: oldOut «<— BBOut[BB]
14:
15: /I Propagate live privileges from all successor blocks
16: for all successors S of BB do
17: BBOut[BB] < BBOut[BB] u BBIn[S]
18: end for
19:
20: // Propagate within each basic block
21: BBIn[BB] <« BBIn[BB] u CAPUse[BB] u BBOut[BB]
22:
23: /I Propagate information in call graph
24: if BB contains a call instruction then
25: for all functions callee called by BB do
26: BBIn[BB] « BBIn[BB] u funcOut[callee]
27: for all basic blocks RB of callee do
28: if RB ends with a return instruction then
29: if BBOut[BB] ¢ BBOut[RB] then
30: BBOut[RB] <— BBOut[RB] U BBOut[BB]
31: bbChanged « True
32: end if
33: end if
34: end for
35: end for
36: end if
37:
38: if oldIn # BBIn[BB] v oldOut # BBOut[BB] then
39: bbChanged « True
40: end if
41: end for
42: until bbChanged = False
43: changed « changed v bbChanged
44: end for
45: until changed = False
46: return

47: end function

each basic block of a function into the set of capabilities used
by the function. It then propagates all of the used capability
sets from callees to callers. Since Algorithm 2 iterates until it
reaches a fixed point, it can handle recursive functions.

We use the Global Privilege Analysis in the Global Live
Privilege Analysis algorithm to reduce the amount of impre-
cision caused by the lack of context sensitivity in the Global
Live Privilege Analysis.

3) Global Live Privilege Analysis: The Global Live Priv-
ilege Analysis Algorithm (Algorithm 3) finds the set of
live privileges at the entry and exit of each basic block.
It is an inter-procedural, context-insensitive, flow-insensitive
backwards data-flow analysis. Lines 15 to 18 propagate live
privilege information from successor basic blocks to predeces-
sor basic blocks, and lines 20 to 21 propagate live privilege
information from the end of a basic block to the beginning of
the basic block, adding privileges used within the basic block

to the set of privileges live on entry to the basic block.

Lines 23 to 36 propagate live privilege information across
functions. Line 26 propagates live privilege sets from callees
to callers in the call graph. To reduce the loss of precision
caused by context-insensitivity, Algorithm 3 propagates the
Global Privilege Analysis results for a function (as opposed
to the live privilege sets on entry to the callee function) on
line 26. Without the optimization in line 26, if two functions
(say Fy and F3) called a function Fj, then the live capabilities
of Fy and F5, would be propagated to each other (via the entry
and exit basic blocks of Fj3). Lines 27 to 34 propagate live
privilege sets from callers to callees. Algorithm 3 does this
by propagating privileges that are live at the end of the basic
block containing the call instruction to the live privilege sets in
all basic blocks of the callee that contain a return instruction.

Algorithm 4 Privilege Removal Transformation Algorithm

1: BBIn: Map from basic blocks to capability set live on entry to block
2: BBOut: Map from basic blocks to capability set live on exit from block
3:

4: function PRIVILEGEREMOVAL(BBIn, BBOut)

5 for all functions f in program do

6: for all Basic Blocks BB in function f do

7

8

if BBOut[BB] # BBIn[BB] then
Dead < BBIn[BB] — BBOut[BB]

0 %

Add priv_remove(Dead) to end of BB
10: end if
11:
12: for all successors S of BB do
13: if BBOut[BB] # BBIn[S] then
14: Dead < BBOut[BB] — BBIn[S]
15: Add priv_remove(Dead) to beginning of S
16: end if
17: end for
18: end for
19: end for
20: return

21: end function

C. Privilege Removal Transformation

After executing the Global Live Privilege Analysis, Auto-
Priv inserts calls to priv_remove at every program point in
which the set of live privileges changes. For each basic block,
the live privileges at the start and end of the basic block will
either be the same, or the set of live privileges at the end
of the basic block will be a proper subset of those live at
the beginning of the basic block. The same is true for live
privileges at the end of each basic block and the beginning of
its successor basic blocks in the control-flow graph.

Our privilege removal transformation, Algorithm 4, looks
for all points within a program at which the set of live privi-
leges is reduced between basic block entry and basic block exit
and inserts a call to priv_remove. Additionally, lines 12
through 17 of Algorithm 4 look for program points in which
privileges die between a basic block and its successors and
adds a call to priv_remove to the beginning of appropriate
successor basic blocks.

V. IMPLEMENTATION

a We implemented AutoPriv as a set of new compiler passes
for LLVM 3.7.1 [14]. We divided the code into the following
smaller LLVM passes:

1) Split Basic Block Pass: Transform the program by
splitting system calls bracketed by priv_raise() and
priv_lower() calls, as well as calls to internal func-
tions, into separate basic blocks. This simplifies the logic
of the local and global privilege analysis passes as well
as the privilege removal instrumentation pass.

2) Local Privilege Analysis Pass: Compute the local
privilege analysis results.

3) Global Privilege Analysis Pass: Compute the global
privilege analysis results.

4) Global Live Privilege Analysis Pass: Compute the
global live privilege analysis results.

5) Privilege Removal Instrumentation: Add calls to
priv_remove. Does not instrument signal handlers

TABLE I: Programs Used in Experiments

Program Version | SLOC | Description

passwd 4.1.5.1 | 51,371 | Password change utility

su 4.1.5.1 | 51,371 | Run programs as another user

ping 520121221 12,001 | Send ICMP packets to a re-
mote host

sshd 6.6pl | 82,376 | Remote login server with en-
crypted connections

thttpd 2.26 8,367 | Web server

TABLE II: Privilege Bracketing Code Changes

Program | Number of Privilege Bracketed System Calls
passwd 29
su 34
ping 6
sshd 59
thttpd 8

(which can be called asynchronously) and basic blocks
which terminate the program e.g., those ending with an
unreachable instruction [15].

After running the privilege removal instrumentation pass,
AutoPriv uses the existing LLVM simplifycfg pass to
undo the changes created by the Split Basic Blocks pass. This
ensures that AutoPriv does not induce unnecessary overhead
due to control-flow graph modifications.

AutoPriv uses a combination of LLVM’s built-in call graph
analysis pass and the call graph from Data Structure Anal-
ysis (DSA) [16] for its inter-procedural analysis passes. The
LLVM built-in call graph analysis analyzes direct calls well
but provides very pessimistic results for calls using function
pointers. AutoPriv uses the LLVM built-in call graph analysis
for direct calls. For indirect calls, AutoPriv uses DSA when
DSA reports that it has computed a complete set of targets
for the call and falls back to the LLVM built-in call graph
analysis otherwise.

For our experiments, we refactored the five Linux appli-
cations in Table I that run as root to use priv_raise
and priv_lower. Table II shows the number of privilege
raising/lowering pairs we added to each program. As Table II
shows, even large programs like sshd require little refactoring
to use privilege bracketing. We also modified sshd to use
signal () instead of sigaction () to register signals.
This change alleviates the need to use points-to analysis to
determine which functions are registered as signal handlers
(which AutoPriv does not instrument). Additionally, we mod-
ified a function that causes sshd to assume that it cannot
operate correctly if it does not run as the root user.

VI. PERFORMANCE EXPERIMENTS

To evaluate AutoPriv, we studied both its performance
when compiling programs and the performance of programs
transformed by AutoPriv. Table I shows the programs we chose
for our evaluation; we used sloccount [17] to measure the
number of source lines of code for each program. Because su

TABLE III: Compiler Performance

Program Version Average | Std. Dev. | Overhead
pasvd | Qb | 1aioms | 0s7me | 2M19%
| uebav | 237i6m | looms | 1315%
pne | Ruobrv | (rsems | odoms | ST
shd | Shiobry | 520824 me | 95ams | 219%
AR RS

and passwd belong to the shadow utility suite, we counted
the lines of source code in the whole suite. For similar reasons,
we counted the lines of source code in the entire iputils suite
for ping and the entire OpenSSH suite for sshd. We chose
these programs because they run as the root user on Unix
systems in order to override one or more of the Unix access
controls. We created variants of each program that raises and
lowers privileges when needed instead of simply switching its
effective user ID to/from the root user. We used AutoPriv to
transform these variants to remove privileges.

We ran our experiments on a machine with an Intel®)
Core™ i5-6660 processor with 4 cores running at 3.30 GHz
and with 16 GB of RAM. The machine ran 64-bit Ubuntu
16.04 Linux.

A. Compiler Performance

To measure analysis time, we used the LLVM opt tool
to run our global live privilege analysis passes on each
program in Table I. We compiled every individual source file
into an LLVM bitcode file with -O2 optimization and then
linked the separate bitcode files into a single bitcode file with
1lvm-1link. We then ran the opt tool on the target bitcode
file to run the standard -O2 optimization passes for the baseline
and the additional AutoPriv passes for AutoPriv; this ensured
that AutoPriv analyzed and transformed optimized code.

We used opt’s ——time-passes option to measure the
user and system execution time of each pass. We ran this
experiment 20 times for each program. Table III shows the
average sum of user and system time to run the standard -O2
LLVM optimization passes and the average sum of user and
system time to run those same passes and the AutoPriv passes
on each program. As Table III shows, AutoPriv induces an av-
erage overhead of 19% across our benchmarks on optimization
time.

B. Application Performance

To measure the performance overhead that AutoPriv induces
on the programs it compiles, we compiled both the original
program and the refactored version compiled by AutoPriv at
the -O2 optimization level. We compiled both versions using
the procedure described in Section VI-A i.e., linking all the
bitcode files together and optimizing them with opt, to ensure
that the only differences were due to privilege manipulation
calls. To measure the performance of passwd, su, and ping,

TABLE IV: Runtime of Least Privilege Applications

Program | Version Average | Std. Dev | Overhead
. Original 36.29 ms 3.75 ms

pPasswd |\ yoPriv | 36.66 ms | 2.94 ms 0.01%
Original 7.74 ms 0.05 ms

su AutoPriv 7.78 ms 0.04 ms 0.01%

. Original 9,211.49 ms 0.82 ms 0%

ping AutoPriv | 921142 ms | 0.79 ms ¢

we inserted calls to clock_gettime () with clock ID set
to CLOCK_MONOTONIC at the beginning and the end of
each program to measure the wall time between the start
and end of program execution. To prevent the time for user
input from affecting the results, we commented out the call to
getpass () (which reads in the user’s password) in passwd
and su and hard-coded a constant string as the password.

For passwd, we ran it with no arguments to change the
current user’s password. For su, we ran it to execute the echo
command as another user, and we inserted the ending timer
before it calls execve () to execute echo. In our initial
experiments, we observed that the execution time of passwd
and su were low due to the small size of the /etc/passwd
database; we also observed standard deviations above 30%.
We therefore ran useradd to add 15,000 dummy users
and moved the target users’ password entries to the end
of /etc/passwd and /etc/shadow. This new password
database increased execution time and reduced the standard
deviation.

For ping, we configured ping to ping the localhost
machine over the localhost network interface 10 times using
the —c 10 flag for each run of the experiment. Table IV shows
the average execution time of repeating passwd and su 200
times and ping 50 times. As Table IV shows, AutoPriv
incurs insignificant runtime overheads on these programs;
when accounting for standard deviation, AutoPriv incurs no
overhead.

To measure the impact of the privilege removal instrumen-
tation on thttpd and sshd, we measured their average
bandwidth on the localhost network interface. We created
files containing random contents for the experiments by using
Python’s random library. We used the random () function
in the library with time.time () as the seed for the random
number generator. The generated files range from 16 KB to
16 MB. For sshd, we transferred one file at a time using the
scp client. Figures 2 and 3 show the results for sshd and
thttpd, respectively.

For sshd, we fetched each file 500 times using scp,
measured the bandwidth via the -v verbose output flag
in scp, and report the average. For thttpd, we used
ApacheBench [18] with 10,000 iterations and concurrency
level of 32 to measure thttpd’s bandwidth. We repeated
the experiment 60 times and report the average bandwidth.

As Figure 2 shows, AutoPriv added no overhead to sshd;
the difference in bandwidth is within a standard deviation.
Figure 3 shows the same is true for thttpd. The sshd server

135000 — T T
Original_ssh mem—
i —
120000 Priv_sshd
105000
Q)
g 90000
£
2 75000
°
2
©
@ 60000
@
&
o 45000
2
=3
30000
15000
0
16 32 64 128 256 512 1024 2048 4096 8192 16384
File Size (KB)
Fig. 2: sshd Performance
4800 -
Original_thttpd me—
Priv_thttpd me—
4200
@
& 3600
£
£
Z 3000
5
e
3
o 2400
i=J
o
2
Z 1800
1200

600
16 32 64 128 256 512 1024 2048 4096 8192 16384
File Size (KB)

Fig. 3: thttpd Performance

uses most of its privileges when logging a user in to start a
new SSH session; thttpd uses all of its privileges before
accepting network connections. Most of the execution time is
spent transferring data; by that point in time, these servers
have finished manipulating privileges and therefore incur no
measurable overhead.

VII. RELATED WORK

Several approaches allow programmers to manually modify
their programs to prevent privilege escalation attacks. The
Compartmented Mode Workstation (CMW) [8] introduced
fine-grained privileges and mechanisms for raising and lower-
ing privileges; Linux capabilities borrow ideas from the CMW.
While the original CMW requires programmers to modify their
programs manually, AutoPriv automatically modifies programs
to permanently remove privileges.

Privilege separation [19] partitions an application into mul-
tiple processes such that only one process runs with root
privilege; this privileged process provides a restricted interface
to the other application processes for performing operations
as the root user. Privtrans [20] is a compiler that simplifies
the creation of privilege-separated programs. However, the
programmer must design the interface to the privileged process
in a way that reduces the attack surface and annotate the
program to communicate this information to Privtrans; the
compiler only automates the mechanical process of splitting
the application into multiple processes. We believe that we

could combine AutoPriv with privilege separation to provide
security that neither approach can achieve individually.

Capsicum [21] adds new kernel features and library support
to Unix to compartmentalize, or privilege separate, applica-
tions. Capsicum provides a capability mode that processes can
enable for themselves. Once enabled, capability mode prevents
a process from accessing objects in global OS namespaces
e.g., files, and extends file descriptors with capabilities that
constrain the operations that a process can perform on those
file descriptors. Since access to global namespaces is restricted
once a process enters capability mode, the programmer must
modify an application so that either a non-capability mode
process passes new file descriptors to sandboxed processes
via Unix domain sockets or all file descriptors to be used by
a sandboxed process must be obtained before the sandboxed
process enters capability mode. While Capsicum lacks a
compiler analysis to help remove capabilities when no longer
needed, we believe AutoPriv could be expanded to perform
this task.

Capweave [22], given a security policy that describes when
and which capabilities a program should hold during its execu-
tion, instruments the program to use the Capsicum primitives
in order to enforce the policy. Although Capweave’s com-
partmentalization is automatic, it still requires a programmer
or user to manually specify the security policy. In contrast,
AutoPriv enforces a simple policy (that of removing dead
privileges) that is hard-coded into the AutoPriv compiler.

Systrace [23] restricts the values that applications can
use as system call arguments. It creates its policies either
automatically via dynamic tracing of program execution or
interactively with the user’s input [23] while AutoPriv only
requires programmers to privilege bracket system calls. Sys-
trace also allows users to specify which system calls need to
run with root privilege, allowing the rest of the application to
execute as a regular user [23]. Like Linux capabilities, Sys-
trace can limit the damage done by an exploited application.
However, Systrace is susceptible to time-to-check-to-time-of-
use attacks [24]; Linux capabilities (and AutoPriv) are not.

M. Rajagopalan et al. [25] use compiler techniques and
kernel runtime checks to enforce system call policies. Their
system uses a trusted program installer that automatically finds
system calls in the application binary and augments them with
arguments that specify the policy that the system call should
satisfy as well as a Message Authentication Code that the
kernel uses at runtime to verify the integrity of the policy and
the system call arguments. The policies that M. Rajagopalan et
al. [25] enforce restrict the values that system calls arguments
can take. While this approach verifies system call arguments,
an attacker can still execute privileged system calls repeatedly
since their system does not remove unnecessary privileges.

Protego [26] modifies the AppArmor Linux Security Mod-
ule to enforce the security policies enforced by setuid root
binaries and enforces these policies with fewer lines of code.
However, Protego isn’t designed to protect network servers that
run as root [26] while AutoPriv can reduce the privilege use
of both setuid root programs and privileged server programs.

Koved et al. [27] present an algorithm that automatically
determines the access rights needed by a Java program. Both
their algorithm and ours propagate information on required
access rights i.e., privileges, upward through a static represen-
tation of the program’s control flow. In addition to analyzing
the use of operating system privileges, the key difference
between their work and ours is that our algorithm searches for
program points at which the required set of privileges changes;
these points are where a program can permanently and safely
remove a privilege (or access right) that it no longer needs.

VIII. CONCLUSIONS AND FUTURE WORK

This paper describes the AutoPriv compiler which analyzes
privilege use in applications and transforms them to perma-
nently remove privileges when no longer needed. AutoPriv
incurs, on average, 19% overhead during optimization and in-
duces practically no overhead in the programs that it compiles.

Several interesting directions exist for future work. First, we
can port AutoPriv to different operating systems to determine
if our approach generalizes to other privilege models. For
example, we could enhance AutoPriv to analyze Capsicum
programs [21] to find program points at which to remove
capabilities from file descriptors.

Second, we will investigate whether improvements to our
compiler analysis will yield better results. AutoPriv currently
assumes that all local control flow paths are feasible and uses
a conservative call graph. Using path-sensitive analysis may
allow privileges to be removed earlier.

Third, we can combine AutoPriv with automated privilege
separation [20]. Since AutoPriv calculates the code regions
in which privileges are live, it can calculate the different
combination of privileges that the program can use and which
system calls need them. This information could be used to
guide privilege separation so that different processes have
different privileges, ensuring that no one process has enough
privileges to be equivalent to a process running as root.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their feedback. This
work was supported by NSF Award 1463870.

OPEN SOURCE

We open-sourced our AutoPriv compiler. The code is avail-
able at https://github.com/jtcriswell/AutoPriv/tree/ AutoPriv.

REFERENCES

[1] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-
1308, 1975.

[2] D. P. Bovet and M. Cesati, Understanding the LINUX Kernel, 2nd ed.
Sebastopol, CA: O’Reilly, 2003.

[3] M. E. Russinovich and D. A. Solomon, Microsoft Windows Internals,
Fourth Edition: Microsoft Windows Server(TM) 2003, Windows XP, and
Windows 2000 (Pro-Developer). Redmond, WA, USA: Microsoft Press,
2004.

[4]
[5]
[6]

[7]

[8]

[9]
[10]

[11]
[12]
(13]

[14]

[15]

(16]

[17]
(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. Mauro and R. McDougall, Solaris Internals: Core Kernel Architecture.
Prentice Hall PTR, 2000.
S. E. Hallyn and A. G. Morgan, “Linux capabilities: Making them work,”

in Proceedings of The Linux Symposium, Ottawa, Canada, July 2008.
A. One, “Smashing the stack for fun and profit,” Phrack, vol. 7,

November 1996. [Online]. Available: http://www.phrack.org/issues/49/
14.html

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information Systems Security, vol. 15, no. 1, pp. 2:1-2:34, Mar. 2012.
J. L. Berger, J. Picciotto, J. P. L. Woodward, and P. T. Cummings,
“Compartmented mode workstation: Prototype highlights,” IEEE Trans.
Softw. Eng., vol. 16, no. 6, pp. 608-618, Jun. 1990.

M. K. McKusick and G. V. Neville-Neil, The Design and Implementation
of the FreeBSD Operating System. Pearson Education, 2004.

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in /4th USENIX Security Symposium,
August 2004, pp. 177-192.

Solar Designer, “return-to-libc attack,”
http://www.securityfocus.com/archive/1/7480.
Argus Systems Group, Inc., “Security features programmer’s guide,”
Savoy, IL, September 2001.

F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1999.
C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in Proceedings of the Conference
on Code Generation and Optimization, San Jose, CA, USA, Mar 2004,
pp. 75-88.

C. Lattner et al., “LLVM Language Reference Manual.” [Online].
Available: http://releases.llvm.org/3.7.1/docs/LangRef.html

C. Lattner, A. D. Lenharth, and V. S. Adve, “Making context-sensitive
points-to analysis with heap cloning practical for the real world,” in
ACM SIGPLAN Conference on Programming Language Design and
Implementation, San Diego, CA, USA, June 2007, pp. 278-289.
D. A. Wheeler, “SLOCCount,” 2014. [Online]. Available:
/Iwww.dwheeler.com/sloccount/

“Apachebench: A complete benchmarking and regression testing suite.
http://freshmeat.net/projects/ apachebench/,” July 2003.

N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege escala-
tion,” in Proceedings of the 12th USENIX Security Symposium, 2003.
D. Brumley and D. Song, “Privtrans: Automatically partitioning pro-
grams for privilege separation,” in /3th USENIX Security Symposium,
2004, pp. 57-72.

R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum:
Practical capabilities for UNIX,” in Proceedings of the 19th USENIX
Conference on Security, ser. USENIX Security’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 3-3.

W. R. Harris, S. Jha, T. Reps, J. Anderson, and R. N. M. Watson,
“Declarative, temporal, and practical programming with capabilities,”
in Proceedings of the 2013 IEEE Symposium on Security and Privacy,
ser. SP ’13. Washington, DC, USA: IEEE Computer Society, 2013,
pp. 18-32.

N. Provos, “Improving host security with system call policies,” in /2th
USENIX Security Symposium, August 2003.

R. N. M. Watson, “Exploiting concurrency vulnerabilities in system
call wrappers,” in Proceedings of the First USENIX Workshop on
Offensive Technologies, ser. WOOT ’07. Berkeley, CA, USA: USENIX
Association, 2007, pp. 2:1-2:8.

M. Rajagopalan, M. Hiltunen, T. Jim, and R. Schlichting, “System call
monitoring using authenticated system calls,” Dependable and Secure
Computing, IEEE Transactions on, vol. 3, no. 3, pp. 216-229, July 2006.
B. Jain, C.-C. Tsai, J. John, and D. E. Porter, “Practical techniques to
obviate setuid-to-root binaries,” in Proceedings of the Ninth European
Conference on Computer Systems, ser. EuroSys *14. New York, NY,
USA: ACM, 2014, pp. 8:1-8:14.

L. Koved, M. Pistoia, and A. Kershenbaum, “Access rights analysis
for Java,” in Proceedings of the 17th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’02. New York, NY, USA: ACM, 2002, pp. 359-372.

August 1997,

http:

https://github.com/jtcriswell/AutoPriv/tree/AutoPriv
http://www.phrack.org/issues/49/14.html
http://www.phrack.org/issues/49/14.html
http://releases.llvm.org/3.7.1/docs/LangRef.html
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

	Introduction
	Linux Privileges
	Attack Model
	Design
	Privilege Primitives
	Live Privilege Analysis
	Local Privilege Analysis
	Global Privilege Analysis
	Global Live Privilege Analysis

	Privilege Removal Transformation

	Implementation
	Performance Experiments
	Compiler Performance
	Application Performance

	Related Work
	Conclusions and Future Work
	References

