
Holistic Control-Flow Protection on Real-Time Embedded Systems with Kage

Yufei Du1,2∗, Zhuojia Shen2, Komail Dharsee2, Jie Zhou2, Robert J. Walls3, and John Criswell2

1UNC Chapel Hill
2University of Rochester

3Worcester Polytechnic Institute

Abstract
This paper presents Kage: a system that protects the control
data of both application and kernel code on microcontroller-
based embedded systems. Kage consists of a Kage-compliant
embedded OS that stores all control data in separate memory
regions from untrusted data, a compiler that transforms code
to protect these memory regions efficiently and to add forward-
edge control-flow integrity checks, and a secure API that al-
lows safe updates to the protected data. We implemented
Kage as an extension to FreeRTOS, an embedded real-time
operating system. We evaluated Kage’s performance using
the CoreMark benchmark. Kage incurred a 5.2% average run-
time overhead and 49.8% code size overhead. Furthermore,
the code size overhead was only 14.2% when compared to
baseline FreeRTOS with the MPU enabled. We also evalu-
ated Kage’s security guarantees by measuring and analyzing
reachable code-reuse gadgets. Compared to FreeRTOS, Kage
reduces the number of reachable gadgets from 2,276 to 27,
and the remaining 27 gadgets cannot be stitched together to
launch a practical attack.

1 Introduction

Embedded systems are becoming increasingly popular and
feature-rich. In addition to traditional embedded systems
such as routers, modems, and security cameras, new Internet
of Things (IoT) devices [14] such as smart sensors, smart-
watches, and smart door locks allow more embedded systems
than ever to connect to the Internet. Today, many embedded
systems use microcontrollers instead of general-purpose pro-
cessors to reduce cost and simplify software design [53].

However, simplicity has a cost: most software for
microcontroller-based embedded systems is developed in C.
Since C is not a memory-safe programming language, these
embedded systems can suffer from exploitable memory safety
errors [31, 47]. Attempts to protect control-flow despite such

∗Part of the work was done when the author was a MS student at Univer-
sity of Rochester.

errors have been stymied by the severe resource constraints
of microcontrollers e.g., memory is often on the order of kilo-
bytes, and the hardware lacks primitives, such as virtual mem-
ory, commonly found in desktop systems. These constraints
make it difficult to isolate security-critical data structures from
untrustworthy code efficiently. For example, RECFISH [51]
uses hardware privilege-levels and context switching to iso-
late shadow stacks from untrusted code at the cost of high
overheads (20-30% increase in execution time). More recent
defenses, such as Silhouette [55] and µRAI [5], propose far
more efficient mechanisms to protect security-critical data,
such as return addresses. However, Silhouette and µRAI target
bare-metal applications and, consequently, their protections
are insufficient for a fully-featured real-time operating system.
According to a recent survey [13], 65% of embedded devel-
opers use an embedded operating system for their current
projects, and within these developers, 42% use an operating
system for real-time capability.

Holistic control-flow protection for real-time OSes must
also address several additional challenges. First, as these mi-
crocontrollers contain no memory management unit [11], all
application tasks and the OS kernel share the same physical
address space; there is no memory isolation between tasks or
between tasks and the OS kernel. Second, in addition to return
addresses and function pointers, several additional data struc-
tures require protection, including the processor state saved
on a context switch and kernel data structures that contain con-
trol data. Third, context switching, interrupts, and exceptions
complicate control-flow and require careful handling.

This paper presents Kage, a software system that protects
the control data of a real-time operating system kernel and the
application tasks from control-flow hijacking attacks.1 Kage
provides a protected shadow stack for each application task
and the kernel, protects saved processor state during context
switch and exception handling, and isolates security-critical
kernel data structures from untrusted code. Kage leverages
and enhances Silhouette [55] to provide efficient intra-address

1“Kage,” pronounced kah-geh, means “shadow" in Japanese.



space isolation, forward-edge control-flow integrity checks,
and return-address integrity. We built a prototype of Kage and
evaluated its performance and security improvements over a
FreeRTOS-based [6] system.

To summarize, our contributions are:

• We designed Kage which provides efficient and holistic
control-flow hijacking protection for microcontroller-
based embedded systems with a real-time OS. Kage
protects return addresses as well as kernel data structures
containing control data.

• We built a prototype of Kage consisting of a FreeRTOS-
based [6] embedded OS, a compiler based on Silhou-
ette [55], and a binary code scanner.

• We evaluated Kage using a STM32L475 Discovery
board [43], the CoreMark benchmark [8], and mi-
crobenchmarks. Kage incurs a 5.2% mean runtime over-
head on CoreMark. Kage’s kernel components add 7
to 273 CPU cycles, with exception handling adding the
most overhead. Kage incurred a code size overhead of
49.8%. However, that overhead was only 14.2% when
compared to baseline FreeRTOS with the MPU enabled.

• We evaluated the efficacy of Kage’s security improve-
ments over a FreeRTOS-based system. Kage adds several
security guarantees, including return address integrity
(RAI), control-flow integrity (CFI), and protection of
control data during interrupts, context switching, and ex-
ception handling. Our results show that Kage reduced the
number of reachable code-reuse gadgets from 2,276 to
27 for a Kage-compliant binary with CoreMark, and we
explain why those remaining gadgets cannot be stitched
together to perform practical code-reuse attacks.

2 Background

In this section, we describe Kage’s target microcontroller
architecture and introduce the real-time OS on which Kage’s
prototype implementation is based.

2.1 ARMv7-M

While Kage’s design applies to multiple ARM archi-
tectures [9, 12], our current work targets the market-
dominant ARMv7-M architecture [11]. ARMv7-M, which
includes the ARM Cortex-M product family, is designed for
resource-constrained, energy-efficient, and low-cost micro-
controllers [53]. Consequently, ARMv7-M’s design differs
from general-purpose processors such as X86 [34] and the
ARM Cortex-A product family [9, 10].

Processor Modes and Unprivileged Store Instructions
There are two hardware privilege levels in ARMv7-M: privi-
leged mode and unprivileged mode. ARMv7-M supports a spe-
cial set of unprivileged store instructions that always check the
unprivileged access permissions regardless of the processor’s
current execution mode. For example, even if the processor
is currently executing in privileged mode, the unprivileged
store instructions can only write to memory locations that
are writable in unprivileged mode. Attempts to write to a
privileged-only memory location will trigger a memory man-
agement fault. Unprivileged store instructions are available
on several other ARM architectures, e.g., ARMv7-A [9] and
ARMv8-M Main Extension [12].

Memory Protections Unlike desktop systems, ARMv7-M
does not provide a Memory Management Unit (MMU) and
does not support virtual memory. In ARMv7-M, all memory
regions, peripherals, and the processor’s control registers are
in the same address space. To enforce access control policies,
ARMv7-M provides a Memory Protection Unit (MPU) as an
optional feature. The MPU allows developers to define the
start address and length of memory protection regions and
the access permissions of each region. The number of protec-
tion regions varies for different hardware implementations,
e.g., the development board used in this work supports eight
regions [44].

Exception Handling ARMv7-M automatically stores a sub-
set of the current processor state on the stack when executing
an exception handler and automatically restores it on excep-
tion return. The exception handler is responsible for saving
the other registers, if needed. ARMv7-M allows exception
chaining when an exception occurs while another exception
handler is running. If the new exception has higher priority
than the current exception, then the new one will preempt the
current exception; the new exception will otherwise remain
pending until the handler of the current exception returns.

2.2 FreeRTOS
When an embedded system requires real-time performance,
developers often turn to a real-time operating system (RTOS).
While RTOS capabilities vary greatly depending on the target
system, we focus on real-time operating systems designed
for microcontrollers. One such example is Amazon FreeR-
TOS, which combines the popular FreeRTOS kernel [32] with
libraries for connecting to Amazon’s web services [6]. FreeR-
TOS can run on systems with just kilobytes of memory while
still providing powerful features such as real-time scheduling,
software timers, and shared queues.

FreeRTOS’s fundamental abstractions differ significantly
from those found in desktop operating systems. For example,
application code is divided into a set of tasks that are roughly
equivalent to a thread in a desktop process. For each task,



FreeRTOS maintains a task control block to store important
data of the task such as the stack pointer and MPU configu-
ration. The FreeRTOS scheduler switches between tasks to
meet pre-defined timing constraints. Specifically, the sched-
uler ensures that the processor will always be executing the
highest priority task that is ready to execute in the system.

3 Design

Kage protects application and real-time OS kernel code from
control-flow hijacking attacks using a Kage-complaint real-
time OS, a Kage compiler, and a binary code scanner. We now
describe the threat model that Kage addresses, the guarantees
it provides to address these threats, and how the aforemen-
tioned Kage components provide these security guarantees.

3.1 Threat Model and System Assumptions
We target ARMv7-M-based single-core microcontrollers with
an MPU supporting at least seven regions. As ARMv7-M
microcontrollers do not support virtual memory [11], all tasks
execute within the same address space as the kernel. Further,
to improve performance and reduce programming complexity,
the tasks and the kernel execute at the same privilege level
by default. A consequence of these design decisions is that a
memory error in a task (or library) can lead to the system’s
complete compromise.

We assume the presence of a powerful adversary that at-
tempts to hijack the control flow of the system. The attacker
has access to a memory error in untrusted code that she can
use to manipulate any control data stored in memory, in-
cluding return addresses of both tasks and the kernel, indi-
rect branches, function pointers, and processor state saved
on context switches and during exception handling. The un-
trusted code includes all application tasks, libraries accessible
by those tasks, and part of the kernel. An exception is the
standard C library and the compiler runtime library such as
libgcc [2] or compiler-rt [1]. We assume these libraries have
no memory safety errors, but we also assume that attackers
may exploit memory safety errors in untrusted code to hijack
the control flow to these libraries so as to use their regular
store instructions to corrupt privileged memory. We explain
how to mitigate this situation in Section 3.4. In summary,
our threat model focuses on code-injection and code-reuse
attacks. Other attacks, such as non-control data attacks [20],
are out of scope.

3.2 Security Guarantees
To mitigate the threats described in Section 3.1, Kage provides
the following guarantees:

Guarantee 1. Return Address Integrity (RAI): Return instruc-
tions will always branch to the legal return address saved by
the function prologue.

Guarantee 2. Control-Flow Integrity (CFI): Indirect function
calls will always branch to the beginning of a function.

Guarantee 1 comes from Kage’s use of per-task shadow
stacks for storing return addresses. Guarantee 2 is provided
by CFI instrumentation inserted at compile time. We discuss
these topics further as part of our discussion of the Kage
compiler in Section 3.5.

However, Guarantees 1 and 2 alone are insufficient for
mitigating control-flow hijacking attacks. As application code
runs in the hardware’s privileged mode, it can corrupt control
data, stack pointers, and other security-critical data maintained
by the OS kernel. Kage, therefore, provides the following
additional guarantees:

Guarantee 3. On a context switch, the task’s saved processor
state will always be the same as it was when the task was
taken off of the CPU. When a task first begins execution, its
initial processor state, including the task’s initial program
counter, stack pointer, and control register, will always be
the initial values defined in task initialization. This guarantees
that each task begins execution from its main entry point.

Guarantee 4. The processor state saved on interrupts and ex-
ceptions is never corrupted. When returning from an interrupt
or exception, the processor state loaded onto the processor
matches the processor’s state prior to the interrupt or excep-
tion.

Guarantee 5. The location and the content of the processor’s
interrupt vector table cannot be modified by untrusted code.

These guarantees severely limit the extent to which an
attacker can manipulate the control flow of the system. To
ensure that the processor executes the correct instructions,
Kage provides one more guarantee:

Guarantee 6. Memory that is writable by untrusted code
cannot be executable, and vice versa.

The foundation of these guarantees is Kage’s use of priv-
ileged memory regions isolated from untrusted code. For
example, Kage’s context switching and exception handling
mechanisms use these privileged regions to store processor
state, thereby providing Guarantees 3 and 4. Further, by defin-
ing the location of the interrupt vector table as privileged,
Kage ensures Guarantee 5. Finally, as untrusted code can only
write to unprivileged regions, Kage configures such regions
as non-executable, i.e., Guarantee 6.

3.3 Kage Overview
Kage consists of three components:

• A real-time OS for microcontrollers that provides a
protected shadow stack for the kernel and each task and
protects security-critical data from corruption by mem-
ory errors, including processor state saved on a context
switch and scheduler and task management data;



Unprivileged Task 1 Unprivileged Task 2 Unprivileged Task N…

Secure API

Untrusted Kernel Modules

HAL

Exception 
DispatcherTrusted

Exception Handlers
Scheduler

Trusted KernelUntrusted

C & Compiler Runtime Libraries for Trusted Kernel

Untrusted Exception Handlers

C & Compiler Runtime Libraries for Untrusted Kernel and Tasks

Figure 1: Architecture of Kage-Compliant Embedded OS

• A compiler system that provides efficient intra-address
space isolation by transforming all store instructions in
untrusted code to ARMv7-M’s unprivileged store instruc-
tions, saves return addresses to a protected shadow stack,
and adds forward-edge control-flow integrity checks;

• A binary code scanner that checks whether the binary
file generated by the compiler contains any code se-
quence that may bypass Kage’s security guarantees.

3.4 Kage-Compliant Embedded OS

At the core of Kage is an embedded real-time OS. Our de-
sign assumes the same task model as FreeRTOS [32], with
task data, including task stack pointers, stored in the task con-
trol block. Kage divides the code into trusted and untrusted
components and the memory into privileged and unprivileged
regions. All control data, except function pointers used by
untrusted code, are stored in privileged memory. Only trusted
components can directly write to privileged memory regions
with the exception that function prologues of untrusted com-
ponents can store return addresses to a privileged region.

Figure 1 illustrates the different components that comprise
the Kage architecture. All of the tasks and most kernel com-
ponents are untrusted. The trusted components are limited to
those that must access privileged memory regions.

To mitigate cases wherein control flow is maliciously redi-
rected from untrusted code to the standard C library or the
compiler runtime library, Kage supplies two separately com-
piled versions of each of these libraries. The Kage compiler
transforms one copy for safe use by untrusted code, and the
other is left unmodified for use by the trusted kernel. Trans-
formed library functions cannot write to privileged memory
regions and therefore cannot overwrite control data.

3.4.1 Privileged and Unprivileged Memory

Figure 2 illustrates Kage’s unprivileged and privileged mem-
ory regions. Untrusted code can only write to the former,
while trusted code can write to both types. These access re-
strictions are implemented, in part, using the store hardening

transformation (described in Section 3.5.2) and enforced by
the MPU at runtime. Any attempts to write to privileged
memory from untrusted code will trigger a fault. While Kage
could also restrict loads, load restrictions are not necessary
for preventing control-flow hijacking attacks.

Kage’s unprivileged memory regions include the unprivi-
leged initialized global data, unprivileged uninitialized global
data, unprivileged kernel stack, task stacks, and unprivileged
heap regions. The privileged memory regions include all
shadow stacks, all control data (except for function pointers
in untrusted code), and other security-critical data structures,
such as task control blocks and scheduler data structures.

Kage uses separate heaps for trusted and untrusted code. All
untrusted code uses the same heap to improve memory utiliza-
tion. However, Kage could be adapted to use multiple unprivi-
leged heap regions. Kage provides separate dynamic memory
allocation and deallocation functions for trusted and untrusted
components. The trusted allocation function allocates mem-
ory from the privileged heap region, while untrusted code
uses the untrusted allocation function to manage memory in
the unprivileged heap.

Notably, while all task stacks reside in unprivileged mem-
ory, Kage restricts untrusted code to writing only to the stack
of the current task. This restriction is necessary to protect
control data during context switching (see Section 3.4.3), pro-
viding the basis for ensuring Guarantee 3. To detect stack
overflows (and underflows), privileged regions surround each
task stack.

The System region is also privileged because it contains
memory-mapped system registers that must not be accessible
to an attacker. For example, a write to this region could be
used to change the address of the interrupt vector table [11];
by configuring the System region as privileged, Kage ensures
part of Guarantee 5. The Peripheral and Device regions are
also privileged.

Finally, the Read-Only Data region, which contains the
interrupt vector table, is set to read-only, providing the other
part of Guarantee 5. To enforce Guarantee 6, the Trusted and
Untrusted Code regions are set to read-only as well and are
the only executable regions.

3.4.2 Secure API

The trusted kernel provides a secure API for use by the un-
trusted kernel components and tasks. The secure API allows
the untrusted code to perform task management, execute
scheduler-related operations, and access the HAL. These oper-
ations often require access to privileged memory. The secure
API allows unprivileged code to perform these operations
without violating Kage’s security guarantees.

The secure API functions fall into three broad categories:
functions designed for all untrusted code (such as delaying
a task, deleting a task, and resuming a task), functions that
should only be used by the untrusted kernel (such as raising a



Trusted 
Code

Read-Only
Data

Privileged 
Kernel
Heap

Privileged 
Kernel
Data

Unprivileged 
Initialized

Global Data

Application 
Task Stacks

Kernel 
Stack

Kernel 
Shadow
Stack

Unprivileged 
Uninitialized
Global Data

Unprivileged 
Heap

Peripheral Device

Barrier
Region

Application 
Task 1
Stack

Application 
Task 1

Shadow Stack

Application 
Task N
Stack

Application 
Task N

Shadow Stack
…

Unprivileged and Privileged RO, Execute

Unprivileged and Privileged RO, Execute-Never

Privileged RW, Execute -Never

Unprivileged and Privileged RW, Execute -Never

Unprivileged RW for foreground task, Privileged RW for background tasks, Execute-Never

Untrusted 
Code

System

Figure 2: Memory Regions of Kage

task’s execution priority, delaying a task to wait for an event,
and resuming a task after the event), and functions used by
untrusted exception handlers (such as resuming a task from
delay after exception returns).

The secure API adheres to the following design principles.
First, the secure API should not overwrite control data, un-
less such control data is not used anymore (e.g., deleting a
task). This helps enforce Guarantees 1, 3, and 4. Second, the
secure API should not disable or overwrite hardware configu-
rations that Kage uses for protections, such as disabling the
MPU, changing Kage’s memory access permissions, chang-
ing exception priorities, or overwriting the interrupt vector
table. Memory protections are critical for enforcing all of
Kage’s guarantees, controlling exception priorities helps en-
force Guarantee 4 as Section 3.4.4 explains, and protecting
the integrity of the interrupt vector table is critical to enforc-
ing Guarantee 5. Third, secure API functions must write new
control data (e.g., when creating a new task) to a privileged
memory region, such as a shadow stack or the task control
block for enforcing Guarantees 1, 3, and 4. These design prin-
ciples can be applied to any real-time OS kernel. Appendix A
describes how we applied them to AWS FreeRTOS [6] in
detail.

Kage includes additional runtime checks to vet arguments
that could be controlled by attackers. First, the secure API
checks all pointer arguments. For pointers to task control
blocks, the API checks the pointer against a table of pointers
to valid task control blocks. For other pointers, the API veri-
fies that they point to an unprivileged memory region. These
checks prevent attackers from tricking the secure API code
from overwriting control data in privileged regions (which
could violate Guarantees 1, 3, and 4) or from overwriting
memory-mapped system registers (which could disable the
MPU protections needed for enforcing all of Kage’s guar-
antees). Second, the API includes functionality that allows
untrusted code to provide a new MPU configuration, but it
checks if the new configuration violates Kage’s base MPU
policy. Third, the API ensures that only the system initial-
ization sequence (run at system startup) can call the task
creation API function. This check is necessary to prevent an
attacker from creating a new task with a stack that overlaps
with the shadow stack of another task (which could violate
Guarantee 1). Fourth, the API functions for untrusted excep-
tion handlers require that the exception handler temporarily

raises the execution priority before calling the secure API
function such that other untrusted exception handlers cannot
preempt the execution. These API functions check the current
priority level. If a check fails, Kage executes a code sequence
defined by the developer. In our prototype, this code executes
an infinite loop. This enforces Guarantee 4 by ensuring the
integrity of interrupted program state saved on interrupts and
exceptions.

Kage’s design is amenable to real-time requirements. Aside
from checks on task control blocks, all secure API runtime
checks have constant-time performance. Task control block
checks are linear time relative to the number of created tasks.
As Kage only permits task creation during system initial-
ization, the maximum number of tasks running on a device
can be made finite and known at device install time. Conse-
quently, developers can pre-determine the worst-case over-
head of task control block checks. The secure API functions
for untrusted exception handlers require raising the exception
priority, which may cause delays for other untrusted excep-
tion handlers to enter. Therefore, real-time systems that in-
clude hard deadlines for exception handling need to measure
the runtime of these secure API functions and consider the
worst-case additional overhead. In situations where exception
handlers with a hard deadline are rare and short, developers
could also verify that the handlers are bug-free and place them
into the trusted computing base.

Finally, untrusted code is only allowed to use direct func-
tion calls to access the secure API. Kage does not assign
CFI labels to secure API functions; therefore, untrusted code
cannot use indirect branches to execute secure API functions.
Section 3.5 explains Kage’s forward-edge CFI checks.

3.4.3 Context Switching

The kernel needs to store the processor state to memory when
context switching between tasks or when an exception oc-
curs [15]. As this state contains control-flow data, Kage must
protect the saved state to ensure Guarantee 3. The protected
state must also include the task’s stack pointer to prevent
untrusted code from violating Guarantee 1. Further, as the
Secure API places its frames on the stack of the calling task,
Kage must also prevent manipulation of this frame data. As
described below, Kage provides these protections through a
combination of privileged memory regions, MPU configura-



tions, and a purpose-built PendSV handler.
Kage stores the processor state in the current task’s shadow

stack during context switching and exception handling. The
shadow stack is a privileged memory region, so it cannot be
modified by untrusted code (as described previously). The
processor state includes all general-purpose registers, the LR
link register, the program status register, the CONTROL regis-
ter, the stack pointer, and all floating-point registers (if the
processor supports floating-point operations). In addition, for
exceptions, Kage also protects exception return addresses.

ARMv7-M provides the PendSV interrupt to switch con-
texts efficiently [11], and Kage includes a handler for this
interrupt. For performance reasons, the processor automati-
cally saves a subset of the processor state to memory before
Kage’s handler executes. In some cases, this behavior leads
to processor state being saved to unprivileged memory (such
as a task’s stack). Consequently, Kage’s PendSV handler first
copies the registers automatically saved by the processor from
the task’s stack to the task’s shadow stack. The handler then
stores the rest of the processor state to the task’s shadow stack
and transfers control to the kernel’s scheduler component.

The scheduler component then checks if the previous task
overflowed its stack prior to the context switch. This check
may seem unnecessary given that the untrusted task code
will trigger a hardware fault if it attempts to write to the
privileged memory adjacent to its stack (as described pre-
viously in Section 3.4.1). However, a subtle race condition
may still allow for an overflow to occur. In particular, if the
context switch occurs after the stack pointer is decremented
past the end of the task stack but before any unprivileged
store instructions that would trigger the fault, ARMv7-M’s
automatic register spilling mechanism could write into the ad-
jacent privileged region—i.e., where the task’s shadow stack
is placed—bypassing Guarantee 1.

After the scheduler component transfers control back to the
handler, Kage restores the saved processor state for the next
task from the appropriate shadow stack. Note that for the sub-
set of state stored automatically by the processor, Kage trans-
fers that state back to the appropriate task stack for restoration
by the processor.

Kage’s PendSV handler also reconfigures the MPU to allow
unprivileged write access to the stack region of the next task
and disallow access to the stack region of the previous task.
By disallowing unprivileged write access to the stack region
of other tasks, Kage ensures that a task cannot interfere with
another task’s stack data. As a task stack may include frames
from the Secure API, this MPU configuration prevents un-
trusted code from manipulating the local variables used by
the runtime checks of the Secure API.

Kage prevents untrusted code from executing in the mid-
dle of a context switch, ensuring the processor state restored
to the task stack cannot be corrupted before the handler re-
turns. It does so as follows. First, Kage prevents untrusted
exception handlers from preempting the PendSV handler’s ex-

ecution (see Section 3.4.4). Second, while a subset of trusted
exception handlers can preempt Kage’s PendSV handler, those
trusted exceptions do not transfer control to untrusted code.

As Kage copies, saves, and restores a fixed number of regis-
ters on exception dispatch and context switch, and because the
stack overflow check is constant time, Kage’s protections for
saved processor state incur constant overhead and are there-
fore amenable to real-time system design.

3.4.4 Exception Handling

Kage divides exception handlers into two types. Trusted ex-
ception handlers are part of the trusted kernel and can access
privileged memory. The trusted handlers in our prototype in-
clude the system timer SysTick handler, the context switch-
ing PendSV handler, the system call SVC handler, the memory
protection fault MemManage handler, the memory bus fault
BusFault handler, and the unrecoverable fault HardFault
handler. Handlers in the HAL library are trusted as well.
Further, if a system contains other trap handlers (i.e., excep-
tion handlers that cannot be blocked), these handlers must be
trusted. All other handlers are untrusted and, consequently,
can only write to unprivileged memory.

Exceptions are particularly challenging to handle securely
because an untrusted exception handler may interrupt trusted
code. For example, consider when a task calls the secure API
to execute functions in the trusted kernel. The secure API
(and any trusted kernel function it calls) uses the unprivileged
task stack to store local variables. Under normal control flow,
this is not an issue. However, if an exception whose handler
is untrusted occurs, the untrusted handler could corrupt the
secure API’s stack frames on the task stack.

To resolve the above issue, Kage adds a trusted dispatcher
function to each untrusted exception handler. When an ex-
ception whose handler is untrusted occurs, the appropriate
dispatcher executes first. The dispatcher function saves all
processor state to the shadow stack and configures the MPU
such that the entire task stack and task shadow stack regions
are read-only (for both trusted and untrusted code). Only then
does the dispatcher transfer control to the untrusted exception
handler. After the untrusted handler returns, the dispatcher
restores the processor state and restores the MPU configura-
tion. Saving the processor state to and restoring it from the
protected shadow stack enforces Guarantee 4. Similar to con-
text switching, the exception dispatcher prevents untrusted
exception handlers from voiding the runtime checks of the
Secure API.

Exception nesting further complicates the dispatcher’s be-
havior. First, the MPU configuration is only restored after all
untrusted exceptions have been handled. Second, when saving
and restoring the processor state, the dispatcher temporarily
sets its priority to the maximum configurable priority, pre-
venting other untrusted exception handlers from preempting
it. ARMv7-M requires three instructions to raise the priority.



To prevent another untrusted exception from occurring during
the small window of three instructions, the dispatcher first
uses a single instruction (CPS) to disable all exceptions until
it finishes raising its priority. Raising the exception priority
prevents untrusted code from another untrusted exception han-
dler from overwriting the processor state before the dispatcher
saves them or after the dispatcher restores them, breaking
Guarantee 4. Third, all untrusted exception handlers are as-
signed a lower priority than any of the trusted handlers. This
restriction improves performance by removing the need for
trusted handlers to spill the processor state onto the shadow
stack. Finally, when an untrusted exception handler calls the
secure API, the untrusted handler must first temporarily raise
its priority to prevent preemption by other untrusted handlers.
The secure API functions check that the exception priority is
raised. These two restrictions ensure that untrusted code from
an untrusted exception handler cannot corrupt trusted code’s
stack data and use the trusted code to bypass the security
guarantees (e.g. making unprivileged memory executable).

Kage’s exception handling mechanism also checks for po-
tential stack overflows. The reason for this check is a subtle
race condition wherein another exception handler could pre-
empt the current handler after the stack pointer is decremented
past the end of the kernel stack but before the next store in-
struction triggers a hardware fault. In such situations, ARMv7-
M’s automatic register spilling mechanism on exception entry
could overwrite privileged memory. We described an analo-
gous race condition and overflow check in Section 3.4.3

Similar to context switching, Kage’s exception dispatcher
incurs predictable constant-time overhead and is consequently
amenable to real-time system design.

3.5 Kage Compiler

Kage leverages and enhances Silhouette [55], an LLVM-based
compiler, to efficiently isolate the untrusted components and
enforce return address integrity and control-flow integrity on
the untrusted code. In particular, Kage stores return addresses
in a shadow stack (Section 3.5.1). By combing the store hard-
ening transformation (Section 3.5.2), the CFI instrumentation
(Section 3.5.3), and the corresponding memory region config-
uration (Section 3.4.1), Kage guarantees that a return address
will always be saved to, protected in, and retrieved correctly
from the shadow stack, and therefore providing return address
integrity (Guarantee 1). Kage also uses the CFI transformation
to guarantee that an indirect function call will always branch
to the beginning of a function (Guarantee 2). We describe
these transformations below, but we refer the reader to Sec-
tion 7.1 of the Silhouette paper [55] for greater detail on how
these transformations enforce control-flow and return-address
integrity.

3.5.1 Shadow Stack Transformation

Kage uses Silhouette’s shadow stack transformation to trans-
form the prologue and epilogue of each untrusted function.
When entering a function, the return address is saved onto a
protected shadow stack. When returning from the function,
the system uses the return address from the shadow stack
instead of the regular stack. The shadow stacks reside in
privileged memory, and the shadow stack instrumentation is
considered trusted code. Each task, and the untrusted kernel,
use separate shadow stacks.

3.5.2 Store Hardening Transformation

Kage uses Silhouette’s store hardening pass to transform all
store instructions in untrusted code into ARMv7-M’s unprivi-
leged store instructions. When combined with the appropriate
MPU configuration (see Section 4.3.2), this transformation
provides intra-address space isolation, preventing untrusted
code from modifying privileged memory. Importantly, store
hardening allows Kage to access the shadow stack in every
function prologue without the costly hardware privilege mode
changes of previous work [51].

3.5.3 CFI Instrumentation

We use CFI [3] instrumentation to protect against forward-
edge control-flow hijacking. Specifically, for indirect function
calls, Kage inserts CFI labels at the beginning of the legal
target functions and inserts instrumentation at all indirect call
sites to verify that the target has the correct label at runtime.

Not all functions receive labels in Kage. CFI labels are only
assigned to functions in untrusted code that are address-taken
or visible to other compilation units. This makes it impossible
for untrusted code to, for example, jump into trusted code via
an indirect function call.

Globally-Unique Label Generation. Label-based CFI re-
quires that the byte sequence used for CFI labels not appear
anywhere else within executable memory i.e., that they be
globally unique [3]. The Silhouette compiler does not enforce
this requirement. Kage addresses this limitation, in part, with
a novel scheme for label generation.

Kage’s global uniqueness guarantee consists of two parts.
First, as instructions on ARMv7-M are either one or two
half-words long and aligned at half-word boundaries [11], the
encoding of a CFI label must not alias any part of instructions
that the compiler may generate. Kage avoids this situation
by picking a CFI label consisting of two distinct half-words
that are undefined instruction encodings on ARMv7-M. Sec-
ond, the compiler may embed constant data into code that
is identical to a CFI label by coincidence. Kage therefore
disallows data embedding within the trusted and untrusted
code segments.



3.6 Code Scanner
To ensure that the compiled binary code does not violate
Kage’s security guarantees, Kage includes a static binary
code scanner. If the code scanner finds a violation, it alerts
the developer.

Kage’s code scanner forbids untrusted code from using the
privileged CPS and MSR instructions [11] as these instructions
could change the value of important registers (such as the
CONTROL register and stack pointers) and undermine Guaran-
tees 1 and 4. However, MSR instructions that change the APSR
or BASEPRI register are allowed in untrusted code; changing
APSR only affects the execution of conditional instructions,
and changing BASEPRI only disables or enables untrusted ex-
ceptions, neither of which impacts Kage’s security guarantees.
The trusted kernel needs CPS and MSR instructions, so the code
scanner allows the trusted kernel to contain these instructions
with any operand.

The code scanner also verifies that the only trusted func-
tions that untrusted code calls are secure API functions. In-
ternal trusted kernel functions should not be available to un-
trusted code. Since Kage does not add CFI labels to the trusted
kernel functions, the code scanner only needs to ensure that
no direct function calls from untrusted code to internal trusted
functions exist.

4 Implementation

In this section, we describe our modifications to the Silhouette
compiler system [55] and the implementation of our Kage-
compliant RTOS and the binary code scanner. The Kage
RTOS extends Amazon FreeRTOS v1.4.9 [6]. We target the
STM32L475 Discovery board [43] because it has an MPU
and is officially supported by Amazon FreeRTOS.

4.1 Compiler Implementation
We modified 379 lines of code to adapt the LLVM-based Sil-
houette compiler,2 a major part of which improves CFI. To
ensure that CFI labels are not embedded within other instruc-
tions, we picked 0xf870f871 as our CFI label; both 0xf870
and 0xf871 encode an undefined instruction on ARMv7-
M [11]. Kage’s CFI checks will jump over the CFI labels
when performing the indirect branch as the CFI labels are
now undefined instructions.

We set the size of each task’s stack and the kernel stack to
be 4 KB, allowing multiple stacks to fit in the limited 128 KB
of RAM on the discovery board. This stack size also allows
for more efficient shadow stack instrumentation. In particular,
ARMv7-M’s store immediate and load immediate instructions
support an immediate offset up to 4 KB [11]. With the stack
size (and thereby the shadow stack offset) limited to 4 KB,

2We measured the line count of modifications to the Silhouette compiler
using git diff.

the shadow stack transformation does not need to encode the
shadow stack offset into a free register before accessing the
shadow stack. As a result, Kage only needs one instruction in
the function prologue to write to the shadow stack.

FreeRTOS provides an optional privileged_functions
section in the code region to store privileged kernel functions.
Kage uses this section to store all trusted kernel functions. A
special compiler flag can be used to tell the Kage compiler
that all functions within a C source file should be placed
in the privileged_functions section. When the compiler
compiles a function in this section, it skips the store hardening,
shadow stack, and CFI transformations.

4.2 Code Scanner Implementation
We implemented Kage’s code scanner as a Python script uti-
lizing Python’s elftools library. The code scanner scans the
untrusted code for encodings of instructions that could poten-
tially undermine Kage’s security guarantees as Section 3.6
describes. Our code scanner contains 148 lines of code.3

4.3 RTOS Implementation
Our OS prototype adds 2,136 lines of code to AWS FreeR-
TOS. Like default FreeRTOS, our Kage implementation runs
both tasks and the kernel in ARMv7-M’s privileged execution
mode. Unlike FreeRTOS, Kage enables the MPU and lever-
ages compiler transformations, runtime instrumentation, and
the kernel modifications described below to enforce control-
flow and return-address integrity. We implemented the secure
API following our design. Appendix A explains the secure
API implementation in detail.

4.3.1 Trusted and Untrusted Components

In our Kage prototype, the trusted kernel components are
the scheduler, the task management module, the kernel list
module, the trusted dynamic allocation and deallocation mod-
ule, and the device-specific support module (including excep-
tion handlers for PendSV, SVC, MemManage, and HardFault),
and the HAL library [46] (including the exception handler
for SysTick and the default code for unimplemented excep-
tion handlers). All other kernel components and all tasks are
untrusted. The untrusted kernel components include the un-
trusted list module, the untrusted allocation module, the queue,
the stream buffer, event groups, and the timer modules.

Both trusted and untrusted kernel components need to use
the kernel list module to access ready and pending lists of
tasks. Therefore, Kage provides two list modules, one for the
trusted components and one for the untrusted components.

For the untrusted C library, we transformed Newlib [39],
an open source C library designed for embedded systems.

3We measured the line count of the code scanner and RTOS prototype
using SLOCCount [52].



Hardware MPU Region Access Permissions
Region Priv. Unpriv.

FLASH Entire FLASH region RO, XN RO, XN
FLASH Code segments RO RO
RAM2 Entire RAM2 region RW, XN RO, XN
RAM2 Unpriv. initialized global data and unpriv. heap RW, XN RW, XN
RAM Entire RAM region RW, XN RO, XN
RAM Unpriv. uninitialized global data and kernel stack RW, XN RW, XN
RAM Stack of current foreground task RW, XN RW, XN

Table 1: Kage’s MPU Configuration on STM32L475 Dis-
covery board. RW = Read & Write, RO = Read-Only, XN =
Execute-Never.

The trusted kernel only uses two C library functions, memset
and strlen, so we manually added untransformed implemen-
tations of the two functions in the trusted kernel. Similarly,
we transformed LLVM’s compiler-rt [1] as the compiler run-
time library for untrusted code. The trusted kernel only uses
__aeabi_uldivmod and __udivmoddi4, so we added their
untransformed implementations in the trusted kernel.

The FreeRTOS kernel uses a privileged_data section
for privileged global variables. Kage adopts this section for
kernel data that should only be writable by trusted code. In
our prototype, only the scheduler and task management data
is placed in this section.

As Section 3.4 explains, a Kage-compliant OS needs to
provide a privileged heap for the trusted kernel and an un-
privileged heap for untrusted kernel and application code. As
FreeRTOS only provides one heap and uses the same heap
for all dynamically allocated data, for Kage, we replaced all
memory allocation calls made outside the trusted computing
base to a new untrusted memory allocation component, i.e.
a different set of malloc and free functions that uses the
unprivileged heap memory region.

Amazon FreeRTOS also includes a suite of functions for
interacting with Amazon’s web services. In Kage, all of these
functions fall outside of the trusted computing base and are
instrumented by the Kage compiler.

4.3.2 MPU Configuration

Our implementation configures the MPU as described in Ta-
ble 1. Kage uses seven MPU regions of the target board.
In addition, Kage enables the default background region of
ARMv7-M [11], which forbids unprivileged access to any
memory address not listed in the regions above and forbids
execution in the peripheral and system regions. The MPU con-
figuration covers two disconnected hardware RAM regions
of 32 KB and 96 KB, respectively.

4.4 Limitations

There are several limitations of the Kage prototype. First,
our current implementation inherits the parallel shadow stack
design of Silhouette [55]. Parallel shadow stacks [17] allow

for more processor-efficient instrumentation at the cost of
higher RAM usage. While this cost is reasonable for the
single-stack bare-metal applications targeted by Silhouette,
it limits the number of tasks that Kage can support. Further,
the current shadow stack implementation also requires all
tasks to use the same stack size. Alternative shadow stack
designs [17] can address these issues. Second, Kage relies on
the developer to properly configure exception priority. Finally,
the Kage compiler does not transform inline assembly code
or hand-written assembly source files; we could address this
in future versions of Kage by implementing the compiler
transformations within the assembler. In our current prototype,
we transformed all the untrusted inline assembly blobs and
assembly source files by hand, which adds 437 lines of code.

5 Performance Evaluation

In this section, we evaluate Kage’s performance. First, we use
the CoreMark benchmark [28] to evaluate Kage with realistic
application code. Then, we use microbenchmarks to explore
the impact of individual Kage components.

As a baseline, we compare Kage to unmodified Amazon
FreeRTOS v1.4.9 [6], the same version on which our proto-
type RTOS is based. We compiled the unmodified FreeRTOS
with LLVM 9.0 [36], the same version on which the Silhou-
ette compiler is based [55]. By default, FreeRTOS disables
the MPU on the discovery board.

We use an STM32L475 Discovery board [43, 45] to run all
experiments. This board contains an ARMv7-M [11] micro-
controller capable of running up to 80 MHz with MPU sup-
port, 128 KB of SRAM, and 1 MB of flash memory. We use
the default configuration of FreeRTOS set to run at 80 MHz.
As all of our test programs fit within the code memory on our
board, we use the -O3 compiler optimization level to improve
the execution time of both the baseline code and Kage.

For each benchmark, we run each configuration three times
and record the average value of the three runs.

5.1 Macrobenchmark

To the best of our knowledge, no open-source benchmark
exists targeting applications with a real-time kernel. We there-
fore ported CoreMark [28] to AWS FreeRTOS and Kage and
modified the benchmark to utilize FreeRTOS’s kernel fea-
tures. CoreMark is an industry-standard benchmark that is
recommended by ARM [8]. CoreMark includes common em-
bedded operations such as linked list manipulations, matrix
multiplications, and state machine operations. In short, our
modified benchmark performs the CoreMark computations
using multiple tasks that are preempted and context switched
and that communicate their outputs to a main task via a queue.



5.1.1 Benchmark Setup

Our port of CoreMark complies with the license and the in-
structions included in the CoreMark repository [29]. Namely,
we only modified files whose name includes portme.

More specifically, we edited the architecture-dependent
source files of CoreMark to use the system calls of FreeRTOS
and the secure API of Kage so that the CoreMark code would
run on AWS FreeRTOS and Kage. We configured CoreMark
to use its multi-threaded code path so that it creates multiple
benchmark tasks, requiring the OS kernel to context switch
between tasks. We configured all the benchmark tasks to have
the same priority, causing FreeRTOS to use a round robin
scheduling policy. This invokes far more context switches
than the default priority-based scheduling algorithm.

We also modified CoreMark so that a main task initializes
the system and starts execution of all the subtasks that perform
the benchmark computations. This main task also creates a
FreeRTOS queue for each subtask to send its output to the
main task. The main task will verify that the outputs are
correct and measures the start and end times of the benchmark.
Our results include the time to create all of the tasks and
inter-task communication queues, the time for the tasks to
perform their computations, the time needed by FreeRTOS to
context switch between tasks, and the time needed to delete
all the tasks once all computations are complete. Finally, we
modified the function calls to malloc and free such that the
benchmark uses the untrusted heap allocation API of Kage.

CoreMark [28] reports throughput in iterations of compu-
tation per second. We report results for our modified version
of CoreMark in these units as well. Overhead was measured
as a decrease in the number of iterations per second.

5.1.2 Benchmark Results

Table 2 summarizes the performance of the baseline FreeR-
TOS, Kage with only the kernel modifications (i.e., without
any transformations of untrusted code), and the complete
Kage system. As Kage requires its OS mechanisms, the com-
piler transformations, and the code scanner to enforce the
security guarantees, we only include separate results for the
OS mechanisms to elucidate Kage’s overhead sources.

For these experiments, we set the number of iterations to
2,000 per benchmark task and varied the number of tasks
from one to three. Note that the single-task configuration
uses the single-threaded code path of CoreMark, which runs
the benchmark algorithms in the main routine without creat-
ing any benchmark task. For each configuration, we run the
benchmark 3 times.

Kage incurs 5.2% mean overhead compared to the base-
line FreeRTOS. In the single-threaded configuration, Kage
incurs the lowest overhead at 4.6%. This is because the single-
threaded code path uses only a single main task without creat-
ing any benchmark task; as a result, the single-threaded result
has no context switching or inter-task queue overhead. With

Configuration FreeRTOS
(Iter/s)

Kage’s OS
Mechanisms

(Iter/s)

Kage
(Iter/s)

Single-threaded
(no benchmark task) 182.20 179.31 173.88

Double-threaded
(2 benchmark tasks) 183.07 178.42 172.99

Triple-threaded
(3 benchmark tasks) 183.07 178.41 173.01

Table 2: Macrobenchmark Results using Modified CoreMark

Configuration FreeRTOS (Iter/s) Kage (Iter/s)

Single-threaded
(no benchmark task) 104.76 96.14

Double-threaded
(2 benchmark tasks) 102.60 95.77

Triple-threaded
(3 benchmark tasks) 102.59 95.77

Table 3: Macrobenchmark Results without Caching

two and three benchmark tasks, Kage incurs 5.5% and 5.5%
overhead, respectively. This minor increase demonstrates that
the overhead Kage adds via the secure API, context switch-
ing, and unprivileged inter-task queue is likely to have only a
minor impact on the performance of real world applications.
With FreeRTOS’s default priority-based scheduling, which
invokes context switches less often, we expect the impact of
Kage’s context switching to be reduced further.

The primary source of Kage’s overhead was the transforma-
tion of untrusted code. For example, the mean overhead was
2.2% when only Kage’s kernel mechanisms were enabled. In
other words, the shadow stack transformation, store harden-
ing, and forward-edge CFI checks account for the rest of the
5.2% mean overhead. Note that Kage relies on all of these
mechanisms for its security guarantees, i.e., none of these
components are optional.

In both the baseline and Kage, we observed that run-
ning more benchmark tasks would unexpectedly increase
performance in some situations. Namely, for the baseline,
the double-threaded configuration has higher performance
than the single-threaded configuration, and Kage, the triple-
threaded configuration has higher performance than the
double-threaded configuration. To explore the source of
speedup, we re-ran the experiments for the baseline and for
Kage but with the instruction and data caches disabled. Ta-
ble 3 shows the results with no caching. Without caching,
running more tasks decreases the performance for both the
baseline and Kage, as expected. This result leads us to con-
clude that the minor speedup is due to caching.

5.1.3 Code Size Results

We also measured the code size of the binary files of the triple-
threaded configuration to evaluate the impact of Kage on code



Section FreeRTOS
(Bytes)

Kage’s OS
Mechanisms

(Bytes)

Kage
(Bytes)

Trusted code 50,584 18,950 18,950
Untrusted code 0 53,410 56,802

Total 50,584 72,360 75,752

Table 4: Code Size Results

Microbenchmark for Secure API Time (cycles)

Checking pointer of task control block 62
Checking other types of pointer 75
Checking a new MPU region configuration 106
Checking the current exception priority 7

Table 5: Secure API Overhead

size. As the benchmark tasks are identical, the code size of
other configurations is nearly identical.

Table 4 shows the sizes of the trusted and untrusted code of
FreeRTOS and Kage. Comparing to the baseline FreeRTOS,
Kage incurs an overhead of 49.8% in code size. However,
the bulk of this overhead comes from enabling the MPU in
FreeRTOS, which is not directly from Kage’s extensions. For
example, the code size of the same FreeRTOS with the MPU
enabled is 66,704 bytes, 31.1% larger than that of the baseline
FreeRTOS. Compared to this MPU-enabled version, Kage
incurs an overhead of only 14.2%.

Kage also incurs a substantial code size overhead because
it includes two versions (an untrusted version and a trusted
version) of the C and compiler runtime library functions, the
heap allocation functions, and the kernel list API functions.

5.2 Microbenchmarks

We designed and built a set of microbenchmarks to measure
the number of additional processor cycles introduced by vari-
ous Kage components. Specifically, we measured the cycle
counts of Kage’s secure API checks, context switching, ex-
ception handling, and untrusted kernel code. We used a com-
bination of handwritten assembly and the KIN1 library [30]
to access the cycle counter.

Table 5 shows the cycle counts for the secure API runtime
checks. These components have no equivalents in FreeRTOS,
so there are no baseline numbers. Table 6 shows the perfor-
mance overhead of other Kage mechanisms compared to the
baseline FreeRTOS and FreeRTOS with the MPU enabled.

Kage’s overhead on the microbenchmarks stands in con-
trast to its low overhead on the CoreMark macrobenchmark.
CoreMark’s heavy computation and dearth of system calls are
the primary reasons for this disparity. Besides the overhead of
the compiler transformations, context switching is the com-
ponent that most consistently incurs overhead in CoreMark.

Secure API Runtime Checks: The secure API runtime

Microbenchmark FreeRTOS
(cycles)

FreeRTOS
with MPU

(cycles)

Kage
(cycles)

Context switching 190 213 322
Exception dispatcher 46 46 319
Queue: create 533 704 819
Queue: send and receive 2,012 2,676 3,636
Stream buffer: create 621 723 904
Stream buffer: send and receive 2,043 2,737 3,200

Table 6: Context Switching, Untrusted Exception, and Un-
trusted Kernel Overhead

checks incur overhead ranging from 7 to 106 cycles. The
amount of overhead added to each secure API function de-
pends on the subset of checks the function uses. For example,
only one secure API function calls the 106-cycle MPU con-
figuration check.

Most of the secure API functions contain only one run-
time check, either the task control block check or the generic
pointer check. Only nine of the thirty-one secure API func-
tions include multiple runtime checks. The worst case is the
secure API function that re-configures the task-specific MPU
configuration, which has the runtime checks for task control
block, generic pointer, and MPU configuration.

Context Switching: To measure the cycle count of context
switching, we added code to the beginning of the PendSV [11]
handler to reset the cycle counter and added code to read the
cycle counter immediately before the handler returns. We
made the same changes to the two FreeRTOS configurations.

Kage’s context switching adds 132 cycles over the base-
line FreeRTOS, primarily due to the cost of saving processor
state to the shadow stack. This translates to 1.65 microsec-
onds of execution per context switch. That is an overhead of
69.5% relative to the baseline FreeRTOS and 51.2% relative
to the MPU-enabled FreeRTOS. Enabling the MPU increases
FreeRTOS’s context switching latency (and decreases the rel-
ative overhead of Kage) as the kernel must read the MPU
configurations of the next task from the task control block
and write it into the MPU control registers.

Exception Dispatching: This microbenchmark measures
the execution time of a HardFault exception triggered by
a divide-by-zero operation. We configured the HardFault
handler to use Kage’s exception dispatcher. The actual handler
contains only a small amount of code that clears the divide-
by-zero status bit. The baseline contains the same code that
performs a divide-by-zero operation and the same handler
code that clears the status bit, but it does not use the dispatcher.

Kage’s exception dispatcher adds 273 cycles of overhead.
As with context switching, the exception dispatcher’s over-
head is primarily due to reconfiguring the MPU and saving
register state. The overhead is larger for exception dispatching
than for context switching because the baseline FreeRTOS
does not save any register state when handling exceptions
(aside from the registers the hardware saves automatically).



In contrast, the baseline FreeRTOS does save register state
during context switching for registers that are not automati-
cally spilled by the hardware.

Untrusted Kernel: Our untrusted-kernel-code mi-
crobenchmarks measure the overhead Kage adds to the un-
trusted kernel API. Specifically, we measured the performance
of the queue and the stream buffer API [32] by measuring the
execution time of creating a queue or a stream buffer and the
execution time of transferring a 32-bit value between tasks.

We selected the queue and stream buffer modules over other
untrusted modules for two reasons. First, our macrobench-
mark uses the queue API for inter-task communication. Sec-
ond, their performance does not depend on unpredictable
factors such as network connectivity and timer events.

For the queue and the stream buffer APIs, Kage incurs
an overhead of 53.7% in queue creation and 80.7% in trans-
ferring data in queue; Kage incurs an overhead of 45.6%
in stream buffer creation and 56.6% in transferring data in
stream buffer. A major contributor to the overhead is the ex-
isting FreeRTOS code for supporting the MPU. For instance,
Kage’s overhead relative to the MPU-enabled FreeRTOS is
16.3% for queue creation, 35.9% for queue data transfer, 25%
for stream buffer creation, and 16.9% for stream buffer data
transfer. The remaining overhead comes from additional se-
cure API checks and Silhouette’s compiler transformations.

6 Security Evaluation

To evaluate Kage’s security, we consider the actions avail-
able to an attacker when all of Kage’s protections have been
applied. In particular, given the security guarantees listed in
Section 3.2, we consider the following question: is it possi-
ble for an attacker to manipulate the control flow in a way
that Kage permits and still perform a useful attack? We con-
clude that useful code-reuse attacks are impossible for the
CoreMark application benchmark.

6.1 Summary of Kage Protections

By design, Kage ensures the integrity of return addresses
(Guarantee 1); restricts the set of legal targets of forward-edge
control-flow branches (Guarantee 2); protects control data
during interrupts, exceptions and context switching (Guaran-
tees 3, 4, and 5); and prevents modification of the existing
code and injection of new code (Guarantee 6). Most code-
reuse attacks [19, 33, 35, 41, 49] are thwarted by this set of
security guarantees. Manipulation of non-control-data is not
prevented by Kage, but as our threat model (Section 3.1) states,
such attacks fall outside of this paper’s scope.

The only possible control-flow hijacking hazard in Kage
arises from the manipulation of forward-edge control-flow
branches. This is due to Kage’s coarse-grained CFI instrumen-
tation (Section 3.5.3), which restricts the set of legal targets

but does not prevent the manipulation. In particular, an at-
tacker can manipulate a function pointer (in untrusted code)
to branch to any function that starts with a valid CFI label.
This is a known weakness of label-based CFI instrumenta-
tion [3], but as past studies have observed, this issue is largely
mitigated by using a shadow stack for protecting return ad-
dresses [3, 18]. We confirm these observations also hold for
Kage by analyzing the set of reachable code-reuse gadgets in
a Kage-compliant OS with the CoreMark benchmark [8].

6.2 Code-Reuse Gadget Analysis

We used ROPgadget [42], an automated tool that is commonly
adopted by security researchers and practitioners [16, 21, 23,
54], to search for gadgets within two binaries. One was the
baseline which comprised FreeRTOS, CoreMark, and all re-
quired supporting libraries; the other was a Kage-compliant
system consisting of all Kage’s components listed in Figure 1
with the unprivileged CoreMark application tasks. This is the
same setup we used in Section 5.

Kage’s security guarantees directly render two broad cate-
gories of code-reuse gadgets as unreachable: gadgets found
in trusted code, and gadgets that do not start at the beginning
of a function or immediately after a call instruction. Gadgets
in trusted code are not reachable because Kage does not add
CFI labels to functions in trusted code, and Kage’s labeling
scheme ensures that a valid CFI label can never unintention-
ally appear within trusted code. Consequently, any attempts
by the attacker to call trusted code from a manipulated func-
tion pointer will fail the CFI check. Untrusted code can call
the secure API via direct function calls (which require no
CFI labels or CFI checks), so it is possible for an attacker
to reuse an existing direct call instruction within a gadget to
call the entry point of a secure API function. However, due
to the checks performed by the secure API code (see Sec-
tion 3.4.2), the code within the secure API function cannot
be used to bypass Kage’s guarantees. Finally, gadgets within
trusted code cannot be reached via corrupted function returns
because Kage guarantees the integrity of return addresses,
and trusted code never calls functions in untrusted code.

Within untrusted code, the only reachable gadgets are those
that start at the beginning of a function or start immediately af-
ter a call instruction. The former are reachable either directly
through function-pointer manipulation or as a part of a larger
gadget that contains a direct call instruction. As Kage guar-
antees return address integrity, the latter can only be reached
when a function returns to the callsite preceding the gadget
and the callsite is the dynamic caller of the function.

Table 7 summarizes the results. ROPgadget discovers
2,276 gadgets in the baseline. Because there are no control
flow protections in the baseline binary, an attacker can use all
of the gadgets. In contrast, ROPgadget finds 1,605 gadgets in
the Kage-compliant binary, but after filtering out unreachable
gadgets according to the rules described above, only 27 gad-



Binary Found (#) Reachable (#) Priv. Store (#) Stitchable (#)

FreeRTOS 2,276 2,276 1,031 1,908
Kage 1,605 27 0 0

Table 7: Gadgets Found in Baseline FreeRTOS and Kage

gets remain reachable under Kage’s restricted control flow.
Specifically, the 27 gadgets fall into three categories. First,
17 gadgets start at the beginning of a function and end with a
return instruction to its caller. Second, 4 gadgets start right af-
ter a direct function call and end with a return. The remaining
6 gadgets start after a direct call and end with a direct branch
to a static address that is either in the same function or is the
entry point of another function.

We believe this significantly reduced set of 27 gadgets
makes control-flow hijacking attacks impractical. First, none
of the 27 gadgets have a privileged store instruction; there-
fore, an attacker cannot use these gadgets to corrupt security-
critical memory regions (such as the one for MPU configura-
tion). Second, even though attackers can cause control flow
to divert to these gadgets, they cannot combine and execute
these gadgets in arbitrary order i.e., an attacker cannot cause
a gadget to jump to another gadget of the attacker’s choosing,
rendering the gadget not stitchable. All 27 gadgets terminate
with a return, a direct tail call to a function, or a direct branch
to code within the same function. Because of Kage’s return
address integrity guarantee, those terminating with a return
instruction cannot be stitched together with other arbitrary
gadgets within the set of 27 gadgets. Those ending with a
direct tail call or direct branch do not jump to another gad-
get within the set and therefore cannot be stitched together,
either. With these restrictions, we see no way to construct a
working attack from these gadgets with existing techniques.
By comparison, 1,031 gadgets found in baseline FreeRTOS
contain privileged store instructions and 1,908 gadgets are di-
rectly stitchable (because they end in either an indirect branch,
branch to another gadget, or a write to the program counter).

It may seem counterintuitive that ROPGadget found fewer
gadgets in Kage than it found in FreeRTOS even though
the former has a larger code size than the latter (see Sec-
tion 5.1.3). There are two main factors that contribute to the
gadget count difference. First, Kage’s shadow stack transfor-
mation changes pop {..., pc} to ldr pc, [sp, #4092],
eliminating a large number of potential gadgets. Specifically,
when the shadow stack transformation was disabled, ROPgad-
get found 1,828 gadgets in Kage (compared to 1,605). Second,
FreeRTOS uses libgcc as the runtime library while Kage
uses a store-hardened version of compiler-rt [1]. As a re-
sult, many gadgets found in the libgcc library in FreeRTOS
do not exist in Kage. For example, ROPgadget found 112
gadgets in __adddf3 in FreeRTOS. While the compiler-rt
library also has this function, ROPgadget did not find any
gadgets in the compiler-rt version.

Finally, we acknowledge that our evaluation’s complete-
ness depends on two factors. First and foremost, it depends
on ROPgadget’s ability to locate gadgets. Given that it found
2,276 gadgets in our baseline, we believe that ROPgadget
is capable of finding many gadgets. Second, our evaluation
depends on the applications used for evaluation. Different pro-
grams will have different numbers and types of gadgets. How-
ever, ROPgadget found many gadgets in the CoreMark code
and even more in common code (the C library, the compiler-rt
run-time library, and the untrusted portion of FreeRTOS) that
will be linked into any application compiled for Kage.

7 Related Work

Control-Flow Protections on Embedded Systems. Several
studies have proposed schemes for protecting bare-metal
embedded systems (i.e., those without an OS kernel) from
control-flow hijacking, including Silhouette [55], µRAI [5],
EPOXY [22], and CaRE [40]. Our system, Kage, leverages
Silhouette’s store hardening technique to isolate privileged
memory. µRAI [5] protects the return address of a function
by saving all return addresses in the code segment at com-
pile time and reserving a register to indicate the proper entry
for current function, combining that technique with forward-
edge CFI checks. EPOXY [22] protects the return address by
moving all potentially unsafe stack operations to a separate
unsafe stack. Both the safe and unsafe stack are writable in
unprivileged mode, so a strong attacker could still potentially
overwrite return addresses on the safe stack. Also, EPOXY
relies on static analysis techniques to identify unsafe stack
operations, which is more challenging for larger programs
such as an embedded OS with multiple application tasks,
each using its own stack. CaRE [40] provides a protected
shadow stack and forward-edge CFI for ARMv8-M [12] by
providing a branch monitor that accesses the ARM TrustZone-
M-protected secure memory [12] to handle control-flow trans-
fers.4 Unlike these systems, Kage includes and protects a full
real-time kernel.

Some studies have considered embedded systems with a
real-time OS. Of those, RECFISH [51] is the most directly
relevant to our work. RECFISH [51] provides CFI checks
and protected shadow stacks for tasks on FreeRTOS. Kage
addresses several RECFISH limitations. First, RECFISH in-
cludes the entire RTOS kernel in the TCB; application tasks
can trick kernel functions into overwriting control data by
passing in bad pointer arguments. Kage, in contrast, removes
most kernel code from the TCB and prevents misuse of the
secure API with runtime checks. Second, RECFISH does
not protect the processor state of exception handlers from
untrusted exception handler code, whereas Kage does this
through the exception dispatcher. Third, RECFISH uses SVC

4As TrustZone-M is only available on the ARMv8-M architecture, CaRE
cannot be adapted to the widely-deployed ARMv7-M architecture.



to switch privilege modes when tasks must write to their
shadow stacks, incurring high overhead (20-30% on average)
in application code. Kage uses store hardening to access the
shadow stack efficiently.

µArmor [4] is a compiler-based protection system targeting
Zephyr RTOS that relies on diversification and data separation.
For data separation, µArmor ensures that code and data are in
separate regions and data and pointers are separated within
a stack frame. For diversification, µArmor applies various
diversification techniques to the binary, such as randomizing
register order during a function call, inserting NOP instruc-
tions, and reordering functions inside the binary. As with
other diversification-based defenses, µArmor requires that the
attacker cannot obtain the binary or leak memory. In contrast,
information leaks do not weaken Kage’s security guarantees.

Memory Safety on Embedded Systems. Embedded
SAFECode [27] is a compiler that enforces memory safety
on embedded programs written in C. SAFECode guarantees
the safety of pointer references to the stack and heap and the
safety of array accesses. Due to the additional restrictions
on pointer operations and array accesses, developers need to
modify the OS kernel and application source code to meet
SAFECode’s requirements. In some cases, it is impractical
to pass all the checks. Kage’s security guarantees are weaker
than full memory safety, but Kage provides strong protection
against control-flow hijacking attacks with low overhead and
without requiring application source code changes.

nesCheck [38] is a compiler that enforces memory safety
on programs written in nesC, a C dialect used in applications
for TinyOS. nesCheck uses whole-program static analysis to
detect code areas potentially vulnerable to memory bugs and
adds runtime checks to these locations. As nesCheck adds a
runtime check to every location in the code that may cause
a memory error, programs containing many memory oper-
ations could see high overhead. While the store hardening
mechanism used by Kage also incurs overhead on store-heavy
programs, Kage can transform many types of store instruc-
tions with no overhead.

Tock [37, 48] is an embedded operating system with its
kernel written in Rust. Tock takes advantage of features of the
Rust programming language to enforce memory safety and
type safety in its kernel. Unlike Kage, Tock uses hardware
privilege levels for isolation. Tock is not a real-time operating
system, as it uses a round-robin scheduler instead of a real-
time priority-based scheduler. Moreover, Tock requires device
manufacturers or OS maintainers to re-write existing HAL
libraries in Rust for each device.

Intra-address Space Isolation on Embedded Systems.
Mbed OS [7] provides a secure partition manager in its Plat-
form Security Architecture, allowing each application to cre-
ate independent secure partitions. However, the Platform Se-
curity Architecture of Mbed OS only supports multi-core
ARMv7-M [11] and ARMv8-M [12] microcontrollers, where
Kage supports single-core ARMv7-M microcontrollers.

General-Purpose OS Control-Flow Integrity. SVA [25,
26] is a compiler-based virtual machine that enforces control-
flow integrity, memory safety, and type safety on applications
and the OS kernel. KCoFI [24] uses the SVA infrastructure to
enforce CFI for operating systems. KCoFI provides similar
protections as Kage such as protecting the processor state
during context switch and exception entry, and additional en-
forcements required for general-purpose systems with virtual
memory. However, Kage and KCoFI have two key differences.
First, KCoFI protects its privileged memory using software
fault isolation [50] while Kage utilizes store hardening. Sec-
ond, KCoFI is a compiler-based virtual machine that is de-
signed to be agnostic to the OS kernel’s design. Consequently,
KCoFI must maintain its own metadata for information that is
already present within the OS kernel. In contrast, Kage splits
the OS kernel into a small trusted component and an untrusted
component, allowing Kage to avoid maintaining redundant
copies of security critical metadata outside the kernel.

8 Conclusions and Future Work

We presented the design, implementation, and evaluation of
a software system that protects microcontroller-based em-
bedded systems from control-flow hijacking. Collectively
called Kage, our work includes techniques to isolate un-
trusted components, protect control data from corruption by
memory errors, and securely handle context switching, in-
terrupts, and exceptions. Kage is open-sourced at https:
//github.com/URSec/Kage.

Kage’s implementation builds on FreeRTOS [6] and ex-
tends the Silhouette compiler [55]. Porting existing code writ-
ten for FreeRTOS to Kage should be relatively straightforward
as Kage preserves the kernel features of FreeRTOS (such as
scheduling behavior, intertask communication, etc). Further,
we designed Kage’s secure API to be compatible with the
task API of FreeRTOS.

Kage’s security guarantees come at a minor cost when
executing application code in tasks. For CoreMark [28], Kage
incurred an average runtime overhead of 5.2% compared to
unmodified FreeRTOS. In addition, Kage added an overhead
of 49.8% in code size, but the main source of that overhead
was from the additional code in FreeRTOS needed to manage
the MPU. In particular, Kage increased the code size by just
14.2% over baseline FreeRTOS with the MPU enabled. Kage
also reduced the reachable code-reuse gadgets from 2,276
to 27. Further, those remaining gadgets are not sufficient for
conducting a practical attack.

There are several promising directions for future work.
First, we plan to extend Kage to support additional security
policies. For example, with minor modifications to the secure
API, Kage can also protect the integrity of task scheduling.
That is, the system could guarantee the real-time execution
of tasks. Second, we intend to implement alternative shadow
stack designs to improve memory utilization and allow more

https://github.com/URSec/Kage
https://github.com/URSec/Kage


flexibility in setting the stack size for individual tasks. Finally,
we would like to investigate techniques for reducing Kage’s
code size overhead.

Acknowledgments

The authors would like to thank the anonymous reviewers and
our shepherd, Brent Kang, for their insightful feedback. This
work was supported by ONR Award N00014-17-1-2996.

References

[1] "compiler-rt" runtime libraries. https://compiler-
rt.llvm.org.

[2] The gcc low-level runtime library. https://gcc.gnu.org/
onlinedocs/gccint/Libgcc.html.

[3] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow integrity principles, implementations, and appli-
cations. ACM Transactions on Information Systems Security
13, 1 (Nov. 2009), 4:1–4:40.

[4] ABBASI, A., WETZELS, J., HOLZ, T., AND ETALLE, S. Chal-
lenges in designing exploit mitigations for deeply embedded
systems. In Proceedings of the 2019 IEEE European Sym-
posium on Security and Privacy (Stockholm, Sweden, 2019),
EuroSP ’19, IEEE Computer Society, pp. 31–46.

[5] ALMAKHDHUB, N. S., CLEMENTS, A. A., BAGCHI, S., AND

PAYER, M. µRAI: Securing embedded systems with return
address integrity. In Proceedings of the 2020 Network and
Distributed System Security Symposium (San Diego, CA, 2020),
NDSS ’20, Internet Society.

[6] Amazon FreeRTOS. https://aws.amazon.com/freertos.

[7] Mbed: Free open source IoT OS and development tools from
Arm. https://os.mbed.com.

[8] ARM HOLDINGS. CoreMark Benchmarking for ARM Cortex
Processors, July 2013. DAI 0350A.

[9] ARM HOLDINGS. ARM Architecture Reference Manual:
ARMv7-A and ARMv7-R edition, Mar. 2018. DDI 0406C.d.

[10] ARM HOLDINGS. Arm Architecture Reference Manual: Armv8,
for A-profile architecture, July 2021. DDI 0487G.b.

[11] ARM HOLDINGS. ARMv7-M Architecture Reference Manual,
Feb. 2021. DDI 0403E.e.

[12] ARM HOLDINGS. Armv8-M Architecture Reference Manual,
Sept. 2021. DDI 0553B.q.

[13] ASPENCORE. 2019 embedded markets study. https:
//www.embedded.com/wp-content/uploads/2019/11/
EETimes_Embedded_2019_Embedded_Markets_Study.pdf.

[14] ATZORI, L., IERA, A., AND MORABITO, G. The internet
of things: A survey. Computer Networks 54, 15 (Oct. 2010),
2787–2805.

[15] BOVET, D. P., AND CESATI, M. Understanding the Linux
Kernel. O’Reilly, Sebastopol, CA, 2005.

[16] BROWN, M. D., AND PANDE, S. Is less really more? to-
wards better metrics for measuring security improvements re-
alized through software debloating. In Proceedings of the 12th
USENIX Workshop on Cyber Security Experimentation and
Test (Santa Clara, CA, 2019), CSET ’19, USENIX Association.

[17] BUROW, N., ZHANG, X., AND PAYER, M. SoK: Shining light
on shadow stacks. In Proceedings of the 2019 IEEE Symposium
on Security and Privacy (San Francisco, CA, 2019), SP ’19,
IEEE Computer Society, pp. 985–999.

[18] CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D., AND

GROSS, T. R. Control-flow bending: On the effectiveness of
control-flow integrity. In Proceedings of the 24th USENIX
Security Symposium (Washington, DC, 2015), Security ’15,
USENIX Association, pp. 161–176.

[19] CARLINI, N., AND WAGNER, D. ROP is still dangerous:
Breaking modern defenses. In Proceedings of the 23rd
USENIX Security Symposium (San Diego, CA, 2014), Security
’14, USENIX Association, pp. 385–399.

[20] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-control-data attacks are realistic threats. In Pro-
ceedings of the 14th USENIX Security Symposium (Baltimore,
MD, 2005), Security ’05, USENIX Association, pp. 177–191.

[21] CLEMENTS, A. A., ALMAKHDHUB, N. S., BAGCHI, S., AND

PAYER, M. ACES: Automatic compartments for embedded
systems. In Proceedings of the 27th USENIX Security Sympo-
sium (Baltimore, MD, 2018), Security ’18, USENIX Associa-
tion, pp. 65–82.

[22] CLEMENTS, A. A., ALMAKHDHUB, N. S., SAAB, K. S.,
SRIVASTAVA, P., KOO, J., BAGCHI, S., AND PAYER, M. Pro-
tecting bare-metal embedded systems with privilege overlays.
In Proceedings of the 2017 IEEE Symposium on Security and
Privacy (San Jose, CA, 2017), SP ’17, IEEE Computer Society,
pp. 289–303.

[23] COFFMAN, J., KELLY, D. M., WELLONS, C. C., AND

GEARHART, A. S. ROP gadget prevalence and survival under
compiler-based binary diversification schemes. In Proceedings
of the 2016 ACM Workshop on Software PROtection (Vienna,
Austria, 2016), SPRO ’16, ACM, pp. 15–26.

[24] CRISWELL, J., DAUTENHAHN, N., AND ADVE, V. KCoFI:
Complete control-flow integrity for commodity operating sys-
tem kernels. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy (Berkeley, CA, 2014), SP ’14, IEEE
Computer Society, pp. 292–307.

[25] CRISWELL, J., GEOFFRAY, N., AND ADVE, V. Memory safety
for low-level software/hardware interactions. In Proceedings of
the 18th USENIX Security Symposium (Montreal, QC, Canada,
2009), Security ’09, USENIX Association, pp. 83–100.

[26] CRISWELL, J., LENHARTH, A., DHURJATI, D., AND ADVE,
V. Secure Virtual Architecture: A safe execution environment
for commodity operating systems. In Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles (2007),
SOSP ’07, ACM, pp. 351–366.

[27] DHURJATI, D., KOWSHIK, S., ADVE, V., AND LATTNER,
C. Memory safety without garbage collection for embedded
applications. ACM Transactions on Embedded Computing
Systems 4, 1 (Feb. 2005), 73–111.

https://compiler-rt.llvm.org
https://compiler-rt.llvm.org
https://gcc.gnu.org/onlinedocs/gccint/Libgcc.html
https://gcc.gnu.org/onlinedocs/gccint/Libgcc.html
https://aws.amazon.com/freertos
https://os.mbed.com
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf


[28] CoreMark: An EEMBC benchmark. https:
//www.eembc.org/coremark.

[29] CoreMark benchmark Github repository. https://
github.com/eembc/coremark.

[30] ERICHSTYGER. McuOnEclipse processor expert components
and example projects. https://github.com/ErichStyger/
mcuoneclipse.

[31] ERLINGSSON, Ú., YOUNAN, Y., AND PIESSENS, F. Low-
level software security by example. In Handbook of Informa-
tion and Communication Security. Springer-Verlag, Berlin/Hei-
delberg, Germany, 2010, pp. 633–658.

[32] FreeRTOS real time operating system. http:
//www.freertos.org.

[33] GÖKTAS, E., ATHANASOPOULOS, E., BOS, H., AND POR-
TOKALIDIS, G. Out of control: Overcoming control-flow in-
tegrity. In Proceedings of the 35th IEEE Symposium on Secu-
rity and Privacy (San Jose, CA, 2014), SP ’14, IEEE Computer
Society, pp. 575–589.

[34] INTEL CORPORATION. Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Combined Volumes: 1, 2A, 2B, 2C,
2D, 3A, 3B, 3C, 3D, and 4, June 2021. Order Number: 325462-
075US.

[35] KEMERLIS, V. P., POLYCHRONAKIS, M., AND KEROMYTIS,
A. D. ret2Dir: Rethinking kernel isolation. In Proceedings of
the 23rd USENIX Security Symposium (San Diego, CA, 2014),
Security ’14, USENIX Association, pp. 957–972.

[36] LATTNER, C., AND ADVE, V. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Pro-
ceedings of the 2nd International Symposium on Code Gen-
eration and Optimization: Feedback-Directed and Runtime
Optimization (Palo Alto, CA, 2004), CGO ’04, IEEE Com-
puter Society.

[37] LEVY, A., CAMPBELL, B., GHENA, B., GIFFIN, D. B., PAN-
NUTO, P., DUTTA, P., AND LEVIS, P. Multiprogramming a
64kb computer safely and efficiently. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai,
China, 2017), SOSP ’17, ACM, pp. 234–251.

[38] MIDI, D., PAYER, M., AND BERTINO, E. Memory safety
for embedded devices with nesCheck. In Proceedings of the
2017 ACM Asia Conference on Computer and Communications
Security (Abu Dhabi, United Arab Emirates, 2017), ASIACCS
’17, ACM, pp. 127–139.

[39] Newlib. https://sourceware.org/newlib.

[40] NYMAN, T., EKBERG, J.-E., DAVI, L., AND ASOKAN, N.
CFI CaRE: Hardware-supported call and return enforcement
for commercial microcontrollers. In Proceedings of the 20th
International Symposium on Research in Attacks, Intrusions,
and Defenses (Atlanta, GA, 2017), RAID ’17, Springer-Verlag,
pp. 259–284.

[41] ROEMER, R., BUCHANAN, E., SHACHAM, H., AND SAVAGE,
S. Return-oriented programming: Systems, languages, and ap-
plications. ACM Transactions on Information Systems Security
15, 1 (Mar. 2012), 2:1–2:34.

[42] SALWAN, J., AND WIRTH, A. Ropgadget: Gadgets finder
and auto-roper, 2011. http://shell-storm.org/project/
ROPgadget.

[43] STMICROELECTRONICS. UM2153 User Manual: Discovery
kit for IoT node, multi-channel communication with STM32L4,
Oct. 2019. Rev 5.

[44] STMICROELECTRONICS. PM0214 Programming Manual:
STM32 Cortex-M4 MCUs and MPUs programming manual,
Mar. 2020. Rev 10.

[45] STMICROELECTRONICS. RM0351 Reference Man-
ual: STM32L47xxx, STM32L48xxx, STM32L49xxx and
STM32L4Axxx advanced Arm-based 32-bit MCUs, June 2021.
Rev 9.

[46] STMICROELECTRONICS. UM1884 User Manual: Description
of STM32L4/L4+ HAL and low-layer drivers, Sept. 2021. Rev
9.

[47] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK:
Eternal war in memory. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy (Berkeley, CA, 2013), SP
’13, IEEE Computer Society, pp. 48–62.

[48] Tock embedded operating system. http://www.tockos.org.

[49] TRAN, M., ETHERIDGE, M., BLETSCH, T., JIANG, X.,
FREEH, V., AND NING, P. On the expressiveness of return-
into-libc attacks. In Proceedings of the 14th International
Conference on Recent Advances in Intrusion Detection (Menlo
Park, CA, 2011), RAID ’11, Springer-Verlag, pp. 121–141.

[50] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. In Proceedings
of the 14th ACM Symposium on Operating Systems Principles
(Asheville, NC, 1993), SOSP ’93, ACM, pp. 203–216.

[51] WALLS, R. J., BROWN, N. F., LE BARON, T., SHUE, C. A.,
OKHRAVI, H., AND WARD, B. C. Control-flow integrity for
real-time embedded systems. In Proceedings of the 31st Eu-
romicro Conference on Real-Time Systems (Stuttgart, Germany,
2019), ECRTS ’19, Schloss Dagstuhl–Leibniz-Zentrum füer
Informatik, pp. 2:1–2:24.

[52] WHEELER, D. A. Sloccount version 2.26, 2004. https:
//dwheeler.com/sloccount.

[53] YIU, J. ARM Cortex-M for beginners: An overview of the
ARM Cortex-M processor family and comparison.

[54] ZHANG, M., AND SEKAR, R. Control flow integrity for COTS
binaries. In Proceedings of the 22nd USENIX Security Sympo-
sium (Washington, DC, 2013), Security ’13, USENIX Associa-
tion, pp. 337–352.

[55] ZHOU, J., DU, Y., SHEN, Z., MA, L., CRISWELL, J., AND

WALLS, R. J. Silhouette: Efficient protected shadow stacks
for embedded systems. In Proceedings of the 29th USENIX Se-
curity Symposium (Boston, MA, 2020), Security ’20, USENIX
Association, pp. 1219–1236.

A Secure API Implementation

This appendix shows the secure API details in our prototype
of Kage. The secure API is the subset of API functions, from

https://www.eembc.org/coremark
https://www.eembc.org/coremark
https://github.com/eembc/coremark
https://github.com/eembc/coremark
https://github.com/ErichStyger/mcuoneclipse
https://github.com/ErichStyger/mcuoneclipse
http://www.freertos.org
http://www.freertos.org
https://sourceware.org/newlib
http://shell-storm.org/project/ROPgadget
http://shell-storm.org/project/ROPgadget
http://www.tockos.org
https://dwheeler.com/sloccount
https://dwheeler.com/sloccount


Data Type Internal Data Type Description

TaskHandle_t tskTaskControlBlock* The pointer to a task control block
TickType_t uint32_t Number of ticks
BaseType_t long General data
UBaseType_t unsigned long Unsigned general data
List_t N/A A struct representing a doubly linked list
ListItem_t N/A A struct representing a node in List_t
MemoryRegion_t N/A A struct to store a memory region configuration
TaskParameters_t N/A A struct to store configurations of a task

Table 8: Data Types of Secure API

Name(Argument Types): Return Type Description

xTaskCreateRestricted(TaskParameters_t*, TaskHandle_t*):
BaseType_t

Create a task with given parameters. Return true if the task is successfully
created, false otherwise.

vTaskDelete(TaskHandle_t): void Delete given task.
vTaskDelayUntil(TickType_t*, TickType_t): void Delay current foreground task for given ticks relative to the first argument and

write the wake up tick to it.
vTaskDelay(TickType_t): void Delay current foreground task for given ticks relative to the tick this function

is called.
vTaskFinishInit(void): void Mark the end of task creation. After this point, Kage does not allow creating

new task anymore.
vTaskPrioritySet(TaskHandle_t, UBaseType_t): void Set the priority of given task to given value.
vTaskSuspend(TaskHandle_t): void Suspend given task.
vTaskResume(TaskHandle_t): void Resume given task. Do nothing if the task is not suspended.
vTaskAllocateMPURegions(TaskHandle_t, MemoryRegion_t*): void Change the MPU configuration of given task to given memory region configu-

ration.
ulTaskNotifyTake(BaseType_t, TickType_t): uint32_t Block current foreground task and use notification as semaphore until given

ticks. Return notification value before it changes.
xTaskNotifyWait(uint32_t, uint32_t, uint32_t*, TickType_t):
BaseType_t

Block current foreground task until notified or for given ticks. Return true if
notification is received, false on timeout.

xTaskGenericNotify(TaskHandle_t, uint32_t, eNotifyAction,
uint32_t*): BaseType_t

Unblock given task and optionally update its notification value bits. Return
true if notification bits are updated successfully, false otherwise.

xTaskNotifyStateClear(TaskHandle_t): BaseType_t Clear notification state of given task without clearing notification value bits.
Return true if this function changes the notification state; return false if no
action is needed.

vMainUARTPrintString(char*): void Print given string to serial output using HAL library function that accesses
corresponding peripherals.

Table 9: Task Management Secure API for Application Tasks and Untrusted Kernel

the FreeRTOS [32] scheduler and task management modules,
that write to protected data structures, with one exception: we
added one additional API function, vTaskFinishInit, to de-
clear the end of the initialization sequence. Table 9, Table 10,
and Table 11 list the individual secure API functions. Beside
vTaskFinishInit, all functions in the list use the same ar-
guments and return types as the corresponding functions in
FreeRTOS.

Table 8 lists the argument data types of the secure API.
All secure API functions that have an argument of type
TaskHandle_t contain the runtime check that verifies the
task control block’s validity. All secure API functions with
other types of pointer arguments use a different runtime check
to verify that the pointer points to an unprivileged memory
region and that writing to the address would not cause an
overflow.

Table 9 lists the secure API functions available to both

application tasks and untrusted kernel components. These
functions are available for untrusted components to con-
trol the state of tasks such as deleting a task, changing the
MPU configuration of a task, and task synchronization. The
vTaskAllocateMPURegions contains the runtime check ver-
ifying that the new task-specific MPU configuration does not
violate Kage’s MPU policy. The xTaskCreateRestricted
function is only available to the system initialization sequence.
To enforce this restriction, we require developers to call the
vTaskFinishInit function that marks the end of the initial-
ization sequence. After calling vTaskFinishInit, Kage no
longer allows task creation.

Table 10 lists the secure API functions only available
to untrusted kernel components. These functions allow un-
trusted kernel components such as the queue API and the
timer API to manage the interactions of tasks. For example,
when a task calls the queue API to receive a data structure,



Name(Argument Types): Return Type Description

vPortEnterCritical(void): void Enter critical section that temporarily disables context switching and exception
handling.

vPortExitCritical(void): void Exit critical section.
vTaskMissedYield(void): void Request for a context switch.
xTaskPriorityInherit(TaskHandle_t): BaseType_t Raise the priority of given task to that of the current foreground task.
xTaskPriorityDisinherit(TaskHandle_t): BaseType_t Reset the priority of given task to its original value.
xTaskPriorityDisinheritAfterTimeout(TaskHandle_t,
UBaseType_t): void

Set the priority of given task to given priority value if the task’s current priority
is lower than the value.

pvTaskIncrementMutexHeldCount(void): TaskHandle_t Increment the mutex count of current foreground task. Return its task control
block.

vTaskSuspendAll(void): void Stop the scheduler.
xTaskResumeAll(void): BaseType_t Resume the scheduler. Return true if a context switch is scheduled.
vTaskPlaceOnEventList(List_t*, TickType_t): void Delay current foreground task for given ticks and add it to the given event

waiting list. Store the task priority and sort the list by it.
vTaskPlaceOnEventListRestricted(List_t*,TickType_t,
BaseType_t): void

Same as vTaskPlaceOnEventList, but use the third argument to determine
whether to delay indefinitely or not.

vTaskPlaceOnUnorderedEventList(List_t*, TickType_t,
TickType_t): void

Delay current foreground task for given ticks and add it to the given event
waiting list. Store second argument and do not sort the list.

xTaskRemoveFromEventList(List_t*): BaseType_t Resume the first task in the list and remove the task from the event list. Return
true if a context switch is required, false otherwise.

vTaskRemoveFromUnorderedEventList(ListItem_t*, TickType_t):
void

Resume the task associated with given list item. Store second argument to the
value of list item.

Table 10: Task Management Secure API for Untrusted Kernel Only

Name(Argument Types): Return Type Description

xTaskResumeFromISR(TaskHandle_t): BaseType_t Resume given task. Do nothing if the task is not suspended. Return true if a
context switch is required; return false otherwise.

xTaskGenericNotifyFromISR(TaskHandle_t, uint32_t,
eNotifyAction, uint32_t*, BaseType_t*): BaseType_t

Same as xTaskGenericNotify, but write to fifth argument whether a context
switch is needed after unblocking given task.

vTaskNotifyGiveFromISR(TaskHandle_t, BaseType_t*): void Unblock given task, using notification as semaphore. The normal version of
this API is defined as a macro of xTaskGenericNotify.

Table 11: Task Management Secure API for Untrusted Exception Handlers Only

but the queue is empty, the queue API function calls the
vTaskPlaceOnEventList secure API function to add the
task to the list of tasks waiting for data on this queue and
to delay the task from executing until the data arrives or a
timeout occurs.

Table 11 lists the secure API functions available to un-

trusted exception handlers. They allow untrusted exception
handlers to resume or unblock a task and optionally send sig-
nals to the task through the notification bits. These secure API
functions contain the runtime check that verifies the current
exception priority.


	Introduction
	Background
	ARMv7-M
	FreeRTOS

	Design
	Threat Model and System Assumptions
	Security Guarantees
	Kage Overview
	Kage-Compliant Embedded OS
	Privileged and Unprivileged Memory
	Secure API
	Context Switching
	Exception Handling

	Kage Compiler
	Shadow Stack Transformation
	Store Hardening Transformation
	CFI Instrumentation

	Code Scanner

	Implementation
	Compiler Implementation
	Code Scanner Implementation
	RTOS Implementation
	Trusted and Untrusted Components
	MPU Configuration

	Limitations

	Performance Evaluation
	Macrobenchmark
	Benchmark Setup
	Benchmark Results
	Code Size Results

	Microbenchmarks

	Security Evaluation
	Summary of Kage Protections
	Code-Reuse Gadget Analysis

	Related Work
	Conclusions and Future Work
	Secure API Implementation

