
������

������

������

������

yyyyyy

yyyyyy

yyyyyy

yyyyyyRestricting Control Flow During Speculative Execution
Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell

University of Rochester

Meltdown and Spectre Attacks
Meltdown and Spectre
• Exploit out-of-order and speculative execution
• Leak secret data via cache side channels

Existing software defenses
• Retpoline
• Load fence
• Spectre-resistant SFI
• Speculative load hardening

Still vulnerable to Branch Target Injection

Venkman: Our Software Solution
Two Spectre defenses
• Bundle Alignment + Branch Target Restrictions

Defeats Branch Target Injection [?]
• Spectre-Resistant SFI on Stores

Defeats Read-only Protection Bypass on code segment [?]
Must instrument all code in the system
• Use a system that controls native code generation (e.g.,

SVA)
• Use an OS-level binary verifier (e.g., Google’s NaCl)

Bundle Alignment
Bundles
• Instruction sequences
• Sized and aligned at a same fixed power of 2 (2S)
• Control-flow transfers to the beginning of a bundle

– Functions and basic blocks aligned at 2S

– Function calls at the end of a bundle
Transform programs to bundles
• Break larger basic blocks into smaller basic blocks
• Add NOPs to the beginning of smaller basic blocks
• Ensure instructions that must be co-located are not sepa-

rated
• Align all basic blocks at boundaries of 2S

0x00: cmpwi r3, 1
0x04: bgt 3

1:

0x08: addi r3, r3, 3
0x0c: mullw r3, r3, r3
0x10: cmplwi r3, 2
0x14: blt 2

2:

0x18: subfic r3, r3, 100
0x1c: extsw r4, r3
0x20: addis r3, r2, -2
0x24: addi r3, r3, -30432
0x28: bl printf

3:

0x10: addi r3, r3, 3
0x14: mullw r3, r3, r3
0x18: cmplwi r3, 2
0x1c: blt 2

2:

0x00: nop
0x04: nop
0x08: cmpwi r3, 1
0x0c: bgt 3

1:

0x30: nop
0x34: nop
0x38: nop
0x3c: bl printf

4:

0x20: subfic r3, r3, 100
0x24: extsw r4, r3
0x28: addis r3, r2, -2
0x2c: addi r3, r3, -30432

3:

Transform with S = 4

Branch Target Restrictions
Restrict branch targets
• All the branch targets point to the beginning of a bundle
• All the branch targets within code segment

Bit-masking instrumentations on indirect branches
• If the bundle size is 2S bytes:

Clear the lower S bits of the target address
• If the code segment is placed in the first 2T bytes:

Clear the upper (64− T) bits of the target address
• Dedicated returns transformed to indirect jumps
• Co-locate instrumentations and the indirect branch in the

same bundle
Example of indirect function call (S = 4 and T = 32)

1 mtctr r27
2 bctrl

⇒

1 clrrdi r27, r27, 4
2 clrldi r27, r27, 32
3 mtctr r27
4 bctrl

Example of return (S = 4 and T = 32)

1 mtlr r0
2 blr

⇒

1 clrrdi r0, r0, 4
2 clrldi r0, r0, 32
3 mtlr r0
4 blr

Mitigate BTB/RSB poisoning with Bundle Alignment
• Only the starting address of a bundle can go into BTB/RSB
• Prevent existing Spectre defenses from being bypassed
• Form a complete defense against Branch Target Injection

Speculative Code Segment Integrity
Spectre can break read-only memory protection [?]
• Overwrite code segment speculatively

Spectre-resistant SFI [?] on stores
• Create a data dependence between the SFI check and the

store
• Prevent stores from (speculatively) writing to code segment
• Ensure the SFI check and the store are in the same bundle

Rearrange programs’ address space map
• Make all code reside in one portion of virtual address space

(below 2T)
• Strategically place code and data segments

– Simplify SFI to use fewer instructions

Code Segment

0 2T

Data Segment Heap → ← Stack

End of User Space

Implementation and Preliminary Results
Prototype implementation
• Built on a 64-bit IBM POWER8 machine
• Use LLVM compiler infrastructure
• Implemented in two separate MachineFunctionPasses
• Spectre-resistant SFI on stores not implemented yet

Evaluation on SPEC CPU 2017

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

500.perlbench_r
502.gcc_r
505.m

cf_r
508.nam

d_r
510.parest_r
511.povray_r
519.lbm

_r
520.om

netpp_r
523.xalancbm

k_r
525.x264_r
531.deepsjeng_r
538.im

agick_r
541.leela_r
544.nab_r
557.xz_r
600.perlbench_s
602.gcc_s
605.m

cf_s
619.lbm

_s
620.om

netpp_s
623.xalancbm

k_s
625.x264_s
631.deepsjeng_s
638.im

agick_s
641.leela_s
644.nab_s
657.xz_s

Ex
ec

ut
io

n
Ti

m
e

N
or

m
al

iz
ed

 to
 B

as
el

in
e Bundle Alignment

Bundle Alignment + Branch Target Restrictions

Future Work
• Complete prototype implementation

– Implement Spectre-resistant SFI on stores
• Incorporate existing defenses
• Apply Venkman on OS kernel
• Measure memory overhead
• Evaluation on more programs

Acknowledgements
This work is supported by The Office of Naval Research under
Award Number 088813-16629.

References

