
POSTER: Restricting Control Flow During Speculative Execution
Zhuojia Shen

University of Rochester
zshen10@cs.rochester.edu

Jie Zhou
University of Rochester
jzhou41@cs.rochester.edu

Divya Ojha
University of Rochester
dojha@cs.rochester.edu

John Criswell
University of Rochester
criswell@cs.rochester.edu

ABSTRACT
Speculative execution is one of the key techniques that modern
processors use to boost performance. However, recent research
shows that speculative execution can be used to steal sensitive data.
We present a software-based solution to mitigate Spectre attacks by
restricting the control flow of speculatively-executed instructions.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; Systems security;

KEYWORDS
speculative execution, side-channel defenses, Spectre attacks

ACM Reference Format:
Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. 2018. POSTER: Re-
stricting Control Flow During Speculative Execution. In 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18), October
15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3243734.3278522

1 INTRODUCTION
Modern high-performance processors support speculative execu-
tion and out-of-order execution. Speculative execution [11] is a
technique in which the processor speculatively executes instruc-
tions prior to knowing that they are required in order to improve
performance; if the processor later determines that the instructions
should not have been executed, it discards the computation, rolling
back all the architectural effects resulting from the speculatively-
executed instructions. Out-of-order execution [11] is a performance
improvement in which the processor executes instructions out of
program order to maximize throughput. While these features are
meant to improve processor performance, recent research (Melt-
down [10] and Spectre [7]) has shown that attackers can leverage
these optimizations to launch powerful side-channel attacks. Melt-
down [10] exploits out-of-order execution and a security defect
in which the processor performs the hardware MMU protection
check late in the pipeline, using them to bypass hardware-enforced

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5693-0/18/10.
https://doi.org/10.1145/3243734.3278522

memory isolation. Spectre [7] tricks the processor into specula-
tively executing instructions that load a victim’s secret data into
registers and then leaks the data via a cache side channel. To date,
at least four new variants of Meltdown and Spectre have been
discovered [4–6, 8].

While there exist compiler-based transformations that defend
against Meltdown [10] and Spectre [7] (such as Spectre-resistant
software fault isolation (SFI) [2]), they typically cannot mitigate
Branch Target Injection (i.e., Spectre Variant 2 [7]) which mistrains
the processor’s Branch Target Buffer (BTB) to hijack speculative
control flow. To mistrain, or poison, the BTB, the attacker pro-
gram repeatedly executes a set of branches that jump to a target
address [7]. Since the BTB is shared, branches in the victim will
reuse these BTB entries that were trained by the attacker. This
causes the processor to mistakenly jump to the desired address
while executing victim code, causing it to speculatively execute
code of the attacker’s choosing. Since there is no way for existing
software defenses to prevent BTB poisoning, they cannot prevent
such attacks. Worse yet, the retpoline defense [12] does not work as
it is susceptible to a new Spectre variant called SpectreRSB [8] that
manipulates the processor’s Return Stack Buffer (RSB). SpectreRSB
works similarly to BTB poisoning except that it poisons the RSB to
influence the target prediction of return instructions.

In this paper, we present Venkman, a novel software-based solu-
tion to enhance existing software defenses against Spectre. Venkman
employs compiler techniques to create bundles of instructions that
are equally power-of-two sized and aligned. By bit-masking all in-
direct branch targets at run-time, Venkman restricts all branches to
jump to the beginning of bundles. By transforming all code on the
system with Venkman, all BTB entries can only be trained to jump
to the beginning of bundles. If all instructions to mitigate Spectre
attacks are contained within a bundle, training of the BTB will not
be able to jump into the middle of a bundle to avoid executing them.

For processors that use dedicated return instructions, Venkman
transforms returns to indirect jumps so that they use the BTB in-
stead of the RSB for prediction. Bundle alignment and branch target
restrictions are the key to ensuring that existing defenses are not
bypassed: with Venkman, existing compiler-based Spectre defenses
such as load fences [5] and Spectre-resistant SFI [2] on loads are
always guaranteed to be executed on any program path taken dur-
ing speculative execution. Venkman also utilizes Spectre-resistant
SFI [2] on stores to protect the program’s code segment from a
new Meltdown variant [6] that breaks read-only memory protec-
tion. Our defenses are self-protecting; bundle alignment and branch
target restrictions prevent SFI on stores from being speculatively

https://doi.org/10.1145/3243734.3278522
https://doi.org/10.1145/3243734.3278522


bypassed, while SFI on stores ensures that the code segment is not
modified during speculative execution.

Venkman instruments programs to resist Spectre. However, the
instrumentationmust be performed on every program in the system
in order to take effect: one single uninstrumented program can mis-
train the BTB to attack instrumented programs. Several solutions
exist for ensuring that all code is transformed by Venkman. One is
to use a system like Secure Virtual Architecture (SVA) [1] which
forces all code to be shipped as virtual instruction set code; the
SVA virtual machine will translate the code to native code before
execution, transforming it with Venkman during code generation.
Alternatively, the operating system and dynamic loader can use a
binary code verifier like that in Google’s Native Client (NaCl) [13]
to verify that all programs it loads into memory for execution have
been previously transformed with Venkman (the operating system
kernel must be transformed with Venkman as well). If a program is
found to be non-compliant with Venkman’s restrictions, the oper-
ating system kernel can refuse to load the code for execution.

2 DESIGN
Venkman consists of two defenses: one combining bundle align-
ment and branch target restrictions that constrain the addresses
to which branches can jump, and the other leveraging Spectre-
resistant SFI [2] on memory writes to prevent speculative writes
to the code segment. We show that our first defense mitigates mis-
training of the processor’s BTB, and our second defense defeats
Read-only Protection Bypass attacks on the code segment [6].

2.1 Restricting Branch Targets to Bundles
Bundle Alignment. A bundle is a sequence of instructions that

has a fixed power-of-two size and alignment in which the size and
alignment are the same value. Venkman ensures that the target of
all branches is at the beginning of a bundle. In this way, Venkman
ensures that all the instructions inside a bundle are executed as
a whole in the control flow. This requirement also implies that
branches such as function calls must be at the end of a bundle so
that their return addresses are aligned at the beginning of the next
bundle. This is similar to NaCl [13].

Venkman transforms code during code generation to create bun-
dles. It searches for basic blocks of instructions that are larger than
the bundle size and breaks them into smaller basic blocks. When it
breaks up larger basic blocks, Venkman ensures that instructions
that must be co-located within the same bundle are not separated.
For example, if the Spectre defense that Venkman is enhancing adds
two instructions before every load, then Venkman will ensure that
the load and the two instructions before it will end up in the same
bundle, adding NOP instructions to the beginning of the bundle
if keeping the instructions together results in a basic block that is
smaller than the bundle size. For basic blocks with fewer instruc-
tions than the bundle size, Venkman adds NOP instructions to the
beginning of the basic block to increase its size to the bundle size.

Once all the basic blocks are of the correct size, Venkman aligns
each basic block. It also aligns the start address of each function to
ensure it falls on a bundle boundary.

Branch Target Restrictions. Venkman uses compiler instrumen-
tation to restrict the targets of a branch to be at the beginning of

a bundle. This is similar to NaCl’s control flow policy [13] that
prevents jumps around required compiler instrumentation.

For direct branches, no instrumentation is needed; all basic
blocks and functions are aligned, so the target address of all di-
rect branches is also aligned. For indirect branches, Venkman adds
two bit-masking instructions before every indirect branch. First,
it adds an instruction which aligns the target address to a bundle
boundary; for a bundle size of 2𝑆 bytes, the bit-masking instruction
clears the lowest-order 𝑆 bits. Second, it adds a bit-masking instruc-
tion that ensures that the target is within the code segment; for
example, if we place the code segment in the first 2𝑆 bytes of the
virtual address space, then our instrumentation clears the upper
(64 − 𝑆) bits of the target address.

If all code on a system is transformed in this way, and if all code
segments reside in the same region of the virtual address space in all
processes, then these restrictions on control flow prevent mistrain-
ing of the BTB with arbitrary addresses: only the starting address
of a bundle can go into the BTB. Additionally, Venkman converts
all return instructions into indirect branches. If such instructions
use the RSB, it ensures that all addresses in the RSB reside on a
bundle boundary (since all call instructions occur at the end of a
bundle). If the conversion causes the branch to use the BTB instead
of the RSB, then it still ensures that all targets are bundle addresses.

2.2 Speculative Code Segment Integrity
Not only can speculative execution leak secret data, but it can also
corrupt memory locations temporarily during speculative execution
via speculative memory writes [6]. Even if the operating system
configures the code segment to be non-writeable, speculative cor-
ruption of the code segment may still be possible if the processor
checks page permissions too late in the processor pipeline [6] and
the result of the speculative write is forwarded to the instruction
fetch unit for subsequent reads. To solve this problem, we use
Spectre-resistant SFI [2] on store instructions to ensure that they
do not speculatively write to the code segment. Spectre-resistant
SFI works by creating a data dependence between the bit-masking
SFI code and the subsequent memory access so that the memory
access are stalled until the SFI code completes execution [2]. By
using Spectre-resistant SFI on stores, Venkman ensures that the
target address of stores are outside the code segment before the
store begins to write memory speculatively.

In order tomake Spectre-resistant SFI on stores efficient, Venkman
must ensure that all code resides in one portion of the virtual ad-
dress space and the heap, stack, globals, and memory mapped files
occupy a separate region of the virtual address space. If the different
regions for code and data are chosen carefully, a simple bit-masking
operation with a constant value suffices to ensure that store instruc-
tions write to the region of the virtual address space that contains
program data.

Venkman instruments each store with a bit-masking instruction
to ensure that the target address of the store is outside the code
segment. Additionally, Venkman ensures that the store and the
bit-masking instruction before it are always in the same bundle.
In this way, no changes in the control flow can execute the store
without first executing the bit-masking instruction that prevents it
from writing to the code segment.



Table 1: SPEC CPU 2017 Performance Results. NV = Normalized Venkman.

Benchmark Baseline (s) NV NV Std. Dev. Benchmark Baseline (s) NV NV Std. Dev. Benchmark Baseline (s) NV NV Std. Dev.
500.perlbench_r 46.9 1.134 0.013 525.x264_r 72.5 1.040 0.038 619.lbm_s 228.1 0.990 0.026
502.gcc_r 68.5 1.099 0.015 531.deepsjeng_r 99.8 1.099 0.033 620.omnetpp_s 98.6 1.063 0.091
505.mcf_r 64.7 0.987 0.032 538.imagick_r 83.4 0.980 0.009 623.xalancbmk_s 111.9 1.217 0.014
508.namd_r 51.6 1.094 0.013 541.leela_r 133.4 1.083 0.018 625.x264_s 72.0 1.025 0.016
510.parest_r 68.9 1.009 0.011 544.nab_r 184.0 1.032 0.014 631.deepsjeng_s 117.6 1.060 0.043
511.povray_r 9.8 1.101 0.020 557.xz_r 53.0 1.025 0.094 638.imagick_s 82.9 0.993 0.017
519.lbm_r 29.8 1.027 0.029 600.perlbench_s 46.6 1.166 0.057 641.leela_s 132.8 1.072 0.012
520.omnetpp_r 105.3 1.030 0.122 602.gcc_s 68.4 1.108 0.010 644.nab_s 184.4 1.027 0.013
523.xalancbmk_r 112.4 1.232 0.030 605.mcf_s 66.0 0.960 0.034 657.xz_s 54.4 0.934 0.059

3 IMPLEMENTATION
We built an initial prototype of Venkman for the 64-bit POWER8
architecture [3] using the LLVM compiler [9]. We chose POWER8
because it uses fixed-length instructions, making it easier to write
code that creates aligned bundles of instructions. Currently, only
our code alignment and branch instrumentation is implemented.

We built Venkman as two MachineFunctionPass components
added to the LLVM 4.0 compiler. The first pass searches for instruc-
tions that move values into the link register and counter register;
all indirect branches on POWER8 use these two registers to hold
the target of the branch [3]. In the case of the counter register,
Venkman searches forward in the basic block to see if the counter
register is used as an indirect branch target or if it is read by another
instruction. In the former case, the value moved into the counter
register is the target of a branch; in the latter case, it is a non-target
value and is not modified. For values moved into the link register
and target addresses moved into the counter register, Venkman
adds two instructions that clear the lowest 4 bits (so that the target
address is aligned on a 16-byte bundle boundary) and clears the
highest 33 bits (to force the target to be a code segment address;
Venkman will eventually force all code to be loaded into the lower
2 GB of the virtual address space).

The second MachineFunctionPass transforms each basic block
to be a bundle of instructions that is 16 bytes long and aligned on a
16-byte boundary. It breaks larger basic blocks up into smaller basic
blocks and adds NOP instructions to smaller basic blocks to make
them equal to 16 bytes. During this process, Venkman ensures that
instructions that must belong to the same bundle are co-located in
the same basic block. For example, the bit-masking instructions on
values moved to the link or counter register are always located in
the same basic block as the branch using the target address value.
Venkman also ensures that all call instructions appear at the end of
a basic block; this ensures that the return address saved in the link
register is the address of the next contiguous bundle in memory.

4 PRELIMINARY RESULTS
To evaluate Vekman’s performance, we compiled the SPEC CPU
2017 benchmarks without Venkman (as the baseline) and with
Venkman. We used a 64-bit 20-core IBM POWER8 machine running
at 4.1 GHz. The machine has 64 GB of RAM and runs Linux 3.10.0.

Table 1 shows the baseline performance using the train inputs,
and the overhead induced by Venkman normalized to the baseline.
As Table 1 shows, the alignment and bit-masking of control data
imposed by Venkman induces 0% to 23% overhead with an average
of 5.9%.

5 CONCLUSIONS AND FUTUREWORK
This paper presents a software-based solution that mitigates BTB
poisoning by ensuring that all software trains BTB entries to jump
to aligned addresses within the code segment, thereby preventing
malicious branches to arbitrary instructions. By deploying SFI on all
store instructions, we can ensure that the processor never corrupts
the code segment during speculative execution.

In future work, we will complete the Venkman prototype and in-
corporate our work into existing defenses such as Spectre-resistant
SFI [2], providing a complete SFI solution that resists Spectre attacks.
We will also measure the memory overhead induced by Venkman.

REFERENCES
[1] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. 2007.

Secure Virtual Architecture: A Safe Execution Environment for Commodity
Operating Systems. In Proceedings of the 21st ACM SIGOPS Symposium on Op-
erating Systems Principles (SOSP’07). ACM, Stevenson, WA, 351–366. https:
//doi.org/10.1145/1294261.1294295

[2] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya Dwarkadas.
2018. Spectres, Virtual Ghosts, and Hardware Support. In Proceedings of the 7th
International Workshop on Hardware and Architectural Support for Security and
Privacy (HASP’18). ACM, Los Angeles, CA, Article 5, 9 pages. https://doi.org/10.
1145/3214292.3214297

[3] IBM 2018. Power ISA™ Version 2.07 B. IBM.
[4] Intel Corporation 2018. Intel Analysis of Speculative Execution Side Channels. Intel

Corporation. Document Number: 336983-004.
[5] Intel Corporation 2018. Speculative Execution Side Channel Mitigations. Intel

Corporation. Document Number: 336996-003.
[6] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows: At-

tacks and Defenses. arXiv preprint arXiv:1807.03757 (July 2018). arXiv:1807.03757
[7] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
Proceedings of the 40th IEEE Symposium on Security and Privacy (SP’19). IEEE,
San Francisco, CA.

[8] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In Proceedings of the 12th USENIXWorkshop on Offensive Technologies
(WOOT’18). USENIX Association, Baltimore, MD, 12. https://www.usenix.org/
conference/woot18/presentation/koruyeh

[9] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO’04). IEEE Computer Society, Palo Alto, CA, 75–86. http:
//dl.acm.org/citation.cfm?id=977395.977673

[10] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yu-
val Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory
from User Space. In Proceedings of the 27th USENIX Security Symposium (Se-
curity’18). USENIX Association, Baltimore, MD, 973–990. https://www.usenix.
org/conference/usenixsecurity18/presentation/lipp

[11] John Paul Shen andMikkoH. Lipasti. 2013.Modern Processor Design: Fundamentals
of Superscalar Processors (1st ed.). Waveland Press Inc., Long Grove, IL.

[12] Paul Turner. 2018. Retpoline: A Software Construct for Preventing Branch-Target-
Injection. https://support.google.com/faqs/answer/7625886.

[13] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native Client:

https://doi.org/10.1145/1294261.1294295
https://doi.org/10.1145/1294261.1294295
https://doi.org/10.1145/3214292.3214297
https://doi.org/10.1145/3214292.3214297
http://arxiv.org/abs/1807.03757
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://support.google.com/faqs/answer/7625886


A Sandbox for Portable, Untrusted x86 Native Code. In Proceedings of the 30th
IEEE Symposium on Security and Privacy (SP’09). 79–93. https://doi.org/10.1109/
SP.2009.25

https://doi.org/10.1109/SP.2009.25
https://doi.org/10.1109/SP.2009.25

	Abstract
	1 Introduction
	2 Design
	2.1 Restricting Branch Targets to Bundles
	2.2 Speculative Code Segment Integrity

	3 Implementation
	4 Preliminary Results
	5 Conclusions and Future Work
	References

