A gap I left in my presentation on eager evaluation of SMT was an example of translating from F_{arith} (that is, our integer linear program) to F_{bool}. This document will fill that gap, and explain how to translate those inequalities into CNF.

1 SAT Example

Consider the following simple example (all clauses implicitly ANDed together):

\[P \lor (x \leq 4) \]
\[Q \lor (y \leq 3) \]
\[R \lor (x + y \geq 8) \]
\[(x \leq 2) \]

The core idea is that we replace each inequality with a new CNF variable, and then ensure that those variables are true \textit{iff} there exists assignments to the variables such that those inequalities hold.

First we can make the new variables:

\[P \lor A \]
\[Q \lor B \]
\[R \lor C \]
\[D \]

To establish the relationship, we could try to say something like $A \leftrightarrow x \leq 5$, but that puts us back in square 1. But wait – the whole point is that all of these operators are \textit{transitive}, so we can simply phrase things entirely in terms of each other. For example, we know that if $x \leq 2$ then surely $xleq4$. That gives us a clause: $D \rightarrow A$. Not the only one needed, but a starting point.

\[D \rightarrow A: \text{ As stated before, if } x \text{ is less than or equal to } 2, \text{ then it must be less than or equal to } 4. \]
\[A \land B \rightarrow \neg C: \] If both \(x \) and \(y \) are less than 4 and 3, then they could not possible add to something greater than eight. This also captures the idea that if they do exceed 8, then either A or B must be false. After CNF conversion, \(A \land B \rightarrow \neg C \) is the same as \(C \rightarrow \neg A \lor \neg B \).

So our new big pile of CNF statements are as follows:

\[
\begin{align*}
P \lor A \\
Q \lor B \\
R \lor C \\
D \\
\neg D \lor A \\
\neg A \lor \neg B \lor \neg C
\end{align*}
\]

Clearly the original statement was SAT, and this one is no different.

2 UNSAT Example

As a quick example of an UNSAT example, consider the following situation:

\[
\begin{align*}
x \leq 2 \\
x \geq y \\
y \geq 3
\end{align*}
\]

We would re-write the statements as A, B, and C, and then establish the following facts (our translation program knows how to do this by definition):

\[
\begin{align*}
A \land B & \rightarrow \neg C \\
C \land B & \rightarrow \neg A
\end{align*}
\]

We see that those are really the same statement in CNF form: \(\neg A \lor \neg B \lor \neg C \).

We end up with the final CNF:

\[
\begin{align*}
A \\
B \\
C \\
\neg A \lor \neg B \lor \neg C
\end{align*}
\]

This is clearly UNSAT, and intuitively it captures the idea that for the final clause to be satisfied, we would have to ignore at least one of our original inequalities.