
Operating Systems 2/28/2007

CSC 256/456 - Spring 2007 1

2/28/2007 CSC 256/456 - Spring 2007 1

More on Virtual Memory

CS 256/456

Dept. of Computer Science, University of Rochester

2/28/2007 CSC 256/456 - Spring 2007 2

Recap of the Last Class

Virtual memory – separation of user logical memory from
physical memory.

Transparent page sharing:
Copy-on-write: allows for more efficient process creation.

Only part of the program address space needs to be in
physical memory for execution:

Demand paging.
Memory-mapped I/O.

Page replacement algorithm: the algorithm that picks the
victim page.

FIFO, Optimal, LRU.

2/28/2007 CSC 256/456 - Spring 2007 3

Implementations of Page Replacement
Algorithms

FIFO implementation.
LRU implementations:

Time-of-use implementation
Stack implementation

What needs to be done at each memory reference?
What needs to be done at page loading or page
replacement?

2/28/2007 CSC 256/456 - Spring 2007 4

LRU Approximation Algorithms
LRU approximation with a little help from the hardware.

Reference bit
With each page associate a bit, initially = 0
When page is referenced, the bit is set to 1 by the hardware.
Replace a page whose reference bit is 0 (if one exists). We do
not know the order, however.

Second chance
Combining the reference bit with FIFO replacement
If page to be replaced (in FIFO order) has reference bit = 1.
then:

set reference bit 0.
leave page in memory.
replace next page (in FIFO order), subject to same rules.

Also called CLOCK algorithm

Operating Systems 2/28/2007

CSC 256/456 - Spring 2007 2

2/28/2007 CSC 256/456 - Spring 2007 5

LRU Approximation Algorithms
Enhancing the reference bit algorithm:

it would be nice if there is more information about the
reference history than a single bit.
with some more help from software, e.g., a memory reference
counter (in page table entry and TLB)

Maintain more reference bits in software:
at every N-th clock interrupt, the OS moves each hardware
page reference bit (in page table entry and TLB) into a multi-bit
page reference history word (in software-maintained memory).

2/28/2007 CSC 256/456 - Spring 2007 6

Counting-based Page Replacement

Least frequently used page-replacement algorithm
the page with smallest access count (within a period of time) is
replaced

Implementation?

2/28/2007 CSC 256/456 - Spring 2007 7

How much memory does a process need?

Our discussion so far is “Given the amount of memory, what
order should we evict pages?”
Now we look at “How much memory does a process need?”
If a process does not have “enough” pages, the page-fault rate
is very high.

Thrashing ≡ a process is mostly busy with swapping pages.

Amount of memory

pa
ge

-fa
ul

t r
at

e

Thrashing

2/28/2007 CSC 256/456 - Spring 2007 8

Working-Set Model
WSSi (working set of Process Pi) = total number of pages
referenced in the most recent ∆ (working-set window).

data access locality:
working set does not change or changes very slowly over time.
so enough memory for the working set should be good.

How to choose ∆?

Operating Systems 2/28/2007

CSC 256/456 - Spring 2007 3

2/28/2007 CSC 256/456 - Spring 2007 9

Working-Set-Based Memory Allocation

Two components

How much memory does a process need?
try to allocate enough frames for each process’s working set.
if ΣWSSi > m, then suspend one of the processes.
How to determine the working set size over a recent period ∆?

Given the amount of memory, what order should we evict
pages?

LRU and augment (WSClock)

2/28/2007 CSC 256/456 - Spring 2007 10

Pitfall of Working-Set-Based Memory
Allocation

Pitfall:
The working set size is not a good indicator of how much
memory a process “actually” needs.

Example:
Consider a process that accesses a large amount of data over
time but rarely reuses any of them (e.g., sequential scan).
It would exhibit a large working set but different memory
sizes would not significantly affect its page fault rate.

2/28/2007 CSC 256/456 - Spring 2007 11

Other Memory Management Issues

When to swap out pages?

Prepaging
swap in pages that are expected to be accessed in the future

2/28/2007 CSC 256/456 - Spring 2007 12

Segmentation

One-dimensional address
space with growing pieces
At compile time, one table
may bump into another

Segmentation:
generate segmented
logical address at
compile time
segmented logical
address is translated
into physical address at
execution time

Operating Systems 2/28/2007

CSC 256/456 - Spring 2007 4

2/28/2007 CSC 256/456 - Spring 2007 13

Example of Segmentation

2/28/2007 CSC 256/456 - Spring 2007 14

Sharing of Segments

Convenient sharing
of libraries

2/28/2007 CSC 256/456 - Spring 2007 15

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

