Micro-Kernel OS

CS 256/456
Dept. of Computer Science, University of Rochester

Microkernel System Structure

- Microkernel structure:
 - Moves bunch of functionalities from the kernel into "user" space.
 - Tend to have more frequent kernel/user crossings.
- What must be in the kernel and what can be in user space?
 - Protection mechanisms (protecting hardware; protecting user processes from each other).
 - Resource management policies.
 - Examples in memory management, file system, networking, ...
- Benefits:
 - Modular design?
 - More reliable (less code is running in kernel mode).

Most modern OSes fall into this category!

Monolithic System Structure

Interactive User

OS System Call Interface

Libraries Commands Application Programs

Device Driver Device Driver

Monolithic Kernel Module
- Process Management
- Memory Management
- File Management
- Device Mgmt Infrastructure

Most modern OSes fall into this category!

Microkernel OS: Mach

- Mach
 - developed at CMU in late 80s
 - bits/pieces leading to NeXT, the foundation of MacOS 10
- Micro-kernel design
 - OS functionalities are pushed to user-level servers (e.g., user-level memory manager)
 - user-level servers are trusted (often run as root)
 - protection mechanisms stay in kernel while resource management policies go to the user-level servers
User-level Memory Management

- User-level memory management
 - trusted/protected by the kernel
 - kernel provides the basic protection mechanism
 - user-level memory manager handles page loading; decides replacement policy

- Additional inter-domain communication
 - a lot of overhead

Virtual Message Passing

- Virtual message passing
 - mess around with memory map tables (page tables) to speed up message passing

- Must also invalidate relevant TLB entries

Microkernel OS: Exokernel

- Exokernel
 - developed at MIT in early 90s
- Micro-kernel design
 - OS functionalities are pushed to library OSes linked with individual user-level processes (not trusted)

- Benefit as an microkernel:
 - more reliable (less code is running in kernel mode).
- Additional benefits:
 - more secure (less code in trusted mode).
 - more flexibility (different user program can use different VM page replacement policies) ⇒ better performance.

- Problem it introduces?
 - security and isolation

Architecture of Exokernel

- Web browser
- Applications
- Matrix multiplication
- WWW
- TCP/IP
- Library operating systems
- DSM
- IPC
- VM
- Exokernel
- Hardware
 - display buffer
 - TLB/memory
 - Disk
 - Network
 - Security/isolation
Library OS
- The kernel does not trust the library OS
- The library OS trusts the user program; so the library OS can be implemented without the concern of protection
- The library OS and the user program are linked together
 - low cost interaction between them
 - particularly helpful when applications and the OS interact frequently (application-assisted VM page replacement)
- Applications can link with customized library OS
 - flexibility
 - e.g., one process can use LRU page replacement and another can use MRU

The Kernel
- The kernel does not trust the library OS or user processes
 - must decide allocation/binding of resources to different library OSes and user processes
 - must enforce allocation/binding of resources to library OSes and user processes

Memory Management
- Two-level allocation
 - The kernel allocates memory among processes (with library OSes in them)
 - Each library OS (on behalf of respective process) manages memory pages allocated to it
- The kernel enforces allocation among processes
- how does it work (for software-loaded TLBs)?
 - only the kernel can access the TLB, the kernel checks every TLB load to make sure a library OS (or a user process) doesn't access a page that it is not supposed to
 - who maintains the page table?
- how does it work (for hardware-loaded TLBs)?

Summary on Microkernel OS
- Microkernel structure:
 - Moves functionalities from the kernel into "user" space.
- Benefits:
 - More reliable (less code is running in kernel mode)
- Disadvantage on performance:
 - Tend to have more frequent domain crossings.
- Two types of micro-kernels:
 - Running user-level OS in a trusted server – Mach
 - Running user-level OS within untrusted user processes – Exokernel
 - more secure and flexible, but kernel must deal with untrustworthy user-level OS parts
- Why aren’t they taking over the world?