
Request Behavior Variations ∗

Kai Shen

Department of Computer Science, University of Rochester

kshen@cs.rochester.edu

Abstract

A large number of user requests execute (often concurrently) within
a server system. A single request may exhibit fluctuating hardware
characteristics (such as instruction completion rate and on-chip re-
source usage) over the course of its execution, due to inherent vari-
ations in application execution semantics as well as dynamic re-
source competition on resource-sharing processors like multicores.
Understanding such behavior variations can assist fine-grained re-
quest modeling and adaptive resource management.

This paper presents operating system management to track re-
quest behavior variations online. In addition to metric sample col-
lection during periodic interrupts, we exploit the frequent system
calls in server applications to perform low-cost in-kernel sampling.
We utilize identified behavior variations to support or enhance re-
quest modeling in request classification, anomaly analysis, and on-
line request signature construction. A foundation of our request
modeling is the ability to quantify the difference between two
requests’ time series behaviors. We evaluate several differencing
measures and enhance the classic dynamic time warping technique
with additional penalties for asynchronous warp steps. Finally, mo-
tivated by fluctuating request resource usage and the resulting con-
tention, we implement contention-easing CPU scheduling on mul-
ticore platforms and demonstrate its effectiveness in improving the
worst-case request performance.

Experiments in this paper are based on five server applications—
Apache web server, TPCC, TPCH, RUBiS online auction bench-
mark, and a user-content-driven online teaching application called
WeBWorK.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
Process Management—Multiprocessing/multiprogramming/multi-
tasking, Scheduling; D.4.8 [Operating Systems]: Performance—
Measurements, Modeling and prediction

General Terms Design, Experimentation, Measurement, Perfor-
mance, Reliability

Keywords Server system, Request modeling, Operating system
adaptation, Multicore, Hardware counter

∗This work was supported in part by NSF CAREER Award CCF-0448413,
grants CNS-0615045, CCF-0621472, CNS-0834451, and by an IBM Fac-
ulty Award.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

1. Introduction

The characterization of server workload resource consumption is
important for managing behavior in highly interactive and concur-
rent online services. Previous operating system research [10, 26,
32, 35, 36] has proposed software-level techniques to character-
ize resource consumption (mostly CPU usage) and adapt system
management functions. At the same time, prior architectural char-
acterization of online applications [11, 19, 27] advanced the un-
derstanding of lower-level hardware execution characteristics like
instructions per cycle, cache miss rates, and branch prediction ac-
curacy. These characterizations are essential for efficiently utiliz-
ing the increasingly ubiquitous hardware resource-sharing multi-
processors, and for managing rare but important anomalous behav-
iors to achieve high system dependability.

A server system execution is often composed of many concur-
rent requests. Specifically, we define a request or a request exe-
cution as the set of server activities to service a user call, like a
request for retrieving a web object, or a request for processing an
e-commerce transaction. The execution of a single request typically
consumes a fraction of a second in CPU time. However, there may
exist large variation of hardware characteristics during its course.
A fine-grained characterization of such variation may lead to en-
hanced modeling and better management of a server application.
The request behavior variation patterns are particularly interesting
on multicore platforms. On the one hand, the inter-core resource
sharing obfuscates the request execution performance, leading to
increased behavior variation. On the other hand, request behavior
variations motivate adaptive resource management for better shar-
ing on multicores.

This paper characterizes request behavior variations by collect-
ing per-request hardware performance counter metrics during real-
istic executions of server applications. We explore operating system
(OS)-level techniques to track such variations online. In addition
to metric sample collection during periodic interrupts, we exploit
the frequent system calls in server applications to perform low-cost
in-kernel sampling. Further, the semantics of system call events al-
low some to act as signals for impending behavioral transitions,
leading to cost-effective targeted sampling. Our approach functions
transparently at the OS (i.e., requiring no change in software ap-
plications and no special assistance in the hardware). Transparent
system management provides more general applicability and it is
essential for third-party management environments such as service
hosting platforms.

Online tracking of request hardware behavior variations can en-
able new and improve existing fine-grained server system request
modeling. The variation pattern represents a strong request signa-
ture that is more descriptive than the average metric value [27].
Compared to software metric-only online request modeling [10],
the information of hardware behavior variations is essential to cap-
turing dynamic hardware resource competition on resource-sharing
processors like multicores. Specifically, this paper demonstrates
that our modeling helps classify requests into groups with common

variation patterns, and at the same time detect anomalous patterns
linked to worst-case performance and resource competition. It can
also support better online request identification and resource usage
prediction.

Further, it is known that different pairings of tasks on resource-
sharing multiprocessors may result in unequal levels of resource
contention and thus differences in performance. Previous research
has proposed contention-easing CPU scheduling for non-server ap-
plications [14, 24, 31] or treating the whole server application as
a scheduling unit [15, 38]. However, adaptive resource scheduling
within a single server application can exploit fine-grained workload
behavior variations. Request behavior variations identified in our
research present an important foundation for such adaptive schedul-
ing.

Our study on request behavior variations is reminiscent of the
body of past work on application phase identification and recog-
nition [12, 13, 17, 29, 30]. However, server applications possess
different workload features from those of technical computing and
workstation applications. In particular, frequent network and I/O
operations and the increasingly componentized server architec-
tures, coupled with high execution concurrency and frequent con-
text switches, result in behavioral fluctuations that may not form
long stable phases. Further, our work targets OS-level system man-
agement requiring no change in software applications or special
hardware assistance. We only utilize control mechanisms and in-
formation available to the OS.

The rest of this paper is organized as follows. Section 2 pro-
vides an empirical characterization of request behavior variations
using realistic executions of several server applications. Section 3
presents our operating system-level approach to track request exe-
cution behavior variations online. Section 4 demonstrates promis-
ing utilization cases of variation-driven request modeling. Section 5
then examines contention-easing CPU scheduling, showing both
positive and negative results. Section 6 discusses previous work
related to ours. Finally, Section 7 concludes the paper with a sum-
mary of findings.

2. Empirical Request Behavior Variations

We characterize request behavior variations by collecting per-
request hardware performance counter metrics during realistic ex-
ecutions of several server applications. We pay attention to both
behavior variations across different requests (inter-request varia-
tions) and variations over the course of individual request execu-
tions (intra-request variations). We are also interested in the impact
of multicore platforms on request behavior variations. This empir-
ical characterization serves as both background and motivation for
the rest of the paper.

2.1 Empirical Setup and Statistics Collection Methodology

Our empirical evaluation employs the following server applica-
tions:

• Web server. We run the Apache 2.2.3 web server. As the work-
load, we set up the static content portion of the SPECweb99
benchmark [4]. It contains four classes of files with sizes rang-
ing from 100 bytes to 900 KB. The total dataset size in our
workload setup is 200MB.

• TPCC [5] simulates a population of terminal operators execut-
ing Order-Entry transactions against a database. It contains five
types of transactions: “new order”, “payment”, “order status”,
“delivery”, and “stock level”, constituting 45%, 43%, 4%, 4%,
and 4% of all requests, respectively. The workload runs on the
MySQL 5.0.18 database with the InnoDB storage engine.

• TPCH [6] is a database-driven decision support benchmark.
The TPCH workload consists of 22 complex SQL queries.
Some queries require an excessive amount of time to finish and
thus they are not appropriate for interactive server workloads.
We choose a subset of 17 queries in our experimentation: Q2,
Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q11, Q12, Q13, Q14, Q15, Q17,
Q19, Q20, and Q22. Our synthetic workload contains an equal
proportion of requests of each query type. We chose a dataset
scaling factor to generate a dataset of 361MB. TPCH runs on
the MySQL 5.0.18 database.

• RUBiS [3] is a J2EE-based multi-component online service that
implements the core functions of an auction site including sell-
ing, browsing, and bidding. It uses a three-tier service model,
containing a front-end web server, a back-end database, and
nine business logic components implemented as Enterprise Java
Beans. RUBiS runs on the JBoss 3.2.3 application server with
an embedded Tomcat 5.0 servlet container. The back-end is
powered by the MySQL 5.0.18 database with a hosted dataset
of 1,038MB.

• WeBWorK [7, 33] is a web-based application that allows teach-
ers to post math or physics problems for their students to
solve online. In particular, teacher-supplied WeBWorK prob-
lems are interpreted by the application server as content-
generating scripts. It is unique from traditional web applications
in its collaborative content—considered by some a distinctive
“Web 2.0” feature. Specifically, its request processing is heavily
dependent on content supplied by end users—teachers in this
case. Our WeBWorK installation runs Apache 2.2.8 web server,
a variety of Perl PHP modules, and the Moodle course man-
agement system [2]. Our empirical examination is driven by
around 3,000 teacher-created problem sets (ranging from pre-
calculus to differential equations) and user requests extracted
from system logs at the real site.

Our set of applications are good representations of many of to-
day’s online services. They include a variety of typical online ser-
vice components and they possess a wide range of request process-
ing complexities from simple file retrieval in web server to complex
multi-stage processing in RUBiS and WeBWorK. Several applica-
tions (TPCC, TPCH, and RUBiS) involve significant database op-
erations while the web server and WeBWorK employ little or no
database processing.

We performed experiments on a machine with two dual-core
(four cores total) Intel Xeon 5160 3.0GHz “Woodcrest” processors.
Two cores on each processor share a single 4MB L2 cache (16-way
set-associative, 64-byte cache line, 14 cycles latency, writeback).
The whole machine contains 2GB memory. Each processor core
is equipped with two general-purpose performance event counter
registers in addition to two fixed counters [1]. The two fixed coun-
ters record the number of CPU cycles (when the CPU is in non-halt
state) and the number of retired instructions. Each of the general-
purpose counters can be configured to track a variety of hardware
events including references and misses to level-1/level-2 caches,
memory bus cycles and bus transactions, floating-point operations,
branch instructions and mis-predicted branches.

We run the Linux 2.6.18 operating system with kernel instru-
mentation for statistics collection and request context construction.
A request may not execute continuously on a CPU in a concurrent
server environment. Further, a request may propagate over multi-
ple server modules in a multi-stage server system. In order to ac-
curately account for each request’s CPU execution periods, we in-
strument the operating system to track request context switches on
CPUs and context propagations through inter-process communica-
tions (particularly socket operations). Details of our request context
maintenance mechanism were presented in a prior paper [27, Sec-

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

← 90%tile

Cycles per instruction

P
ro

b
.

fo
r

0
.1

−
w

id
th

 b
in

s

Web server (1−core)

1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

← 90%tile

Cycles per instruction
P

ro
b

.
fo

r
0

.0
5

−
w

id
th

 b
in

s

TPCC (1−core)

1 2 3 4 5
0

0.1

0.2

0.3

0.4
← 90%tile

Cycles per instruction

P
ro

b
.

fo
r

0
.1

−
w

id
th

 b
in

s

TPCH (1−core)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

← 90%tile

Cycles per instruction

P
ro

b
.

fo
r

0
.2

−
w

id
th

 b
in

s

RUBiS (1−core)

1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

← 90%tile

Cycles per instruction

P
ro

b
.

fo
r

0
.0

2
−

w
id

th
 b

in
s

WeBWorK (1−core)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

← 90%tile

Cycles per instruction

P
ro

b
.

fo
r

0
.1

−
w

id
th

 b
in

s

Web server (4−core)

1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

← 90%tile

Cycles per instruction

P
ro

b
.

fo
r

0
.0

5
−

w
id

th
 b

in
s

TPCC (4−core)

1 2 3 4 5
0

0.1

0.2

0.3

0.4
← 90%tile

Cycles per instruction

P
ro

b
.

fo
r

0
.1

−
w

id
th

 b
in

s

TPCH (4−core)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

← 90%tile

Cycles per instruction

P
ro

b
.

fo
r

0
.2

−
w

id
th

 b
in

s

RUBiS (4−core)

1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

← 90%tile

Cycles per instruction

P
ro

b
.

fo
r

0
.0

2
−

w
id

th
 b

in
s

WeBWorK (4−core)

Figure 1. An illustration on multicore performance obfuscation in terms of request CPI distributions. The first row illustrates the 1-core
serial execution performance while the second row shows the 4-core concurrent execution performance. Two figures in each column have
the same X/Y-axis scales for easy comparison on the same application. On each plot, we mark the 90-percentile value for the request CPI
distribution.

tion 4.1]. With collected hardware counter metrics for many execu-
tion periods that belong to a request, we finally serialize them into
a continuous request execution timeline.

2.2 Inter-Request Request Variations

Figure 1 shows the distribution of per-request CPU cycles per
instruction (CPI) for each of the five server applications. The per-
request CPI is calculated by dividing a request’s total CPU cycles
over its total retired instruction count. We show the distributions
for both 1-core serial executions and 4-core concurrent executions.
Under the serial execution, requests for each application exhibit
tightly clustered CPI metric. The TPCC distribution shows multiple
clusters due to several distinctive transaction types.

Under the multicore concurrent executions, we observe that the
request performance is generally much less clustered while the
peak-level request CPI (like the 90-percentile values marked in
Figure 1) becomes significantly worse for many applications. This
is because inter-core resource sharing on multicores obfuscates
the request execution performance, leading to increased behavior
variations. We notice that the effect of such multicore performance
obfuscation is application-dependent. In particular, it doubles the
90-percentile CPI for TPCH while WeBWorK sees no significant
impact.

Note that the experimentation of 1-core serial executions is only
used here for the comparison purpose. Experiments for the rest
of the paper all employ concurrent executions on the full 4-core
machine.

2.3 Intra-Request Behavior Variations

In addition to the behavior variations across different requests, an
individual request’s execution may also exhibit varying behaviors
over its course. We show examples of realistic intra-request met-
ric variation patterns. With one representative request from each
of the five server applications, Figure 2 illustrates request behavior
variations in terms of CPU cycles per instruction, L2 cache refer-
ences per instruction (indicating the usage of shared resource), and
L2 misses per reference (indicating the performance on shared re-
source). In general, we see significant metric variations over the
course of request executions.

Previous research [13, 17, 30] has shown that applications ex-
ecute as a series of phases with relative homogeneous behavior

within each phase. Specifically they have identified stable phases
at the granularity of 10 million instructions or larger for a num-
ber of technical computing and workstation workloads. Long sta-
ble phases, however, are not common for server applications. For
instance, the later portion of the WeBWorK request exhibits un-
stable CPI variations. This is probably due to the large number of
fine-grained Perl PHP modules that the request executes through—
a feature commonly seen in today’s componentized server archi-
tectures. Further, short requests like those of the web server natu-
rally possess very fine-grained variation patterns. Finally, the high
request concurrency and frequent context switches in server execu-
tions can lead to fluctuating hardware characteristics, particularly
on resource-sharing platforms like multicores.

Request behavior variations bring challenges for their charac-
terization and identification, but they also present opportunities for
workload modeling and resource scheduling. Our results motivate
the development of techniques to track request variation patterns
and utilize them in adaptive system management.

3. Identification of Request Behavior Variations

Request behavior variations may support online system manage-
ment as well as offline request modeling. In both cases, such be-
havior characteristics need to be captured online in realistic pro-
duction environments. This section presents operating system-level
management to track fine-grained request behavior variations. Our
management can only utilize control mechanisms and information
available to the OS. Compared to architecture-level approaches,
the OS-level technique can be more easily applied in commodity
systems. Compared to compiler or language-level approaches, OS
management requires no change in application binary or need for
re-compilation. However, the operating system management may
incur high overhead due to expensive user/kernel domain switches.
Our goal is to devise a cost-effective approach suitable for online
operations.

3.1 Online Event Sampling

During the course of a request execution, our system samples cu-
mulative processor hardware event counters including elapsed CPU
cycles, retired instructions, L2 cache reference counts, and L2
misses. It samples at multiple moments and calculates the counter

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

5

C
y
c
le

s
/i
n

s
.

A web server request

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

L
2

 r
e

fe
re

n
c
e

s
/i
n

s
.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.05

Progress of request execution (in millions of instructions)

L
2

 m
is

s
 r

a
ti
o

0 1 2 3 4
0

5

C
y
c
le

s
/i
n
s
.

TPCC "new order" transaction

0 1 2 3 4
0

0.1

L
2
 r

e
fe

re
n
c
e
s
/i
n
s
.

0 1 2 3 4
0

0.05

0.1

Progress of request execution (in millions of instructions)

L
2
 m

is
s
 r

a
ti
o

0 10 20 30 40 50 60 70 80
0

2

C
y
c
le

s
/i
n
s
.

TPCH Q20

0 10 20 30 40 50 60 70 80
0

0.02

L
2
 r

e
fe

re
n
c
e
s
/i
n
s
.

0 10 20 30 40 50 60 70 80
0

0.1

Progress of request execution (in millions of instructions)

L
2
 m

is
s
 r

a
ti
o

0 1 2 3 4 5
0

5

C
y
c
le

s
/i
n

s
.

RUBiS SearchItemsByCategory "Antiques&Art"

0 1 2 3 4 5
0

0.05

0.1

L
2

 r
e

fe
re

n
c
e

s
/i
n

s
.

0 1 2 3 4 5
0

0.1

Progress of request execution (in millions of instructions)

L
2

 m
is

s
 r

a
ti
o

0 100 200 300 400 500 600
0

2

4

C
y
c
le

s
/i
n
s
.

A WeBWorK request

0 100 200 300 400 500 600
0

0.05

L
2
 r

e
fe

re
n
c
e
s
/i
n
s
.

0 100 200 300 400 500 600
0

0.2

Progress of request execution (in millions of instructions)

L
2
 m

is
s
 r

a
ti
o

Figure 2. Examples of behavior variations within a single request execution (one example for each of the five applications). Variations on
CPU cycles per instruction, L2 cache references per instruction, and L2 miss ratio (L2 misses per reference) are shown for each request. Note
that the request lengths of different applications are at different scales. In particular, a web server request typically executes a few hundred
thousand instructions while a WeBWorK request may execute as many as 600 million instructions.

metric for each period between consecutive sampling. To main-
tain per-request event metrics, we sample the counter values at
the request context switch time to properly attribute the before-
switch and after-switch event counts to the respective requests. Re-
quest context switches may occur at CPU context switches between
different threads/processes. It also occurs when a request’s host
thread/process changes (e.g., when it moves from the web server
to the database server in a multi-stage processing) [27].

In addition to sampling at request context switches, further
sampling is needed to capture fine-grained behavior variations.
In particular, the OS can sample counter values at periodic inter-
rupts. On our Intel processors, the CPU-local APIC allows event
counter overflow interrupts on an arbitrary overflow threshold of
CPU cycle count. We can generate periodic interrupts at very fine
granularities—theoretically only limited by the system’s ability of
processing the interrupts, and practically up to once per ten mi-
croseconds in our experiments.

Overhead and Observer Effect Hardware counter sampling in-
curs overhead to the system. At the same time, the sampling op-
eration produces additional processor events that do not belong to
the inherent application behaviors. This effect, called the observer
effect, leads to perturbation to collected counter metrics. Therefore
it is important to understand the event sampling overhead and miti-
gate the observer effect. In our system, the sampling cost is mostly
due to the tasks of reading the counter values and updating cumula-
tive statistics (on per-CPU and per-request basis) in memory. Com-
pared to in-kernel counter sampling (e.g., during request context
switches), interrupt-driven counter sampling incurs higher cost in
additional user/kernel domain switching.

The exact cost and event count impact of hardware counter
sampling depend on the dynamic cache state pollution by the run-

ning workload. We assess the range of such effects using two
microbenchmarks. The first, called Mbench-Spin, spins the CPU
with almost no data access. The second, called Mbench-Data, re-
peats a procedure of sequentially accessing 16MB data in mem-
ory. Mbench-Spin exhibits minimum cache state pollution while
Mbench-Data very quickly replaces the entire cache state. Ta-
ble 1 shows the measured per-sampling average cost and additional
counter events under different situations. Note that the L2 cache
reference metric is an indirect indication of L1 cache misses.

To mitigate the observer effect in our statistics collection, we
subtract the measured event count of each sampling period by the
sampling-induced additional event count. One challenge is that
the sampling cost and effect on cache performance events can
be workload-dependent (see the different results on the two mi-
crobenchmarks in Table 1). While it is difficult to pinpoint the exact
sampling observer effect for a given running workload, we follow
a “do no harm” principle by subtracting the minimum observer ef-
fect (that of running Mbench-Spin in our case). Since this approach
never over-compensates, it should always lead to better or equal
accuracy than the originally collected statistics.

Results on Captured Variations We use the metric of coefficient
of variation to quantitatively assess captured request behavior vari-
ations. Specifically, consider a set of n execution periods of lengths
t1, · · · , tn. The measured metric values for these periods are x1,
· · · , xn, respectively. Also let x̄ be the overall metric value for the
whole execution. Then:

Coefficient of variation =

r

P

n
i=1

ti·(xi−x̄)2
P

n
i=1

ti

x̄
(1)

Here the inter-request coefficient of variation is calculated when
we assume each request exhibits a uniform metric value over its

Hardware counter sampling at an in-kernel context

Workload Time Additional hardware event count
cost Cycles Inst. L2 ref. L2 miss

Mbench-Spin 0.42µs 1,270 649 N/M N/M
Mbench-Data 0.46µs 1,374 649 13 N/M

Hardware counter sampling at an interrupt

Workload Time Additional hardware event count
cost Cycles Inst. L2 ref. L2 miss

Mbench-Spin 0.76µs 2,276 724 N/M N/M
Mbench-Data 0.80µs 2,388 734 12 N/M

Table 1. Per-sampling average cost and additional event counts.
We show results for sampling at an in-kernel context (like during a
context switch) and sampling at an APIC interrupt. We also show
results for two running workloads with different cache pollution
effects. “N/M” means we see no measurable effect. Measurements
were done in the Linux 2.6.18 on an Intel Xeon 5160 3.0GHz
“Woodcrest” processor.

execution (i.e., a full request execution counts as a unit period
in the above definition). To also consider the intra-request metric
variation, we sample the metric values at multiple execution pe-
riods during each request execution. In order to acquire sufficient
request-level statistics, we sample more frequently for applications
with finer-grained requests. Specifically, we sample once per mil-
lisecond for long-request applications including TPCH and WeB-
WorK. For TPCC and RUBiS, we sample more frequently at once
per 100microseconds. For the web server with shortest requests,
we sample once per 10microseconds.

Figure 3 illustrates the captured inter-request and intra-request
variations on three processor metrics. We observe that the consider-
ation of intra-request behavior fluctuations leads to much stronger
metric variations for most applications except TPCH. In TPCH, a
request typically applies a specific SQL query on a long sequence
of data, resulting in uniform behaviors over the course of its exe-
cution. In the other four applications, however, a request’s behav-
ior may vary significantly during execution. Capturing such intra-
request variations is essential for request modeling and adaptive
system management.

3.2 System Call-Triggered Sampling

An interrupt processing involves an expensive kernel domain trap.
Table 1 shows that this leads to more than 1,000 additional CPU cy-
cles on our experimental platform. We can avoid the additional do-
main switch cost if we sample the processor hardware event counter
values when the system already executes in the kernel domain. In
particular, cheaper in-kernel sampling can be performed during sys-
tem calls. This idea is reminiscent of the Soft Timers technique [9]
that utilizes system call-driven device polling to replace expensive
network interface interrupts.

System Call Occurrences In Server Applications Unlike the pe-
riodic interrupts, the OS does not have direct control of the oc-
currence patterns of system calls. A low system call frequency in a
server workload could limit the effectiveness of system call-context
event sampling. To understand this, we measure the cumulative
probability for the distribution of next system call distances in our
applications. Specifically, the cumulative probability at the distance
D is defined as the probability that from an arbitrary instant in a re-
quest execution, the next system call would occur in no more than
distance D. A low probability would indicate long periods of exe-
cution without system calls.

Web server TPCC TPCH RUBiS WeBWorK
0

0.2

0.4

0.6

0.8

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n

Captured variation on CPU cycles per instruction

Only inter−request variations

With additional intra−request variations

Web server TPCC TPCH RUBiS WeBWorK
0

0.2

0.4

0.6

0.8

1

1.2

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n

Captured variation on L2 references per instruction

Web server TPCC TPCH RUBiS WeBWorK
0

0.3

0.6

0.9

1.2

1.5

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n

Captured variation on L2 cache misses per reference

Figure 3. Captured request behavior variations on three metrics—
CPU cycles per retired instruction, L2 cache references per instruc-
tion, and the L2 misses per reference. For each metric, we show
the inter-request metric variations and the metric variations when
intra-request behavior fluctuations are also considered.

Figure 4 shows the distribution of next system call distances in
both time and the instruction count. We observe that system calls
are very frequent in the web server, TPCH, and RUBiS, due to a
large number of network and storage I/O operations. The compo-
nentized server architecture in RUBiS also results in additional sys-
tem calls. Specifically, the probabilities for the next system call to
occur within 16microseconds from an arbitrary instant are 97%,
83%, and 72% for the three applications respectively.

On the other hand, Figure 4 shows that WeBWorK exhibits rel-
atively long system-call-free executions due to its CPU-intensive
content generations (math computation and graphics rendering)
that make few system calls. TPCC also exhibits long system-call-
free executions as the result of its compute-intensive query process-
ing. But even for these two applications, there are high chances to
see a system call within one millisecond from an arbitrary instant
of execution. The specific probabilities are 82% and 81% for TPCC
and WeBWorK respectively.

Approach and Overhead Evaluation Frequent system calls in
many server applications indicate that they can support very fine-
grained in-kernel event sampling. On the other hand, it is unnec-
essary to sample at every system call which could lead to exces-
sive overhead. Further, since applications sometimes exhibit long

4 16 64 256 1K 4K 16K
0%

20%

40%

60%

80%

100%

Time in microseconds

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

(A) Distribution of distances in time

Web server

TPCC

TPCH

RUBiS

WeBWorK

4 16 64 256 1K 4K 16K
0%

20%

40%

60%

80%

100%

In thousand instructions

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

(B) Distribution of distances in instruction count

Figure 4. Cumulative probability plot for the distribution of next
system call distances in time (A) and in instruction count (B). Note
that the X-axis is in the logarithmic scale.

system-call-free executions, it is important to cover these execution
periods with a backup interrupt-based sampling scheme.

Specifically, our system call-triggered sampling works as fol-
lows. When a request is switched in for execution, we sample the
processor event counters and set a timer for an interrupt-based sam-
pling at Tbackup int from now. At the kernel entrance of each system
call, we check whether the elapsed time from the last sampling is at
least Tsyscall min. If so, we perform a new sampling and reset the in-
terrupt timer at Tbackup int from now. In our approach, the backup in-
terrupt delay Tbackup int is substantially larger than the minimum sys-
tem call delay Tsyscall min so that no interrupts actually occur when
system calls are frequent.

We compare the overhead of our system call-triggered proces-
sor counter sampling with the interrupt-based sampling approach
described in Section 3.1. For fair comparison, we set Tbackup int

and Tsyscall min carefully for each application such that our system
call-triggered sampling generates similar overall sampling frequen-
cies as the interrupt-based approach does. We also verify that the
two approaches capture similar levels of request behavior varia-
tions. We estimate the sampling overhead for each experiment in
the following way. We first count the in-kernel and interrupt-based
counter samples that are needed for capturing request behavior vari-
ations during experimentation. We then compute the total overhead
using the measured per-sample costs in Table 1 (that of Mbench-
Spin). Figure 5 shows the overhead comparison results on the five
applications. Compared to the interrupt-based sampling, the system
call-triggered processor counter sampling saves 18–38% overhead
for these applications.

Behavior Transition Signals For the purpose of capturing re-
quest behavior variations, it is more cost-effective to perform sam-
pling at targeted opportunities that are more correlated with request
behavior transitions (e.g., a change from low CPI to high CPI).
Application-issued system calls are an integral part of the appli-
cation semantics and it is intuitive to expect that some system calls
may serve as signals for impending behavior transitions. We study

Web server TPCC TPCH RUBiS WeBWorK
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 s

a
m

p
lin

g
 c

o
s
t

5.81% 0.40% 0.02% 0.37% 0.07%

Interrupt−based sampling

System call−triggered sampling

Figure 5. The overhead comparison of the system call-triggered
processor counter sampling (Section 3.2) and the interrupt-based
sampling (Section 3.1). The shown overhead is normalized to that
of interrupt-based sampling approach for the respective application.
We also mark the base costs (in the percentage of CPU consump-
tion) of the interrupt-based sampling on top of corresponding bars.
The base costs vary substantially across the five applications since
they have different request granularities and employ different sam-
pling frequencies (from once per 10microsecond to once per mil-
lisecond) as described in Section 3.1.

Web server
System call name CPI change

writev Increase 3.66±2.27
lseek Decrease 1.99±2.42
stat Decrease 1.39±1.57
poll Increase 1.22±2.17
shutdown Increase 0.82±2.35
read Increase 0.61±2.30
open Decrease 0.14±1.38
write Decrease 0.11±2.06

Table 2. Example mappings from system call names to the change
of CPI over the 10-microsecond periods before and after the system
call. The CPI changes are shown in average ± standard deviation.
These examples are for Apache web server.

an enhancement of our approach that only samples processor coun-
ters at system calls that are likely to signal request behavior transi-
tions.

During an online training process, at each moment of a system
call, we map the system call name to the change of target execu-
tion metric over certain periods before and after the moment. While
system calls of a specific name may be observed many times dur-
ing execution, we continuously maintain the average and standard
deviation of metric changes for it. The metric change average indi-
cates the significance of subsequent behavior transitions while the
standard deviation indicates their uniformity. As examples, Table 2
lists some mappings from system call names to subsequent changes
in CPU cycles per instruction (CPI) for Apache web server. We can
understand some of the system call-signaled CPI changes through
the application semantics. For instance, the writev system call en-
trance signals the start of writing HTTP headers, which apparently
exhibits high CPIs (probably due to its fragmented piecemeal ac-
cesses to memory). Consequently, the writev system call entrance
typically signals a substantial increase of the CPI metric in Apache
web server.

Based on these results, we choose a subset of the system calls
that are most correlated with request behavior transitions and only

use them as triggers for processor counter sampling. Specifically
for the web server example, we select the following system call
triggers: writev, lseek, stat, and poll. We compare the cap-
tured CPI variations using the enhanced sampling approach and
the original system call-triggered sampling. Since the enhanced ap-
proach uses a subset of targeted system calls, for fair comparison,
we set a smaller Tsyscall min for this approach so that the two ap-
proaches generate similar overall sampling frequencies (and there-
fore incurring similar sampling costs). Results show that our en-
hanced sampling approach using behavior transition signals im-
proves the captured request behavior variation—specifically, the
coefficient of variation for the produced samples (defined in Equa-
tion 1) increases from 0.60 to 0.65.

Our approach is simplistic in that it only uses the system call
name as behavior transition signals. For a long request in which
system calls of the same name may occur many times in different
semantic contexts, it is unlikely for a system call name to consis-
tently signal strong request behavior transitions. Consequently this
approach is less effective for the other four applications (beyond
the web server) with much longer requests. Possible improvements
to our approach include employing more complex signals like a se-
quence of two or more recent system call names and system call
caller addresses within the application. We do not investigate these
improvements in this paper. Nevertheless, our work on the web
server case study demonstrates the promises of system calls as be-
havior transition signals.

4. Variation-Driven Request Modeling

Identified request behavior variations can enable new and improve
existing server system management functions. We provide case
studies on practical variation-driven server system management.
This section presents our results of fine-grained request behavior
modeling. Section 5 describes our study of adaptive scheduling that
eases resource usage contention on multicores.

In a server system, online continuous collection of per-request
information can help construct workload models, classify work-
load patterns, and support performance projections. For instance,
grouping similar requests into clusters helps understand the pro-
portion of requests with different levels of resource consumption,
which consequently enables offline performance projection on new
processor/memory platforms. Capturing different request execution
patterns may also support the detection of anomalous behaviors.
Further, identifying a request online can help predict its property
such as CPU consumption, and consequently enable adaptive re-
quest management.

4.1 Request Differencing

A key foundation for request modeling is the ability to quantify
the difference between two requests. In Magpie [10], requests are
identified using software event sequences (such as system calls)
while the difference of two requests is quantified as Levenshtein’s
string edit distance [21] between their respective event sequences.
More specifically, the difference is quantified as the minimum
number of insertion, deletion, or substitution operations needed to
transform one event sequence into the other.

In our past work [27], we construct request signatures using av-
erage metric values over request executions. Then the difference
of two requests is simply quantified as the difference of their av-
erage metric values. Fine-grained request variation patterns (in the
form of time-ordered varying metric values) represent a more pre-
cise form of request signatures. To effectively utilize such informa-
tion, we need a measure that quantifies the difference between two
ordered sequences of varying metric values.

A simple way to quantify the difference of two sequences of
values is to compute their L1 distance. Consider a time-ordered

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

Progress of request execution (in millions of instructions)

C
y
c
le

s
 p

e
r

in
s
tr

u
c
ti
o
n

One TPCC request Another TPCC request

Figure 6. An example of two inherently similar TPCC requests
whose executions drift apart slightly (with shifted peak points) after
about 800,000 instructions.

sequence of measured metric values for request X to be x1, · · · ,
xm. Each value in the sequence is measured for a fixed-length
period (the length can be in time or in the number of executed
instructions). Let the sequence for another request Y be y1, · · · ,
yn. We define the two requests’ L1 distance to be:

L1 distance(X ,Y) =

2

4

min{m,n}
X

i=1

|xi − yi|

3

5 + |m − n| · p (2)

Here p is the penalty for unequal request lengths. We set the penalty
using a peak-level metric difference for the application. Specifi-
cally, we set it as the 99-percentile value of the distribution of met-
ric differences at two arbitrary points of application execution.

However, the L1 distance may over-estimate the difference of
two requests whose execution progresses slightly drift apart from
each other. This may happen due to differing runtime environments
like cache or lock contention. Further, inaccuracies in the per-
request metric collection (e.g., failure of maintaining proper request
context in some cases [27, Section 4.1]) can lead to the appearance
of time shifting between two requests’ metric value sequences.
Figure 6 illustrates an example of two inherently similar TPCC
requests whose executions drift apart slightly after about 800,000
instructions.

The dynamic time warping is an approach to address the time
shifting problems in time series comparisons. It was first proposed
in automatic speech recognition [23, 25] and was more recently
used in the alignment of computer system execution traces [16]. In
our problem context, the dynamic time warping distance between
two requests’ metric value sequences can be understood as follows.
For each request, we maintain a pointer that points to an element
in the request’s metric value sequence. A warp path w is defined
as a series of steps of pointer moves. Formally, after the i-th warp
step, let w(X , i) be the index location of the request X pointer and
let w(Y, i) be that of the request Y pointer. Also let w(X , 0) and
w(Y, 0) be the initial index locations of the two pointers. A valid
s-step warp path must satisfy the following conditions:

• The two pointers initially point to the beginning of respective
requests. In other words, w(X , 0) = 1 and w(Y, 0) = 1.

• The two pointers finally move to the end of respective requests.
In other words, w(X , s) = m and w(Y, s) = n.

• Two kinds of warp steps are allowed. First, both pointers can
move to the next element in respective request sequences—
w(X , i + 1) = w(X , i) + 1 and w(Y, i + 1) = w(Y, i) + 1.
We call this a synchronous warp step. Alternatively, one pointer
may move to the next element in its request sequence while the

other pointer remains unmoved. We call this an asynchronous
warp step.

The distance of a warp path is defined as the sum of the metric
differences at the two pointer locations over all warp steps, or:

Distance of warp path w =
s

X

i=0

|xw(X ,i) − yw(Y,i)|. (3)

Finally, the overall dynamic time warping distance is the minimum
distance of all valid warp paths for the two requests. This can be
solved using dynamic programming. The complexity of its compu-
tation is O(m · n), which is far higher than the O(max{m, n})
complexity for the L1 distance computation.

The asynchronous warp steps allow the time shifting (like the
example illustrated in Figure 6) without the cost of adding to the
distance measure. This can address the over-estimation of the L1
distance. However, we find that such asynchronous warp steps can
significantly under-estimate request differences through no-cost
time shifting. Therefore we also consider a variant of the dynamic
warping distance by applying a penalty for each asynchronous warp
step. In practice, we set this penalty the same as the penalty for
unequal request lengths in the L1 distance (or p in Equation 2).

So far we have described several alternative approaches for
quantifying the difference between requests. We will compare their
effectiveness in classifying similar requests into groups, presented
in the next subsection.

4.2 Request Classification

The request metric variation patterns can serve as a form of sig-
natures which allow us to classify requests into groups with simi-
lar patterns. Such classification can help workload characterization
and performance prediction. In addition, the classification may un-
cover a small number of requests that do not share common execu-
tion behaviors.

A frequently used clustering algorithm is the k-means algorithm—
it iteratively classifies requests into groups so that each group mem-
ber is closer to the group mean than to the mean of any other group.
However, the mean of a set of request variation patterns is not
well defined. Therefore we employ a modified algorithm called k-
medoids [18]. In this approach, a cluster centroid request replaces
the cluster mean at each round of the k-means processing. We de-
fine the cluster centroid as the request whose sum of distances to
all other cluster members is the minimum.

Following our algorithm, we created request clusters for all five
applications. In this case study, we set the cluster number k at
10. We used a number of request differencing measures described
earlier in Section 4.1, including Levenshtein’s string edit distance
of request system call sequences, the difference of average request
metric values, the L1 distance of request metric value sequences,
the dynamic time warping distance, and the dynamic time warping
distance with enhanced penalties for asynchronous warping steps.
Under each approach, we measure the request classification quality
in terms of how closely cluster members resemble the respective
cluster centroids.

Specifically, below we define cluster members’ divergence
from centroids in the request CPU execution time. Consider a
request with CPU time Cr and its cluster centroid with CPU
time Cc. The request’s divergence from its centroid is defined as
|Cr−Cc|

Cc
× 100%. Such divergence from centroid, averaged over

all requests, are shown in Figure 7(A) for all comparison cases.
Similarly, Figure 7(B) shows the comparison results for another re-
quest property—the request peak (90-percentile) CPI. These results
allow us to make following observations:

• Compared to other approaches, the dynamic time warping with
enhanced penalties for asynchronous warp steps achieves high

Web server TPCC TPCH RUBiS WeBWorK

20%

40%

60%

80%

100%

D
iv

e
rg

e
n
c
e
 f
ro

m
 c

e
n
tr

o
id

(A) Classification quality on request CPU execution time

Levenshtein distance of request system call sequences

Difference of average request CPIs

L1 distance of request CPI variations

Dynamic time warping of request CPI variations

Dynamic time warping with asynchrony penalty

Web server TPCC TPCH RUBiS WeBWorK

10%

20%

30%

40%

50%

D
iv

e
rg

e
n
c
e
 f
ro

m
 c

e
n
tr

o
id

(B) Classification quality on request 90−percentile CPI

Figure 7. Request classification effectiveness when using differ-
ent request differencing measures. The classification quality is
measured as cluster members’ divergence from respective clus-
ter centroids. Such divergence can be defined on different re-
quest properties. This figure includes comparison results on two
request properties—the request CPU time and the request peak (90-
percentile) CPI.

classification qualities for all cases. In particular, the asyn-
chrony penalty is very important for achieving such results.
Without it, the original dynamic time warping may produce
very poor classifications, due to the under-estimation of request
differences through no-cost time shifting.

• The software metric-only request differencing (Levenshtein
distance of system call sequences) exhibits relatively poor clas-
sification qualities. This is because it fails to consider dynamic
execution effects on resource-sharing processors like multi-
cores.

• The difference on average request CPIs achieves high classifi-
cation qualities on the peak request CPI (Figure 7(B)) due to
the strong correlation between the classification factor (aver-
age CPI) and the target (peak CPI). However, it achieves poor
classification qualities on the request CPU time (Figure 7(A))
compared to approaches that consider fine-grained request be-
havior variation patterns. This is because the latter represents a
more precise form of request signatures.

• The L1 distance produces slightly worse classification qualities
than the dynamic time warping with asynchrony penalty. This
is due to its over-estimation of request differences for the time
shifting cases explained in Section 4.1.

Our overall findings are that the dynamic time warping with
asynchrony penalty is most effective in quantifying request differ-
ences. However, the L1 distance measure is also quite effective and
its computation cost is significantly lower. It can be the more at-

0 10 20 30 40 50 60 70 80 90
0

2

4

C
y
c
le

s
/i
n
s
.

0 10 20 30 40 50 60 70 80 90
0

5

x 10
−3

L
2
 m

is
s
e
s
/i
n
s
.

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

L
2
 r

e
fe

re
n
c
e
s
/i
n
s
.

Progress of request execution (in millions of instructions)

Anomalous request Reference request

Figure 8. Comparison of metric variation patterns between an
anomalous request in TPCH and the centroid of the group of re-
quests processing the same TPCH query (Q20 in this case). We
show the variation patterns on CPU cycles per instruction (CPI),
L2 cache misses per instruction, and the L2 references per instruc-
tion.

tractive approach when the cost of computing request differences
must be kept low (particularly for online request modeling).

4.3 Anomaly Detection and Analysis

Informally, anomalous requests are those whose behaviors deviate
from the expectation. Anomalies are oftentimes linked to worst-
case performance that is of interests to system dependability and
quality-of-service management. In our study, we are particularly
concerned with the rare adverse effects of dynamic concurrent exe-
cutions on hardware resource-sharing processors. For both anomaly
detection and analysis, it is helpful to identify a reference request
to the anomaly [28]. Specifically, we say that a request exhibits
anomalous symptoms if its behavior deviates from that of a refer-
ence against the expected similarity between them.

With the identification of fine-grained request behaviors, we
can detect potential anomalies in several ways. First, we consider
a group of requests with similar application-level semantics and
instruction streams (e.g., those processing the same SQL query in
TPCH). Requests with highest distances to the group centroid share
least common execution behaviors with typical request patterns,
and therefore we identify them as suspected anomalies. We can
use the group centroid as the reference request in our anomaly
analysis. As an example, Figure 8 compares the metric variation
patterns between a suspected anomaly and its reference in TPCH.
The comparison in CPI shows that the anomalous request exhibits
poor performance (higher CPI) for much of its execution.

We can also detect potential anomalous requests through multi-
metric differences. In this case study, our particular goal is to iden-
tify anomalies due to adverse effects of dynamic concurrent exe-
cutions on L2 cache-sharing multicores. Specifically, we search for
anomaly-reference request pairs in which the anomaly and its ref-
erence share very similar patterns on L2 references per instruction
(i.e., similar reference streams to the shared resource) but exhibit
different performance on CPU cycles per instruction. In this offline
analysis, we employ the dynamic time warping with asynchrony
penalty (described in Section 4.1) as the request differencing mea-
sure. An an example, Figure 9 compares the metric variation pat-

0 100 200 300 400 500 600
0

2

4

C
y
c
le

s
/i
n
s
.

0 100 200 300 400 500 600
0

5

x 10
−3

L
2
 m

is
s
e
s
/i
n
s
.

0 100 200 300 400 500 600
0

0.05

L
2
 r

e
fe

re
n
c
e
s
/i
n
s
.

Progress of request execution (in millions of instructions)

Anomalous request Reference request

Figure 9. Comparison of metric variation patterns between an
anomalous request in WeBWorK and a reference. We show the
variation patterns on CPU cycles per instruction (CPI), L2 cache
misses per instruction, and the L2 references per instruction. Both
requests process the problem identifier of 954 in WeBWorK.

terns between a potential anomaly and its reference in WeBWorK.
The comparison in CPI shows that the anomalous request exhibits
higher CPIs in certain regions of execution (e.g., about 500 million
instructions since the request start).

We perform some analysis of the identified anomaly cases. In
both cases, the anomalous patterns of CPI increases match very
well with the anomalous patterns on the L2 cache misses per in-
struction. This is intuitive in that the poor performance on the
shared resource (the L2 cache) is the primary reason for anoma-
lous CPI performance. One important implication of this result is
that the monitoring and prediction of the L2 misses per instruction
can help understand and manage the request performance (includ-
ing the worst-case behavior) on multicores.

For an anomaly-reference pair with similar application-level se-
mantics and instruction streams, we expect that their L2 cache ref-
erences per instruction patterns to be very similar. While this is true
for the WeBWorK case, we observe some increases of the L2 ref-
erence rate during anomalous executions for the TPCH case result.
We can think of two possible explanations for this. First, software-
level contention (like a lock contention in the database) across mul-
tiple TPCH requests may lead to additional reference instructions,
and consequently a higher data reference rate. Second, coherence
misses at the L1 cache can cause additional L2 references during
concurrent request executions. A supporting evidence for the first
explanation is that the anomalous request executes more instruc-
tions than the reference does. If true, the first explanation warns
that the poor request performance on multicores may be not only
due to the competition on shared hardware resources, but also to
potential software-level contention.

4.4 Online Request Signature Identification

Fine-grained request variation patterns represent a more precise
form of request signature than the average metric value-based re-
quest signatures [27]. We can utilize it to identify a request on the
fly. Specifically, shortly after a request begins its execution, we can
match its partial request variation patterns against those in a bank
of representative request signatures maintained by the system. The
one with smallest difference is considered the match. By assum-

1 2 3 4 5 6 7 8 9 10

10%

20%

30%

40%

50%

60%

Progress of request execution (in 10,000 ins.)

P
re

d
ic

ti
o

n
 e

rr
o

r

Web server

Past requests−based prediction

Average metric value−based signature

L1 distance of metric variations

1 2 3 4 5 6 7 8 9 10

10%

20%

30%

40%

50%

60%

Progress of request execution (in 300,000 ins.)

P
re

d
ic

ti
o

n
 e

rr
o

r

TPCC

1 2 3 4 5 6 7 8 9 10

10%

20%

30%

40%

50%

60%

Progress of request execution (in million ins.)

P
re

d
ic

ti
o

n
 e

rr
o

r

TPCH

1 2 3 4 5 6 7 8 9 10

10%

20%

30%

40%

50%

60%

Progress of request execution (in 200,000 ins.)

P
re

d
ic

ti
o

n
 e

rr
o

r

RUBiS

1 2 3 4 5 6 7 8 9 10

10%

20%

30%

40%

50%

60%

Progress of request execution (in million ins.)

P
re

d
ic

ti
o

n
 e

rr
o

r

WeBWorK

Figure 10. Effectiveness of the online request signature identification and CPU usage prediction. For each request, we show the prediction
accuracy by utilizing request variation patterns for incremental amount of cumulative request executions—up to 10million instructions for
long-request applications TPCH and WeBWorK, and up to the median request length for the other three applications. The accuracy is defined
as the percentage of requests with correct prediction (higher or lower than the median CPU usage).

ing the current request shares similar properties with the matched
request in the bank, we can then predict the current request’s prop-
erties well before it completes execution. For online request differ-
encing, we use the L1 distance (defined in Section 4.1) for its low
computation cost.

We evaluate the effectiveness of request variation pattern-driven
online signature identification. In our evaluation, we collect a bank
of 500 representative request signatures for each application. While
the request signature can be the variation pattern of any hardware
counter metric, we choose one that reflects the inherent request be-
havior free of dynamic effects on the shared L2 contention. Specif-
ically, we employ the variations of L2 references per instruction as
the signature. We utilize the request signature identification to pre-
dict whether the request CPU consumption is going to be higher or
lower than a threshold. For each server application, the threshold is
set as the median CPU usage of all requests in the workload.

We compare the effectiveness of the variation pattern-driven re-
quest signatures against the request signatures constructed from av-
erage metric values (used in our past work [27]). In both cases, the
online identification utilizes the partial request execution (since the
beginning of request execution) to construct its signature. For an
additional comparison base, we look for a representative conven-
tional approach that is also transparent to server applications (i.e.,
requiring no application instrumentation or assistance). Fundamen-
tally, without online information about an incoming request, there
is little other choice but to use recent past workloads as the basis
to predict incoming workloads. Specifically, we estimate the CPU
usage of each request as the average CPU consumption of 10 recent
past requests.

We compare the prediction accuracy under these approaches.
The predication accuracy is the percentage of correctly identified
request CPU usage (higher or lower than the threshold). For online
identifications, we show the results on using incremental amount
of cumulative request executions. Results in Figure 10 demonstrate
that the variation-driven request signatures lead to significantly bet-
ter predication accuracy than average metric value-based signatures
for the web server, TPCC, TPCH, and RUBiS. Specifically, the pre-

diction errors are reduced by around 10% or more for these ap-
plications. However, we observe poor effectiveness of both forms
of request signatures for WeBWorK. We discover that all WeB-
WorK requests follow almost identical processing semantics for the
early part of request executions. Signatures constructed for the first
10million instructions (out of the total several hundred million in-
structions in a typical WeBWorK request) cannot effectively iden-
tify the requests.

5. Variation-Driven Request Scheduling

Online identification of request behavior variations can also enable
adaptive CPU scheduling on multicore platforms. The basic idea
is that by matching appropriate request execution periods in co-
execution, we may improve efficiency by easing the resource con-
tention. In a more limited scenario, the worst-case performance of-
ten arises from coincidental co-execution of peak-resource-usage
request periods. The avoidance of such cases would improve the
system performance dependability.

Our study is naturally related to previous multicore adap-
tive scheduling research for non-server applications [14, 15, 38].
Resource-aware request scheduling in server applications, how-
ever, requires the identification of request-level workload behavior
variations. It also introduces significant challenges when the varia-
tion patterns are substantially more fine-grained than typical CPU
scheduling quanta.

5.1 Online Behavior Prediction

To support online system adaptation like the resource-aware CPU
scheduling, it is important to predict request behavior variations on
the fly. Specifically, at each sampling moment, we need to estimate
the target metric value for the coming execution period (until the
next counter metric sampling). Our choices of online predictors
are limited by our OS-only management that does not leverage
any compiler assistance or special hardware support. For instance,
we do not possess the program-level statistics like the basic block
vector [30].

We are particularly interested in the exponentially weighted
moving average (EWMA) filters due to their low-cost maintenance
in an online continuous fashion. The basic EWMA filter, like the
one used for predicting the network round-trip time in TCP con-
gestion control, can be continuously maintained in the following
way:

Ek = α · Ek−1 + (1 − α) · Ok. (4)

Here Ek is the new estimate of the target metric while Ek−1 is the
last estimate. Ok is the current observation. The gain parameter, α,
adjusts the balance between the filter’s stability and agility.

While the EWMA filter exponentially weighs the past samples,
it assumes each new sample leads to an equal amount of aging
for previous samples. In our processor counter sampling approach,
only periodic interrupts produce fixed-length samples. Samples
collected at request context switches and system calls may have
widely varying time durations. Here we introduce a variable-aging
EWMA filter, called vaEWMA, that considers this factor. Specifi-
cally, let ti be the length of observation i and the unit length be t̂.
Then our vaEWMA filter can be incrementally maintained as fol-
lows:

Ek = α
tk/t̂ · Ek−1 + (1 − α

tk/t̂) · Ok. (5)

Expressed only using observed samples, the prediction is:

Ek =
X

i=0

α
Pk

j=k−i+1 tj/t̂ · (1 − α
tk−i/t̂) · Ok−i. (6)

Note that the purpose of Equation 6 is to show the actual weight
for each observed sample. The computation in practice follows the
much simpler Equation 5.

We evaluate the effectiveness of the online request behavior pre-
diction. We introduce two additional predictors for the comparison
purpose. The first assumes the request behavior does not vary so
it employs the request average metric value (using cumulative data
from the request beginning to the prediction point) to predict the
metric value at each point. The second assumes short-term stable
behaviors so it predicts the metric value for the next period using
that of the last.

Our experimental work in this section focuses on the long-
request applications TPCH and WeBWorK. This is because sub-
request-granularity scheduling makes little sense for short requests
that are comparable to or more fine-grained than a typical CPU
scheduling quantum. We compare the request behavior prediction
accuracy (on predicting L2 cache misses per instruction) of the
these approaches. For the vaEWMA filter, we show prediction
results with multiple settings for the gain parameter α. The unit
observation length t̂ is 1millisecond.

Figure 11 presents the prediction accuracy in the root mean
square errors. Specifically, let the request execution consist of n
sample periods of lengths t1, · · · , tn. The actual target metric
values for these samples are x1, · · · , xn respectively. Predicted
values under a particular approach are x̂1, · · · , x̂n. Then we have:

Root mean square error =

s

Pn
i=1 ti · (xi − x̂i)2

Pn
i=1 ti

(7)

Results in Figure 11 show that our EWMA filters (with appro-
priate settings of the gain parameter α) achieve better prediction
than alternative approaches for our test cases. This is because they
adapt to request behavior changes while avoiding instability due to
short-term fluctuations. For the rest of our case study in this paper,
we set the gain parameter α = 0.6. However, we do not claim the
general applicability of this setting. Application-specific calibration
of the gain parameter may be necessary.

0

1

2

3

4

5

6

7

8

9
x 10

−4

R
o
o
t
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

R
equest average

Last value

vaEW
M

A α=0.1

vaEW
M

A α=0.2

vaEW
M

A α=0.3

vaEW
M

A α=0.4

vaEW
M

A α=0.5

vaEW
M

A α=0.6

vaEW
M

A α=0.7

vaEW
M

A α=0.8

vaEW
M

A α=0.9

TPCH

0

0.5

1

1.5

2

2.5

3
x 10

−3

R
o

o
t

m
e

a
n

 s
q

u
a

re
 e

rr
o

r

R
equest average

Last value

vaEW
M

A α=0.1

vaEW
M

A α=0.2

vaEW
M

A α=0.3

vaEW
M

A α=0.4

vaEW
M

A α=0.5

vaEW
M

A α=0.6

vaEW
M

A α=0.7

vaEW
M

A α=0.8

vaEW
M

A α=0.9

WeBWorK

Figure 11. Accuracy of predicting L2 cache misses per instruction
for TPCH and WeBWorK using several online predictors.

5.2 Contention-Easing CPU Scheduling

We then study on the potential effectiveness of request behavior
variation-driven scheduling to ease multicore resource contention.
At the high level, our scheduling policy is that requests during their
high resource usage periods should avoid co-execution as much as
possible. We implement such a policy in the Linux 2.6.18 kernel. At
each scheduling opportunity, the scheduler performs the following
actions:

1. It checks whether any other CPU core is currently executing a
request during a high resource usage period. If not, the sched-
uler chooses the request at the head of its local runqueue in the
normal fashion.

2. Otherwise, it searches its local runqueue for a request that is
not in a high resource usage period. If multiple such requests
exist, it picks the one closest to the runqueue head for execu-
tion. If no such request exists, it gives up by scheduling in the
normal fashion. Note that our current implementation does not
migrate requests between different CPU core runqueues for
simplicity.

Two issues are worth further discussions. First, general-purpose
operating systems often employ large CPU scheduling quanta to
avoid frequent cache pollution across context switches. In Linux,
a scheduling quantum can be as long as 100milliseconds. Such
large quanta leave little room for fine-grained adaptive scheduling.
To overcome this, we modify the scheduler to attempt request re-
scheduling at no more than 5millisecond intervals. With frequent
re-scheduling, the cache pollution costs at context switches can sig-
nificantly negate the benefits of adaptive scheduling. Consider an

0%

5%

10%

15%

20%

25%

>=2 coresP
ro

p
o

rt
io

n
 o

f
e

x
e

c
u

ti
o

n
 t

im
e

Number of cores executing simultaneously at high resource usage levels

Original scheduling Contention easing

0%

2%

4%

6%

8%

10%

>=3 cores

TPCH

0%

0.5%

1.0%

1.5%

2.0%

2.5%

4 cores

0%

5%

10%

15%

20%

>=2 cores

P
ro

p
o

rt
io

n
 o

f
e

x
e

c
u

ti
o

n
 t

im
e

Number of cores executing simultaneously at high resource usage levels

0%

1%

2%

3%

4%

>=3 cores

WeBWorK

0%

0.1%

0.2%

0.3%

0.4%

4 cores

Figure 12. Effectiveness of contention-easing request scheduling
for TPCH and WeBWorK. For each scheduling approach, we show
the proportion of execution time when multiple CPU cores are
simultaneously executing at high resource usage levels.

extreme (and unlikely) worst case, we have devised a microbench-
mark to record a context switch cache pollution cost at more than
12milliseconds on our experimental platform. To minimize unnec-
essary re-scheduling, we keep the current request at the head of the
local runqueue before each attempt of adaptive scheduling. The
current request would resume execution (without cache pollution)
if no contention-easing re-scheduling opportunity emerges.

Second, the OS needs to monitor an appropriate hardware
counter metric that indicates the resource usage intensity of the
request executions. In our experiments, we use the metric of L2
cache misses per retired instruction. It not only reflects the per-
formance of the shared on-chip L2 cache, but also provides an
indication of the memory bandwidth usage. The latter is partic-
ularly important for fine-grained requests that do not have large
working sets. Consequently their performance is more constrained
by the memory bandwidth than by the L2 cache space. Finally, our
anomaly analysis in Section 4.3 showed that high L2 misses per in-
struction are good indicators of worst-case poor performance. For
each application, our experiments use the 80-percentile value of L2
cache misses per instruction as the threshold between high and low
resource usage.

Figure 12 illustrates the effectiveness of contention-easing re-
quest scheduling for TPCH and WeBWorK. The shown results
are averaged over three 1000-request test runs. Our scheduler tries
to avoid co-execution of high-resource-usage cores in the system.
We observe a reduction of high resource contention under the
contention-easing request scheduling. In particular, the most inten-
sive contention periods (when all four cores execute at high re-
source usage levels) are reduced by around 25% for the two ap-
plications. On the other hand, our contention-easing scheduling is
unable to completely eliminate all high-contention executions. One
reason is that our online behavior prediction (described in Sec-
tion 5.1) still exhibits significant errors such that many high con-
tention periods cannot be predicted for avoidance. Further, the high
resource usage periods in some applications (particularly WeB-
WorK, as shown in Figure 2) are unstable and their granularities
can be far shorter than the CPU scheduling quantum.

1

1.5

2

2.5

3

3.5

4

C
P

U
 c

y
c
le

s
 p

e
r

in
s
tr

u
c
ti
o
n

TPCH

Average of all requests

99 percentile

99.9 percentile

Original scheduling

Contention easing

1

1.2

1.4

1.6

1.8

C
P

U
 c

y
c
le

s
 p

e
r

in
s
tr

u
c
ti
o
n

WeBWorK

Average of all requests

99 percentile

99.9 percentile

Original scheduling

Contention easing

Figure 13. The request performance of CPU cycles per instruc-
tion (CPI) under contention-easing CPU scheduling for TPCH and
WeBWorK. Lower CPI indicates better performance. We show both
average and worst-case (in high-percentile CPI) request perfor-
mance.

While our scheduler can reduce the resource usage contention
on the multicore platform, we are interested to see whether such re-
duction translates into request-level performance enhancements.
Specifically, Figure 13 shows the request CPI performance of
contention-easing CPU scheduling. Results show that the contention-
easing scheduling can reduce the worst-case request CPI (around
10% reduction for the two applications) but it does little to im-
prove the average request performance. This mixed result is largely
due to our scheduler’s focus on the worst-case resource contention.
An improvement to our scheduling approach is possible but chal-
lenging. In particular, a scheduler that attempts to resolve mild
resource contention may frequently fail to find suitable scheduling
targets. On the other hand, relieving the worst-case resource con-
tention still brings a significant benefit in the system performance
dependability. For instance, service-level agreements may specify
requirements in high-percentile worst-case request performance.

6. Related Work

Application behavior variations on hardware execution metrics
have long been recognized. In particular, there is a large body
of work on application phase identification and recognition in the
literature [12, 13, 17, 29, 30]. Compared to these studies, our work
is unique in terms of supporting request-oriented server workloads
and operating system-level management. Specifically, server appli-
cations possess different workload features from those of technical
computing and workstation applications. For instance, frequent
network and storage I/O operations, along with the increasingly
componentized server architectures, result in behavioral fluctua-
tions that may not form long stable phases. Server systems also

introduce additional concerns such as high execution concurrency
and new management functions like online request classification.
Finally, our work targets transparent OS-level system management
requiring no change in software applications or special hardware
assistance. We only utilize control mechanisms and information
available to the OS.

Barroso et al. [11] and Keeton et al. [19] examined architectural
hardware execution characteristics for commercial server work-
loads. In particular, they discovered that processor features opti-
mized for technical workloads may not be as effective for com-
mercial server workloads. Besides separating user and kernel-level
execution statistics, these studies were limited to reporting aggre-
gate architectural characteristics for the whole server applications.
However, request-level behavior characterization is necessary for
fine-grained system management such as adaptive CPU scheduling
and request classification.

Previous research has proposed OS-level techniques for on-
line workload characterization. For instance, Anderson et al. pre-
sented a continuous profiling infrastructure that can accurately ac-
count low-level architectural events for individual instructions [8].
Barham et al.’s Magpie system addressed the challenge of attribut-
ing collected system metrics to individual requests in concurrent
server environments [10]. Shen et al. further presented per-request
characterization of hardware execution metrics [27]. Built on top
of the previous results, this paper characterizes workload behavior
variations within individual requests. Consequently, our work can
enhance the precision of characterized workload behaviors and en-
able new fine-grained system management functions.

To achieve high performance and fairness, the system resource
management cannot ignore the increasingly ubiquitous on-chip
hardware resource sharing in today’s multiprocessors. Recent re-
search proposals include directly partitioning the shared on-chip
cache [22, 34, 39] as well as indirectly managing resource con-
tention through contention-easing scheduling [14, 38], fairness-
oriented execution timeslice adjustment [15], and targeted execu-
tion throttling [40]. For instance, Fedorova et al. proposed that the
task CPI can be a good indicator of CPU pipeline usage and si-
multaneously scheduling high-CPI tasks with low-CPI tasks on a
multi-threading processor can reduce contention on the pipeline
resource [14]. Existing results were mostly applied to non-server
applications or they treat the whole server application as a schedul-
ing unit. To support adaptive resource management within a single
server application, it is essential to exploit fine-grained workload
behavior variations at the request level.

As a form of sub-request granularity resource management, pre-
vious research investigated staged server processing architectures.
Specifically, SEDA divides each request execution into a number
of event-driven stages and applies staged resource allocation and
control [37]. Cohort scheduling advocates the aggregate execution
of similar stages across multiple requests to achieve high cache
utilization efficiency [20]. Capriccio employs resource-aware task
scheduling to prioritize request stages according to the availability
of their needed resources [36]. Most of these approaches require
manual programmer specification (e.g., in the form of event-driven
programming) to mark request stages. Capriccio adds stage bound-
ary annotations automatically through compiler support. In con-
trast, our characterization of request behavior variations may trans-
parently identify potential stage transitions at the OS and annotate
each stage with its unique hardware execution characteristics.

7. Conclusion

This paper provides a characterization of request behavior varia-
tions using several realistic server applications. We find that the
inter-core resource sharing on multicore platforms obfuscates the
request execution performance, leading to increased behavior vari-

ation. Further, our characterization shows that individual request
executions exhibit fine-grained behavior variation patterns that are
often stronger than the inter-request differences. This paper also
presents operating system management to track request behavior
variations online. Our OS management utilizes the frequent system
calls in server requests to perform low-cost in-kernel event sam-
pling. Further, the semantic implications of system call events al-
low some to act as signals for impending behavior transitions which
can be exploited to improve the cost-effectiveness of online varia-
tion tracking.

Identified request behavior variation patterns represent a strong
request signature that is more descriptive than the average metric
value. Such signatures can help classify requests into groups with
common variation patterns, and at the same time detect anomalous
patterns that are often linked to worst-case performance. It can
also support better online request identification and resource usage
prediction.

Finally, our research produced mixed results for variation-
driven request scheduling to ease multicore resource contention. In
particular, we find that our contention-easing scheduling is unable
to significantly improve the average request performance. This is
in part due to the difficulty of accurately predicting online request
behaviors in order to perform contention-easing scheduling. An-
other reason is that many request variation stages in realistic server
applications are finer-grained than the typical operating system
scheduling quantum. On the positive side, the contention avoid-
ance tends to be more effective when it focuses on the rare, most
intensive resource contention. Despite the lack of improvement on
the average request performance, we see the encouraging result
that variation-driven request scheduling can help alleviate worst-
case performance. This enhances system dependability and better
satisfies service-level agreements that specify requirements in high-
percentile worst-case request performance.

For future work, our characterized request workload may serve
as input to server system performance models to predict perfor-
mance or its bounds under different system configurations. In par-
ticular, fine-grained behavior variation patterns can help project re-
quest resource consumption on a new hardware platform. In ad-
dition, our current prototype system only supports server applica-
tions running on a single machine. This is only due to the limitation
of our request tracking and statistics maintenance infrastructure.
The online management of request behavior variations across a dis-
tributed server architecture can expose both local and inter-machine
variations. This would present a new dimension for request behav-
ior classification. It may also guide additional distributed system
resource management such as component placement.

Acknowledgments

We received help from Xiao Zhang (University of Rochester) on
configuring and reading processor hardware counter registers on
our experimental platform. We thank the anonymous ASPLOS re-
viewers for comments that helped improve this paper. We also
thank our shepherd Richard Draves (Microsoft Research) for as-
sistance in the final revision.

References

[1] Intel 64 and IA-32 architectures software developer’s manual
volume 3B: System programming guide, part 2, table B-7.
http://download.intel.com/design/processor/manuals/253669.pdf.

[2] Moodle course management system. http://moodle.org/.

[3] RUBiS: Rice University Bidding System. http://rubis.objectweb.org.

[4] SPECweb99 benchmark. http://www.specbench.org/osg/web99.

[5] TPC-C benchmark. http://www.tpc.org/tpcc.

[6] TPC-H benchmark. http://www.tpc.org/tpch.

[7] WeBWorK: Online homework for math and science. http://webwork
.maa.org/moodle/.

[8] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger,
S.A. Leung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and
W.E. Weihl. Continuous profiling: Where have all the cycles gone?
ACM Trans. on Computer Systems, 15(4):357–390, November 1997.

[9] M. Aron and P. Druschel. Soft timers: Efficient microsecond software
timer support for network processing. ACM Trans. on Computer

Systems, 18(3):197–228, August 2000.

[10] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modeling. In 6th USENIX Symp. on

Operating Systems Design and Implementation, pages 259–272, San
Francisco, CA, December 2004.

[11] L.A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system
characterization of commercial workloads. In 25th Int’l Symp. on
Computer Architecture, pages 3–14, Barcelona, Spain, July 1998.

[12] A.P. Batson and A.W. Madison. Measurements of major locality
phases in symbolic reference strings. In ACM SIGMETRICS, pages
75–84, Cambridge, MA, March 1976.

[13] A.S. Dhodapkar and J.E. Smith. Managing multi-configuration hard-
ware via dynamic working set analysis. In 29th Int’l Symp. on Com-

puter Architecture, pages 233–244, Anchorage, AL, May 2002.

[14] A. Fedorova, C. Small, D. Nussbaum, and M. Seltzer. Chip multi-
threading systems need a new operating system scheduler. In SIGOPS
European Workshop, Leuven, Belgium, September 2004.

[15] A. Fedorova, M. Seltzer, and M.D. Smith. Improving performance
isolation on chip multiprocessors via an operating system scheduler. In
16th Int’l Conf. on Parallel Architecture and Compilation Techniques,
pages 25–38, Brasov, Romania, September 2007.

[16] M. Hauswirth, A. Diwan, P.F. Sweeney, and M.C. Mozer. Automat-
ing vertical profiling. In 20th ACM Conf. on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, pages 281–296,
San Diego, CA, October 2005.

[17] C. Isci and M. Martonosi. Phase characterization for power: Evalu-
ating control-flow-based and event-counter-based techniques. In 12th
Int’l Symp. on High-Performance Computer Architecture, pages 121–
132, Austin, TX, February 2006.

[18] L. Kaufman and P. J. Rousseeuw. Finding groups in data: An intro-
duction to cluster analysis. Wiley, New York, 1990.

[19] K. Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, and W.E. Baker.
Performance characterization of a Quad Pentium Pro SMP using
OLTPworkloads. In 25th Int’l Symp. on Computer Architecture, pages
15–26, Barcelona, Spain, July 1998.

[20] J.R. Larus and M. Parkes. Using cohort scheduling to enhance server
performance. InUSENIX Annual Technical Conf., Monterey, CA, June
2002.

[21] V.I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. Soviet Physics Doklady, 10, 1966.

[22] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan.
Gaining insights into multicore cache partitioning: Bridging the gap
between simulation and real systems. In 14th Int’l Symp. on High-
Performance Computer Architecture, Salt Lake City, UT, February
2008.

[23] C. Myers, L.R. Rabiner, and A.E. Rosenberg. Performance tradeoffs in
dynamic time warping algorithms for isolated word recognition. IEEE
Trans. on Acoustics, Speech, and Signal Processing, 28(6):623–635,
December 1980.

[24] S. Parekh, S. Eggers, and H. Levy. Thread-sensitive scheduling for
SMT processors. Technical report, Department of Computer Science
and Engineering, University of Washington, May 2000.

[25] H. Sakoe and S. Chiba. Dynamic programming optimization for
spoken word recognition. IEEE Trans. on Acoustics, Speech, and

Signal Processing, 26(1):43–49, February 1978.

[26] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource manage-
ment for cluster-based internet services. In 5th USENIX Symp. on Op-

erating Systems Design and Implementation, pages 225–238, Boston,
MA, December 2002.

[27] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and X. Zhang.
Hardware counter driven on-the-fly request signatures. In 13th Int’l

Conf. on Architectural Support for Programming Languages and Op-
erating Systems, pages 189–200, Seattle, WA, March 2008.

[28] K. Shen, C. Stewart, C. Li, and X. Li. Reference-driven performance
anomaly identification. In ACM SIGMETRICS, pages 85–96, Seattle,
WA, June 2009.

[29] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In 11th

Int’l Conf. on Architectural Support for Programming Languages and

Operating Systems, pages 165–176, Boston, MA, October 2004.

[30] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
In 30th Int’l Symp. on Computer Architecture, pages 336–349, San
Diego, CA, June 2003.

[31] A. Snavely and D. Tullsen. Symbiotic job scheduling for a simulta-
neous multithreading processor. In 9th Int’l Conf. on Architectural

Support for Programming Languages and Operating Systems, pages
234–244, Cambridge, MA, November 2000.

[32] C. Stewart and K. Shen. Performance modeling and system man-
agement for multi-component online services. In Second USENIX

Symp. on Networked Systems Design and Implementation, pages 71–
84, Boston, MA, May 2005.

[33] C. Stewart, M. Leventi, and K. Shen. Empirical examination of a
collaborative web application. In IEEE Int’l Symp. on Workload
Characterization, Seattle, WA, September 2008.

[34] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared
L2 caches on multicore systems in software. In Workshop on the
Interaction between Operating Systems and Computer Architecture,
San Diego, CA, June 2007.

[35] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting platforms. In 5th USENIX

Symp. on Operating Systems Design and Implementation, pages 239–
254, Boston, MA, December 2002.

[36] R. von Behren, J. Condit, F. Zhou, G.C. Necula, and E. Brewer.
Capriccio: Scalable threads for internet services. In 19th ACM Symp.

on Operating Systems Principles, pages 268–281, Bolton Landing,
NY, October 2003.

[37] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In 18th ACM Symp. on Op-

erating Systems Principles, pages 230–243, Banff, Canada, October
2001.

[38] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen. Processor
hardware counter statistics as a first-class system resource. In 11th

Workshop on Hot Topics in Operating Systems, San Diego, CA, May
2007.

[39] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page
coloring-based multi-core cache management. In 4th European Sys-
tems Conf., pages 89–102, Nuremberg, Germany, April 2009.

[40] X. Zhang, S. Dwarkadas, and K. Shen. Hardware execution throttling
for multi-core resource management. In USENIX Annual Technical
Conf., San Deigo, CA, June 2009.

