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Abstract—Because of the interference in the shared cache
on multicore processors, the performance of a program can be
severely affected by its co-running programs. If job scheduling
does not consider how a group of tasks utilize cache, the
performance may degrade significantly, and the degradation
usually varies sizably and unpredictably from run to run.

In this paper, we use trace-based program locality analysis
and make it efficient enough for dynamic use. We show a
complete on-line system for periodically measuring the parallel
execution, predicting and ranking cache interference for all
co-run choices, and reorganizing programs based on the
prediction. We test our system on floating-point and mixed
integer and floating-point workloads composed of SPEC 2006
benchmarks and compare with the default Linux job scheduler
to show the benefit of the new system in improving performance
and reducing performance variation.

Keywords-multicore; task grouping; online program locality
analysis; lifetime sampling

I. INTRODUCTION

Today’s computing centers make heavy use of commodity
multicore processors. A typical computer node has 2 to 8
processors, each of which has 2 to 6 hyperthreaded cores. A
good number of programs can run in parallel on a single
machine. However, the performance depends heavily on
resource sharing in particular memory hierarchy sharing.

Memory sharing happens at multiple levels. Main memory
management is a well-known and well-studied problem. In
this paper, we study the effect of cache memory and propose
a solution to improve cache sharing. The problem in cache is
reminiscent of that of memory sharing. The level of sharing
is different, but the concerns, the hope for utilization and
the fear for interference, are similar.

Compared to the problem of memory management, the
frequency of events in cache is orders of magnitude higher
in terms of the number of memory accesses, cache replace-
ments, and memory bus transfers. On today’s processors, a
single program may access cache a billion times a second
and can wipe out the entire content of cache in less than a
millisecond. The intensity multiplies as more programs are
run in parallel.

Cache usage can be analyzed on-line and off-line. On-
line analysis is usually counter based. The number of
cache misses or other events can be tallied using hardware
counters for each core with little or no overhead. Such

online event counts are then utilized to analyze the cache
sharing behavior and guide cache-aware scheduling by the
operating system [1]–[3]. While the counters can measure
the interference for the current mix of tasks, it cannot
predict how the interference will change when tasks are
regrouped. The analysis itself may add to the event counts
and performance interference it is observing.

Off-line analysis uses the access trace. It measures the
reuse distance of each access and predicts the miss ratio
as a function of the cache size. Trace analysis gives the
“clean-room” statistics for each program unaffected by the
co-run. It can be composed to predict cache interference
— multi-program co-run [4]–[6] or single-program task
partitioning [7] —and find the best parallel configuration
without (exhaustive) parallel testing.

Trace analysis incurs a heavy cost. Recent studies have
reduced the cost through sampling [8]–[14]. A new tech-
nique, lifetime sampling, can quantify the inter-program
interference in shared cache at run time when programs are
running together [15].

In this paper, we apply on-line trace sampling to solve
the problem of cache conscious task regrouping. Given
a multicore machine with p processors and c cores per
processor, and c ·p tasks to execute, the goal is to divide the
c · p tasks among the p processors to maximize the overall
performance. We present a complete on-line setup to regroup
a given set of programs for the overall speed, which means
to minimize the finish time for the longest running task.
A similar setup may be used to maximize the throughput,
which means to minimize the average slowdown compared
to running each task in dedicated cache with no sharing.

In this work, we consider only parallel workloads of
independent sequential programs. Multi-threaded workloads
pose the additional problems of data and code sharing and
thread interleaving, which we will not consider. We evaluate
the effect of task regrouping using SPEC 2006 benchmarks.
The results show not just the effect of regrouping but also
the accuracy and cost of on-line cache sharing analysis.

II. BACKGROUND

This section explains how trace sampling is used to predict
cache sharing. We start with the footprint fp (which we
will measure through sampling) and then use the footprint



to derive the lifetime lf , miss rate mr and reuse distance rd.
Finally, we combine reuse distance and footprint to predict
the effect of cache sharing.

All-window footprint: A footprint is the amount of
data accessed in a time period, i.e. a time window. Most
modern performance tools can measure a program’s footprint
in some windows, i.e. snapshots. Three recent papers have
solved the problem of measuring the footprint in all execu-
tion windows and given a linear-time solution to compute
the average footprint [5], [6], [16].

Let W be the set of
(
n
2

)
windows of a length-n trace. Each

window w =< l, s > has a length l and a footprint s. Let
I(p) be a boolean function returning 1 when a predicate p is
true and 0 otherwise. The footprint function fp(l) averages
over all windows of the same length l. There are n− l + 1
footprint windows of length l. The following formula adds
the total footprint in these windows and divides the sum by
n− l + 1.

fp(l) =

∑
wi∈W siI(li = l)∑
wi∈W I(li = l)

=

∑
wi∈W siI(li = l)

n− l + 1

For example, the trace “abbb” has 3 windows of length
2: “ab”, “bb”, and “bb”. The size of the 3 footprints is 2,
1, and 1, so fp(2) = (2 + 1 + 1)/3 = 4/3. The footprint
function is not just monotone [6] but also concave [15].

Lifetime: The lifetime of a program is the average
length of time that the program takes to access the amount
of data equal to the size of the cache c. In other words,
assuming we start with an empty cache, the lifetime is the
time taken by a program to fill the cache without causing
a capacity miss. Lifetime was long used to quantify the
virtual memory performance [17]. In this work, we define the
lifetime function to be the inverse of the footprint function

lf(c) = fp
−1

(c)

The derivation is shown visually in Figure 1. From the
average footprint curve, we find cache size c on the y-axis
and draw a straight line to the right. At the point the line
meets the curve, the x-axis value is lf(c). The miss rate is
then the gradient at this point, as discussed next.

Miss rate: The miss rate can be approximated using the
lifetime. In particular, we compute the average time between
two consecutive misses by taking the difference between the
lifetime of c + 1 and c. Formally, let mr(c) be the capacity
miss rate, lf(c) the lifetime, and im(c) the inter-miss time.
We have:

mr(c) =
1

im(c)
=

1
lf(c + 1)− lf(c)
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Figure 1. Finding the cache lifetime using the average footprint

Reuse distance: For each memory access, the reuse
distance, or LRU stack distance, is the number of distinct
data elements accessed between this and the previous access
to the same datum. The reuse distance defines the locality of
each memory access. The distribution of all reuse distances
gives the capacity miss rate of the program in caches of
all sizes [18] and can accurately estimate the effect of
conflict misses in direct map and set-associative cache using
a statistical formula given by Smith [19]–[21]. From the
capacity miss rate, we can compute the probability density
of reuse distance as

P (rd = c) = mr(c− 1)−mr(c)

Cache sharing: Off-line cache sharing models were
pioneered by Chandra et al. [4] and Suh et al. [22] for
a group of independent programs and extended for multi-
threaded code by a series of recent studies [7], [8], [23]–
[25]. Let A, B be two programs share the same cache but
do not share data, the effect of B on the locality of A is

P (capacity miss by A when co-running with B)
= P ((A’s reuse distance + B’s footprint) > cache size)

Figure 2 shows two program traces first individually and
then in an interleaved co-run. Assuming fully associative
LRU cache of size 8. The reuse of datum a in program A
changes from a cache hit when A runs alone to a cache
miss when A, B run together. The model can predict this
miss. It takes the reuse distance of a in A and adds the
footprint of B to obtain the shared-cache reuse distance.
From the reuse distance, we compute the capacity miss rate
(and use the Smith formula to estimate for set-associative
cache [19]). Therefore, the effect of cache interference, i.e.
the additional misses due to sharing, can be computed from
single-program statistics. This is known as the composable
model because it uses a linear number of sequential tests to
predict the performance of an exponential number of parallel
co-runs [5].
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Figure 2. Interference in 8-element shared cache causes the reuse of a
to miss in cache. In the base model, the reuse distance in program A is
lengthened by the footprint of program B.

If we were to measure reuse distance directly, the fastest
analysis would take O(n log log m) time, where n is the
length of the trace, and m is the size of data [26]. By
using the footprint (to derive the reuse distance), the cost
is reduced to O(n) [6]. More importantly, footprint can be
easily sampled. Sampling is not only fast but also accounts
for the phase effect of individual programs and the change
in program interaction over time.

III. ON-LINE LOCALITY TESTING

Lifetime sampling per program: We sample a run-
time window as long as the lifetime. In other words, we
start sampling at a random point in execution and continue
until the program accesses as much data as the size of the
cache. Specifically, lifetime sampling takes a sample every
k seconds for a lifetime window for cache size c. When a
program starts, we set the system timer to interrupt every
k seconds. The interrupt handler is shown in Figure 3. It
forks a sampling task and attaches the binary rewriting tool
Pin [27]. The Pin tool instruments the sampling process to
collect its data access trace, measures all-window footprint
using our technique described in [6], and finds the lifetime
lf(c), lf(c + 1).

For in situ testing, we do not increase the number of tasks.
The sampling algorithm ensures this in two ways. First, the
sampling task does not run in parallel with the base task.
This is done by the base task waiting for the sampling task to
finish before continuing. Second, no concurrent sampling is
allowed. Timer interrupt is turned off for the sampling task.
The base task sets a flag when a sampling task is running
and ignores the timer interrupt if the flag is up.

Predicting the miss rate: For each sample xi, we
predict the miss rate function mr(xi, c) for each cache size
c as follows:

1) Use the analysis of Xiang et al. [6] to compute the
average footprint function fp.

2) Compute the lifetime gradient (Section II) to obtain
the capacity miss rate for cache size c.

Procedure timer interrupt handler, called whenever a pro-
gram receives the timer interrupt

1: Return if the sampling flag is up
2: Set the sampling flag
3: pid← fork()
4: if pid = 0 then
5: Turn off the timer
6: Attach the Pin tool and begin sampling until seeing c

distinct memory accesses
7: Exit
8: else
9: Reset the timer to interrupt in k seconds

10: Wait for pid to finish
11: Clear the sampling flag
12: Return
13: end if

Figure 3. The timer-interrupt handler for locality sampling

3) Use the capacity miss rate to compute reuse distance
distribution and the Smith formula [19] to estimate the
number of conflict misses for given cache associativity.

Group sampling per phase: A phase is a unit of
time that co-run tasks are regrouped once. Group sampling
proceeds in phases. It solves two problems. First, a program
collects and analyzes one and only one lifetime sample
(trace) in each phase. Second, when all programs have
finished sampling, the regrouping routine is called to process
the sample results and reorganize the co-run tasks (see the
next section).

We use shared memory to coordinate but do so in
a distributed fashion without a central controller. When
started, each program connects to shared memory of a preset
identifier and allocates this shared memory if it is the first
to connect. The shared memory contains a sample counter
initialized to the number of co-run tasks and a phase counter
initialized to 0. When a program finishes collecting a sample,
it decrements the sample counter. The last program to finish
sampling would reduce the sample counter to 0. It would
call the regrouping routine, reset the sample counter, and
advance the phase counter. With the two counters, the tasks
would sample once and only once in each phase. The pseudo
code is shown in Figure 4.

Comparison with reuse-distance sampling: Lifetime by
definition is more amenable to sampling. We can start a
lifetime sample at any point in an execution and continue
until the sample execution contains enough access to fill
the size of target cache. We can sample multiple windows
independently, which means they can be parallelized. It
does not matter whether the sample windows are disjoint or
overlapping, as long as the choice of samples is random and
unbiased. In contrast, reuse distance sampling must sample
evenly for different lengths of reuse windows. When picking
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Procedure group sampling, coordinated using shared mem-
ory

1: {when a program starts}
2: connect to shared memory
3: if shared memory not exists then
4: allocate shared memory
5: count← 8
6: phase count← 0
7: end if
8: {when a program finishes a sample}
9: lock shared memory

10: count← (count− 1)
11: if count == 0 then
12: call the regrouping routine
13: count← 8
14: phase count← (phase count + 1)
15: end if
16: unlock shared memory

Figure 4. Group sampling per phase

an access, it needs to measure the distance to the next reuse.
Since most reuse distances are short, we have to pick more
samples. When a reuse distance is long, we do not know a
priori how long so we need to keep analyzing until seeing
the next reuse. Therefore, reuse distance sampling is more
costly than lifetime sampling because it needs more samples
and longer samples (a reuse window can be arbitrarily longer
than a lifetime window).

IV. DYNAMIC REGROUPING

We use the following terms. A peer group is a set of
programs that share cache. A configuration (or grouping) of
a set of programs is one way to divide the programs into
peer groups. Two groupings differ if their peer groups are
not all identical.

The regrouping algorithm is shown in two parts. The
first part, shown in Figure 5, takes the sample results,
predicts and ranks the performance of all groupings. In this
algorithm, we assume that the machine in use is a multicore
machine with 2 processors and 4 cores per processor. Our
algorithm can be easily generalized to m processors and n
cores per processor, where m and n are positive integers.
We further assume that the first peer group, denoted by s1,
includes four programs run on the first processor, and the
second peer group, denoted by s2, includes the other four
programs run on the second processor. The eight programs
are denoted as p0, p1, ..., p7.

Once a new grouping is selected, we need to move pro-
grams between peer groups. Program migration incurs two
types of overheads. The first is the direct cost of migration,
including the OS delay and re-warming of the cache. The
second is the indirect cost that happens on machines that
have NUMA memory. When a program is started, its data is

Procedure regrouping routine, called when all programs
finish sampling for the current phase.

1: dold is the previous grouping
2: for each prog do
3: fp[prog]← average footprint curves for prog
4: rd[prog]← reuse distance computed from fp[prog]
5: end for
6: for each even division di = {s1, s2} do
7: for pi in s1 = [p0, p1, p2, p3] do
8: mr[pi]← shared cache miss rate from
9: (rd[pi], fp[pj‖pj ∈ s1, j 6= i])

10: runtime[pi]← time model(mr[pi])
11: end for
12: for pi in s2 = [p4, p5, p6, p7] do
13: mr[pi]← shared cache miss rate from
14: (rd[pi], fp[pj‖pj ∈ s2, j 6= i])
15: runtime[pi]← time model(mr[pi])
16: end for
17: time[di] = max( runtime[pj‖0 ≤ j ≤ 7])
18: end for
19: find dnew, where time[dnew] ≤ time[dj,0≤j≤34]
20: call the remapping routine
21: dold = dnew

Figure 5. The regrouping routine to select the grouping that minimizes
the slowest finish time.

allocated in the close-by memory module. Migration would
lose the processor-memory affinity and cause memory access
to incur additional latency.

For these reasons, we use a remapping routine, shown
in Figure 6, to minimize the number of cross-processor
program migration. It compares the peer groups in the old
and the new grouping. If we assume two peer groups per
grouping, we simply check which group assignment has
fewer migrations and choose that one.

V. EVALUATION

A. Target Machine and Applications

Our testing platform is a machine with two Intel Nehalem
quad-core processors. Each socket has four 2.27GHz cores
sharing an 8MB L3 cache. Private L1 and L2 cache are
32KB and 256KB respectively. The machine organizes the
main memory in a NUMA structure, and each processor has
4GB 1066MHz DDR3 memory local to it. The machine is
installed with Fedora 11 and GCC 4.4.1.

To create a parallel workload, we select the test programs
from the SPEC 2006 benchmark suite. To fairly evaluate
co-run choices by the longest finish time, we select the
programs that have a similar execution time when running
by itself on our test machine.

We have selected 12 programs shown in Table I. The
targeted time for the stand-alone execution is around 10
minutes. We adjusted the input for several programs to nudge
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Procedure remapping routine, called after the regrouping
routine to implement the regrouping with minimal cross-
socket task migration.

1: INPUTS: dold = {s1o, s2o}, dnew = {s1n, s2n}
2: half = s1o

3: list1 ← (half − s1n)
4: if list1 has more than 2 elements then
5: half = s2o

6: list1 ← (half − s1n)
7: end if
8: list2 ← (s1n − half)
9: for (pi, qi) where pi and qi are the i-th elements in list1

and list2 correspondingly do
10: swap pi and qi

11: update the cpu id for pi and qi

12: end for

Figure 6. The remapping routine that minimizes the number of cross-
processor program migration.

benchmark time benchmark time benchmark time
(fp) (sec.) (fp) (sec.) (int) (sec.)
433.milc 530 436.cactus 617 401.bzip2 613
434.zeusmp 704 450.soplex 626 429.mcf 459
437.leslie3d 555 459.Gems 629 458.sjeng 644
444.namd 608 470.lbm 648 462.libquan 693

Table I
BENCHMARK STATISTICS

their run time closer to the target. The stand-alone run time
ranges from 530 seconds to 704 seconds for the 8 floating-
point programs, shown in the two leftmost groups, and from
459 seconds to 693 seconds for the 4 integer programs,
shown in the rightmost group.

We form two workloads from the 12 programs, each with
8 programs. The leftmost 8 programs in Table I form the
floating-point workload. The rightmost 8 programs form the
mixed workload with both floating-point and integer code.
The middle 4 floating-point programs are shared in both
workloads.

B. Effect of Task Regrouping

We compare co-run results in two types of graphs. The
first plots the finish time of the longest running program in
each grouping. The x-axis enumerates all groupings, and the
y-axis shows the slowest finish time. We call it a max-time
co-run graph. For our tests, the x-axis has 35 points for the
35 groupings of 8 programs on two quad-core processors.

The second type of graphs also enumerate all groupings
along the x-axis, but the y-axis shows the finish time for all
the programs. We connect the points of each program in a
line. We call it an all-time co-run graph. For our tests, there
are 8 lines each connecting 35 points in an all-time graph.

The effect of cache sharing: The main results are shown
by the two max-time co-run graphs in Figure 7. The max
finish time for all groupings are sorted from shortest to
longest. We see that multicore program co-runs have a
significant impact in single-program performance. For the
mixed workload, the longest execution when running alone
is 693 seconds. In the 8-program co-run, the shortest time
to finish is 1585 seconds, and the longest 2828 seconds.
The results show the strength and the weakness of the
multicore architecture. The single-program speed is lower,
but the throughput is higher. Cache-conscious scheduling
is important because it may improve single-program speed
from 24% to 43% of the sequential speed and the parallel
throughput from 200% to 350% of the sequential throughput.

The potential benefit is equally significant for the floating-
point workload. The longest stand-alone time is 704 sec-
onds. For the 35 co-runs. Cache-conscious scheduling may
improve single-program speed from 30% to 50% of the
sequential speed and the parallel throughput from 200% to
340% of the sequential throughput.

The difference between the best and the worst co-run
performance is 78% for the mixed workload and 69% for
the floating-point workload. The choice of task grouping is
highly important, considering that the potential improvement
is for each of the 8 programs, not just a single program.

Task regrouping for the mixed workload: We tested five
runs of task regrouping and five runs of the default Linux
scheduling and show the 10 finish times as 10 horizontal
lines in the left-hand side graph in Figure 7. Default Linux
times, plotted in red, are 1687, 1955, 2560, 2578, and
2844 seconds. Task regrouping times, plotted in blue, are
1764, 1892, 1939, 2043, and 2059 seconds. If we take the
geometric mean (to reduce the effect of outliers), the average
finish time in the five runs is 2282 seconds for Linux and
1937 for task regrouping. The improvement is 18%.

In addition to being on average faster, the performance
variation is smaller from run to run when using task regroup-
ing. The difference between the largest and the smallest
numbers in the five runs are 1157 seconds for Linux and
295 seconds for task regrouping, a reduction by a factor of
nearly 4 (3.9).

Task regrouping chooses the same grouping in every run.
Its performance varies for two reasons. The first is that
the current system stops regrouping once one of the 8
programs finishes. The remaining period is at the whim of
the default Linux scheduler. The second is the processor-
memory affinity, which depends on the initial configuration
that varies from run to run.

The all-time co-run graph in Figure 8 shows how indi-
vidual programs are affected by the program co-run. The
groupings are not sorted in the graph. We see that the speed
of some programs, in particular cactus and sjeng, does not
vary with the co-run peers (even though the co-run speed
is significantly slower than stand alone). The speed of other
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Figure 7. Max-time co-run graphs to compare cache-conscious task regrouping with default Linux scheduling and exhaustive testing. (Left) Mixed
floating-point and integer workload. (Right) Floating-point only workload. The choice selected by task regrouping is grouping 27 in both workloads.

Figure 8. All-time co-run graphs. (Left) Mixed floating-point and integer workload. (Right) Floating-point only workload. The choice selected by task
regrouping is grouping 27 in both workloads.

programs, in particular lbm, libq, and soplex, vary by a factor
of 2 in performance depending on who their peers are.

The task regrouping chooses grouping 27, which includes
lbm, soplex, sjeng, bzip2 in one peer group and the rest in
the other peer group. Each peer group has two floating-point
and two integer programs.

Task regrouping for the floating-point workload: For
the floating-point workload, task regrouping does not im-
prove the average finish time. Default Linux runs finish in
1412, 1426, 1709, 1713, and 2223 seconds. Task regrouping

runs finish in 1403, 1576, 1850, 1857, and 1874 seconds.
The geometric mean is 1673 seconds for Linux and 1701
seconds for task regrouping. The latter is 1.7% slower.
However, task regrouping has much smaller variation. The
largest difference between the five runs is 811 seconds for
Linux and 471 seconds for regrouping. The latter is a factor
of 1.7 smaller.

The regrouping chooses also grouping 27, which includes
lbm,milc,leslie3d,namd in one peer group and the rest in the
other peer group. The relatively poor result is partly due to
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benchmark overhead (%) benchmark overhead (%)
436.cactus 18.0 401.bzip2 13.7
450.soplex 1.3 429.mcf 1.2
459.Gems 1.3 458.sjeng 5.1
470.lbm 0.9 462.libquan 1.1

Table II
SAMPLING OVERHEAD WHEN REGROUPING FOR THE MIXED

FLOATING-POINT AND INTEGER WORKLOAD

benchmark overhead (%) benchmark overhead (%)
433.milc 1.0 436.cactus 21.1
434.zeusmp 0.6 450.soplex 0.2
437.leslie3d 0.1 459.Gems 0.3
444.namd 31.2 470.lbm 0.1

Table III
SAMPLING OVERHEAD WHEN REGROUPING FOR THE FLOATING-POINT

WORKLOAD

the accuracy of the model and partly due to overhead of
sampling, which we discuss next.

C. Overhead of On-line Sampling

Sampling has a direct overhead, because it pauses the
base program, and an indirect overhead, because it adds to
cache interference and competes for other resources such as
memory bandwidth. We have measured the first overhead.
Tables II and III show for each program, the total length of
the sampling pause as a portion of the total length of the
co-run execution.

In the mixed workload, the top three overheads are 18%,
14%, and 5%. The rest are between 0.9% and 1.3%. In the
floating-point workload, all overheads are below 1% except
for cactus 21% and namd 31%. The namd cost is likely
a main reason for the relatively poor performance of task
regrouping for the floating-point workload.

VI. RELATED WORK

Cache analysis for HPC systems: Current performance
models focus on parallelism, memory demand, and commu-
nication pattern. The prevalence of two-level parallelism on
multicore systems is widely recognized. A recent example
is Singh et al., who characterized a multicore machine as
an SMP of CMPs and showed the importance of modeling
the two levels in predicting the performance and scalability
in multithreaded HPC applications [28]. In their study, the
cache performance was measured by counting the L1 cache
misses. Sancho et al. evaluated the performance impact on
large-scale code from shared and exclusive use of memory
controllers and memory channels [29]. A fundamental limi-
tation in performance scaling is memory bandwidth, which
depends on how programs share cache on a CMP. Hao et al.
proposed a novel processor design that used data migration
in shared L2 cache to mitigate the NUMA effect [30]. Cache

migration, although reduces latency, does not directly change
the bandwidth demand of a group of tasks.

Most HPC performance tools gather hardware counter
results. An example is Open|SpeedShop, which provides a
real-time display while an MPI program is running [31]. The
emphasis is measurement rather than prediction. HPCView
uses a collection of program metrics including the reuse
distance and can predict cache performance for different
cache sizes and configurations but does not predict the effect
of cache sharing [32]. HPCToolkit can analyze optimized
parallel code with only a few percent overhead [33]. To
control the cost, HPCToolkit does not instrument program
data access.

Multicore cache-aware scheduling: Jiang et al. formu-
lated the problem of optimal scheduling and gave a solution
based on min-weight perfect matching [34]. Since online
scheduling requires low overhead, existing approaches uti-
lize hardware event counters, which can be read at little
cost. For instances, Knauerhase et al. [1], Zhuravlev et
al. [3], and Shen [2] all advocated using the last-level
cache miss rate as the measure of a program’s cache use
intensity. The scheduler then tries to group high-resource-
intensity program(s) with low–resource-intensity program(s)
on a multicore to mitigate the conflicts on shared resources.

However, counter-based approaches have the weakness
that the measured cache performance at one grouping sit-
uation (with a certain set of co-runners on sibling cores)
may not reflect the cache performance in other grouping
situations. For instance, a program may incur substantially
more cache misses after the peers change because its share
of cache space in the new grouping becomes too small for
its working set. In contrast, the lifetime sampling approach
in this paper properly models the cache sharing in all
(hypothetical) program grouping situations. The modeling
is realized at an acceptable cost for online management. It
collects “clean-room” statistics for each program, unaffected
by other co-run programs, program instrumentation or the
analysis process itself.

Locality sampling: A representative system was de-
veloped by Beyls and D’Hollander [10]. It instruments a
program to skip every k accesses and take the next address
as a sample. A bounded number of samples are kept—hence
the name reservoir sampling. To capture the reuse, it checks
each access to see if it reuses some sample data in the
reservoir. The instrumentation code is carefully engineered
in GCC to have just two conditional statements for each
memory access (address and counter checking). Reservoir
sampling reduces the time overhead from 1000-fold slow-
down to only a factor of 5 and the space overhead to within
250MB extra memory. The sampling accuracy is 90% with
95% confidence. The accuracy is measured in reuse time,
not reuse distance or miss rate.

To accurately measure reuse distance, a record must be
kept to count the number of distinct data appeared in a reuse
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window. Bursty reuse distance sampling divides a program
execution into sampling and hibernation periods [9]. In the
sampling period, the counting uses a tree structure and costs
O(log log M) per access. If a reuse window extends beyond
a sampling period into the subsequent hibernation period,
counting uses a hash-table, which reduces the cost to O(1)
per access. Multicore reuse distance analysis uses a similar
scheme for analyzing multi-threaded code [8]. Its fast mode
improves over hibernation by omitting the hash-table access
at times when no samples are being tracked. Both methods
track reuse distance accurately.

StatCache is based on unbiased uniform sampling [12].
After a data sample is selected, StatCache puts the page
under the OS protection (at page granularity) to capture
the next access to the same datum. It uses the hardware
counters to measure the time distance till the reuse. Time-
based conversion is used in reuse distance profiling [35] and
recently modeling cache sharing [14]. Another approach,
more efficient but not entirely data driven, is to assume
common properties in data access and distinguish programs
through parameter fitting [36], [37].

Continuous program optimization (CPO) uses the special
support in an experimental IBM system to mark exact
data addresses [11]. Subsequent accesses to marked data
are trapped by hardware and reported to software. Simi-
lar hardware support has been used to predict the miss-
rate curve [38] and quantify data locality [39]. Hardware
sampling, however, is necessarily sparse or short in order
to be efficient. StatCache and CPO use a small number of
samples. HPCToolkit is constrained by the hardware limit of
64K events on the AMD machine [39]. Lifetime sampling is
based on the locality theory described in Section II. It instru-
ments and collects the data access trace as long as needed
based on the cache lifetime. The current implementation is
entirely software, which is portable. Lifetime sampling may
take advantage of special hardware and OS support if they
are available.

VII. SUMMARY

We have presented cache-conscious task regrouping, a
system that reorganizes multicore co-run executions to min-
imize interference in shared cache. We have developed algo-
rithms for lifetime sampling, group sampling, task regroup-
ing, and task remapping. When evaluated using 12 SPEC
2006 benchmarks, cache-conscious regrouping significantly
improved over Linux scheduling for mixed floating-point
and integer workload while gave a similar result for the
floating-point workload. In both workloads, it reduced the
run-to-run performance variation by factors of 2 and 4. The
on-line sampling overhead was negligible for most of the
tested programs but could be as high as 30% for a small
number of programs.
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