
UNIVERSITY of CALIFORNIA
Santa Barbara

Clustering� Resource Management� and Replication Support for

Scalable Network Services

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Kai Shen

Committee in charge�

Professor Tao Yang� Chair
Professor Anurag Acharya
Professor Linda R� Petzold
Professor Klaus E� Schauser

September ����

The dissertation of Kai Shen is approved�

Anurag Acharya

Linda R� Petzold

Klaus E� Schauser

Tao Yang� Committee Chair

July ����

Clustering� Resource Management� and Replication Support for

Scalable Network Services

Copyright ����

by

Kai Shen

iii

Acknowledgements

I want to take this opportunity to thank my advisor Professor Tao Yang for

his invaluable advice and instructions to me on selecting interesting and chal�

lenging research topics� identifying speci�c problems for each research phase�

as well as preparing for my future career�

I also want to thank members of my research group� Lingkun Chu� and

Hong Tang� for their incessant support in the forms of technical discussion�

system co�development� cluster administration� and other research activities�

Finally� I want to thank my dissertation committee members� Professor

Anurag Acharya� Professor Linda R� Petzold� and Professor Klaus E� Schauser

for their insightful comments over my dissertation� I also want to thank Pro�

fessor Acharya and Professor Schauser for their invaluable advice and help

during my career search�

This dissertation study was supported in part by NSF CCR�����	
�� NSF

ITR�ACS�����			� and NSF ITR�ACS����	�	�

iv

Curriculum Vit�

Kai Shen

Personal

Name Kai Shen

Date of Birth September �� ��	

Place of Birth Nanjing� China

Nationality China

Email kshen�cs�ucsb�edu

Education

������	 B�S� in Computer Science and Engineering� Shanghai Jiao�

tong University� Shanghai� China�

Publications

� Kai Shen� Hong Tang� Tao Yang� and Lingkun Chu� Integrated Resource

Management for Cluster�based Internet Services� To appear in Proceed�

ings of the �th USENIX Symposium on Operating Systems Design and

Implementation �OSDI����� December �����

v

� Kai Shen� Tao Yang� and Lingkun Chu� Cluster Load Balancing for Fine�

grain Network Services� In Proceedings of International Parallel and Dis�

tributed Processing Symposium �IPDPS����� April �����

� Kai Shen� Tao Yang� Lingkun Chu� JoAnne L� Holliday� Douglas A�

Kuschner� Huican Zhu� Neptune� Scalable Replica Management and Pro�

gramming Support for Cluster�based Network Services� In Proceedings

of the �rd USENIX Symposium on Internet Technologies and Systems

�USITS���� pages ������� March ����

� Hong Tang� Kai Shen� and Tao Yang� Program Transformation and Run�

time Support for Threaded MPI Execution on Shared Memory Machines�

ACM Transactions on Programming Languages and Systems� Vol� ���

No�
� pages 	������� ����

� Kai Shen� Xiangmin Jiao and Tao Yang� S�� E�cient �D Sparse LU

Factorization on Parallel Machines� In SIAM Journal on Matrix Analysis

and Applications �SIMAX�� Vol� ��� No� � pages �������� �����

� Kai Shen� Hong Tang� and Tao Yang� Adaptive Two�level Thread Man�

agement for Fast MPI Execution on Shared Memory Machines� In Pro�

ceedings of IEEE�ACM High Performance Networking and Computing

vi

Conference �SC����� November� ����

� Hong Tang� Kai Shen� and Tao Yang� Compile�Run�time Support for

Threaded MPI Execution on Multiprogrammed Shared Memory Ma�

chines� In Proceedings of �th ACM Symposium on Principles and Prac�

tice of Parallel Programming �PPoPP����� pages ����� May ����

� Bin Jiang� Steven Richman� Kai Shen� and Tao Yang� Fast Sparse LU

Factorization with Lazy Space Allocation� In Proceedings of SIAM Par�

allel Processing Conference on Scienti�c Computing� March ����

� Anurag Acharya� Huican Zhu� and Kai Shen� Adaptive Algorithm for

Cache�e�cient Trie Search� In ACM�SIAM Workshop on Algorithm En�

gineering and Experimentation �ALENEX����� January ����

� Kai Shen� Xiangmin Jiao and Tao Yang� Elimination Forest Guided �D

Sparse LU Factorization� In Proceedings of �th ACM Symposium on

Parallel Architectures and Algorithms �SPAA����� pages ���� June ����

vii

Abstract

Clustering� Resource Management� and Replication Support for Scalable

Network Services

by

Kai Shen

With the increasing demand of providing highly scalable� available and

easy�to�manage services� the deployment of large�scale complex server clusters

has been rapidly emerging in which service components are usually partitioned�

replicated� and aggregated� This dissertation investigates techniques in build�

ing a middleware system� called Neptune� that provides clustering support for

scalable network services� In particular� Neptune addresses three speci�c as�

pects in support of network service clustering� � the development of a �exible

and scalable clustering architecture with e�cient load balancing support for

�ne�grain services� �� the design and implementation of an integrated resource

management framework that combines the �response time��based service qual�

ity� overall resource utilization e�ciency� and service di�erentiation support�

and �� the design and implementation of a service replication framework fo�

viii

cusing on providing �exible replica consistency� performance scalability� and

failure recovery support� Neptune has been implemented on Linux and So�

laris clusters and a number of applications have been successfully deployed on

Neptune platforms� including a large�scale document search engine�

ix

Contents

� Introduction �

� Problem Statement and Motivation � � � � � � � � � � � � � � �
�� Neptune Clustering Architecture with Load Balancing

Support �
��� Quality�Aware Resource Management � � � � � � � � � � 	
��� Service Replication �

�� Overview �

� Neptune Clustering Architecture ��

�� Introduction �
��� Overall Clustering Architecture � � � � � � � � � � � � � � � � � �
��� Neptune Programming Interfaces � � � � � � � � � � � � � � � � ��
��
 System Implementation and Service Deployments � � � � � � � ��
��� Related Work ��
��	 Concluding Remarks ��

� Cluster Load Balancing ��

�� Introduction ��
��� Evaluation Workload ��

��� Simulation Studies ��
���� Accuracy of Load Information � � � � � � � � � � � � � � �	
����� Broadcast Policy �
�
����� Random Polling Policy � � � � � � � � � � � � � � � � � �
�
����
 Summary of Simulation Studies � � � � � � � � � � � � �

��� System Design and Implementation � � � � � � � � � � � � � � �
�

x

���� System Architecture � � � � � � � � � � � � � � � � � � �
	
����� Discarding Slow�responding Polls � � � � � � � � � � � �
�

��
 Experimental Evaluations �
�
��
� Evaluation on Poll Size � � � � � � � � � � � � � � � � � � ��
��
�� Improvement of Discarding Slow�responding Polls � � � �

��� Related Work ��
��	 Concluding Remarks ��

� Quality�Aware Resource Management ��

� Introduction ��

�� Resource Management Objective � � � � � � � � � � � � � � � � 	�

��� Quality�aware Resource Utilization � � � � � � � � � � � 	�

���� Service Di�erentiation � � � � � � � � � � � � � � � � � � 	�

�� Two�level Request Distribution and Scheduling � � � � � � � � ��

�
 Node�level Service Scheduling � � � � � � � � � � � � � � � � � � �

�
� Estimating Resource Consumption for Allocation Guar�
antee ��

�
�� Achieving High Aggregate Yield � � � � � � � � � � � � � ��

�� System Implementation and Experimental Evaluations � � � � ��

��� Evaluation Workloads � � � � � � � � � � � � � � � � � � ��

���� Evaluation on Node�level Scheduling and Service Di�er�

entiation ��

���� Evaluation on Request Distribution across Replicated

Servers ��

���
 Service Di�erentiation during Demand Spikes and Server

Failures ��

�	 Related Work �

�� Concluding Remarks �	

� Service Replication 		

�� Introduction ��
��� Assumptions ��

��� Replica Consistency and Failure Recovery � � � � � � � � � � � �

���� Multi�level Consistency Model � � � � � � � � � � � � � � �	
����� Failure Recovery �

��� Service Deployments �

��
 System Evaluations � 	

xi

��
� Scalability under Balanced Workload � � � � � � � � � � �
��
�� Impact of Workload Imbalance � � � � � � � � � � � � � �
��
�� System Behavior during Failure Recoveries � � � � � � � �

��
�
 Auction and Persistent Cache � � � � � � � � � � � � � � ��

��� Related Work ��
��	 Concluding Remarks ��

 Conclusion and Future Work ���

Bibliography ��

xii

List of Figures

�� Service cluster architecture for a document search engine� � � �
��� Service cluster architecture for a discussion group and photo

album service� �
��� Architecture of a Neptune server node� � � � � � � � � � � � � � �
��
 Clustering using Neptune� �
��� Interaction among service modules and Neptune modules during

a request�response service invocation� � � � � � � � � � � � � � � �

�� Impact of delay on load index inaccuracy with server �simu�
lation�� ��

��� Impact of broadcast frequency with 	 servers �simulation�� � �

��� Impact of poll size with 	 servers �simulation�� � � � � � � � �
�
��
 The client�server architecture in Neptune service infrastructure�
�
��� Impact of poll size based on experiments with 	 servers� � � � ��

� Service cluster architecture for a document search engine� � � � ��

�� Illustration of service yield functions� � � � � � � � � � � � � � � 	�

�� Two�level request distribution and scheduling� � � � � � � � � � �

�
 Runtime environment of a service node� � � � � � � � � � � � � � ��

�� The node�level service scheduling algorithm� � � � � � � � � � � �	

�	 Service yield functions in evaluation workloads� � � � � � � � � �

�� Search requests to Ask Jeeves search via one of its edge Web

servers �January 	��� ������ ��

�� Performance of scheduling policies on Micro�benchmark� � � � ��

�� Performance of scheduling policies on Di�erentiated Search� � ��

xiii

�� Per�class performance breakdown of Di�erentiation Search at
���� arrival demand� ��

� Performance and scalability of request distribution schemes� � �

�� System behavior during demand spike and server failure with

	 servers� Di�erentiated Search with ��� resource guarantee
for each class is used� One server �allocated to the Gold class
under server partitioning� fails at time ��� and it recovers at
time ���� ��

�� Scalability of discussion group service under balanced workload� �
��� Impact of workload imbalance on the replication degrees with

� service nodes� ��
��� Impact of workload imbalance on consistency levels with � ser�

vice nodes� ��
��
 Behavior of the discussion group service during three node fail�

ure and recoveries� Eight service nodes� level two consistency�
and a replication degree of four were used in this experiment� � �

��� Performance of auction on Neptune� � � � � � � � � � � � � � � � �	
��	 Performance of persistent cache on Neptune� � � � � � � � � � � ��

xiv

List of Tables

�� Statistics of evaluation traces� Medium�Grain trace contains
�������� accesses with �	��� of them in the peak portion�
Fine�Grain trace contains ������ accesses with ������ of them
in the peak portion� ��

��� Performance improvement of discarding slow�responding polls
with poll size � and server ��� busy� � � � � � � � � � � � � � � ��

� Summary of scheduling policies� � � � � � � � � � � � � � � � � � �

�� Statistics of evaluation traces� � � � � � � � � � � � � � � � � � � �	

xv

Chapter �

Introduction

��� Problem Statement and Motivation

The ubiquity of the Internet and various intranets has resulted in the

widespread availability of services and applications accessible through the net�

work� Examples include document search engines� online digital libraries� dis�

cussion forums� and electronic commerce ��� �� ���
��
��� These network

services are exploding in popularity for several reasons� First� they are easier

to manage and evolve than their o�ine counterparts by eliminating the need

for software distribution and compatibility issues with multiple platforms and

versions� Secondly� they make it economical to deliver resource�intensive ap�

CHAPTER �� INTRODUCTION

plications and services to a large number of users in real�time� The growth

of popularity for network services� however� poses challenges for the design of

server systems in terms of scalability� availability� and manageability� Scalabil�

ity requires that the increase in hardware resources can maintain a correspond�

ing increase in system throughput and storage capacity� Availability requires

the services to be operational despite transient hardware or software failures�

Manageability calls for the ease of extending� recon�guring� and maintaining

the service infrastructure�

Because of the recent advances in clustering technologies and its cost�

e�ectiveness in achieving high availability and incremental scalability� com�

puter clusters are increasingly recognized as the architecture of choice for scal�

able network services� especially when the system experiences high growth in

service evolution and user demands ���
�� 	�� ���� Within a large�scale com�

plex service cluster� service components are usually partitioned� replicated�

and aggregated� Partitioning is introduced when the service processing re�

quirement or data volume exceeds the capacity of a single server node� Service

replication is commonly employed to improve the system availability and pro�

vide load sharing� In addition� the service logic itself may be too complicated

such that it needs to be partitioned into multiple service components� Partial

�

CHAPTER �� INTRODUCTION

results may need to be aggregated across multiple data partitions or multiple

service modules� and then delivered to external users�

Despite its importance� service clustering to achieve high scalability� avail�

ability� and manageability remains a challenging task for service authors in

designing and deploying services� And this is especially true for services with

frequently updated persistent service data� In recognizing this importance and

the associated challenges� my thesis is that

It is possible to build a �exible� scalable� and highly available infras�

tructure supporting service clustering� load balancing� resource man�

agement� and service replication for clustered�based network services

with highly concurrent request tra�c and frequently updated persistent

service data�

In other words� the main goal of this study is to answer the following

question� Given a service application running on a single machine with a

modest amount of service data� how can such a service be expanded quickly to

run on a cluster environment for handling a large volume of concurrent request

tra�c with large�scale persistent service data� This dissertation investigates

techniques in building a middleware system� called Neptune� that provides

clustering support for scalable network services �	�� ��� ��� In particular� it

contains the following contributions to establish my thesis�

�

CHAPTER �� INTRODUCTION

� The development of a �exible and scalable clustering architecture with

e�cient load balancing support for �ne�grain services�

� The design and implementation of an integrated resource management

framework that combines the �response time��based service quality� over�

all system resource utilization e�ciency� and service di�erentiation sup�

port�

� The design and implementation of a service replication framework that

focuses on providing �exible replica consistency� performance scalability�

and failure recovery support to large�scale network services based on a

variety of underlying data management mechanisms�

� Successful deployment of a number of applications on the proposed and

developed system� including a document search engine� a scienti�c data

mining application� and three other services involving frequently updated

persistent service data�

CHAPTER �� INTRODUCTION

����� Neptune Clustering Architecture with Load Bal�

ancing Support

The goal of Neptune clustering architecture is to propose a simple� �exible

yet e�cient model in aggregating and replicating network service modules�

Neptune employs a loosely�connected and functionally�symmetrical clustering

architecture for high scalability and availability� This architecture also al�

lows complex multi�tier services to be easily supported� In addition� Neptune

provides simple programming interfaces that make it easy to deploy existing

applications and shield application programmers from clustering complexities�

Overall� this architecture serves as the basis for further clustering supports

including data replication� service discovery� load balancing� resource manage�

ment� failure detection and recovery�

Previous research has proposed and evaluated various load balancing poli�

cies for cluster�based distributed systems ��� �� ��� ���
�� ��� 	� ��� ����

These studies are mainly focused on coarse�grain computation and they often

ignore �ne�grain jobs by simply processing them locally� In the context of net�

work services� with the trend toward delivering more feature�rich services in

real time� large number of �ne�grain sub�services need to be aggregated within

�

CHAPTER �� INTRODUCTION

a short period of time� This dissertation investigates cluster load balancing

techniques with the focus on �ne�grain services� Based on simulation and ex�

perimental studies� this dissertation �nds that the random polling policy with

small poll sizes are well�suited for �ne�grain network services� And discarding

slow�responding polls can further improve system performance�

����� Quality�Aware Resource Management

Previous studies show that the client request rates for Internet services

tend to be bursty and �uctuate dramatically from time to time ��� ��� ����

For example� the daily peak�to�average load ratio at Internet search service

Ask Jeeves �www�ask�com� is typically �� and it can be much higher and un�

predictable in the presence of extraordinary events� Over�provisioning system

resources for a service site to accommodate the potential peak will not be

cost�e�ective� As a consequence� it is desirable to achieve e�cient resource

utilization for those services under a wide range of load conditions�

Network clients typically seek services interactively and maintaining rea�

sonable response times is imperative� In addition� providing di�erentiated

service qualities and resource allocation to multiple service classes can also be

desirable at times� especially when the system is reaching its capacity limit

	

CHAPTER �� INTRODUCTION

and cannot provide interactive responses to all the requests� Quality of ser�

vice �QoS� support and service di�erentiation have been studied extensively in

network packet switching with respect to packet delay and connection band�

width ��� ��� ��� �
�� It is equally important to extend network�level QoS sup�

port to endpoint systems where service ful�llment and content generation take

place� Those issues are especially critical for cluster�based network services in

which contents are dynamically generated and aggregated ���
��
�� 	���

This dissertation presents the design and implementation of an integrated

quality�aware resource management framework for cluster�based services� Al�

though cluster�based network services have been widely deployed� we have

seen limited research in the literature on comprehensive resource manage�

ment with service di�erentiation support� Recent studies on endpoint resource

management and QoS support have been mostly focused on single�host sys�

tems �� 	�
� �� ��� ��� ��� or clustered systems serving static HTTP con�

tent ��� 	��� In comparison� this dissertation study is intended for clustered

services with dynamic service ful�llment or content generation� In particular�

it addresses the inadequacy of the previous studies and complements them in

the following three aspects� First� it allows quality�aware resource management

objectives which combine the individual service response times with the over�

�

CHAPTER �� INTRODUCTION

all system resource utilization e�ciency� Secondly� it employs a functionally

symmetrical architecture that does not rely on any centralized components for

high scalability and availability� Thirdly� it uses an adaptive scheduling policy

that achieves e�cient resource utilization at a wide range of load conditions�

����� Service Replication

Replication of persistent data is crucial to load sharing and achieving high

availability� Previous work has shown that synchronous replication based on

eager update propagations does not deliver scalable solutions ���

�� Various

asynchronous models have been proposed for wide�area or wireless distributed

systems ��� ��

� 		� ��� However� these studies have not explicitly address

the high scalability�availability demand and potentially weak consistency re�

quirement of large�scale network services� Additional studies are needed to

investigate the replica consistency and fail�over support for large�scale cluster�

based Internet services�

This dissertation study is built upon a large body of previous research

in network service clustering� fault�tolerance� and data replication� The goal

of this work is to provide �exible and e�cient service replication support for

network services with frequently updated persistent data� This model should

�

CHAPTER �� INTRODUCTION

make it simple to deploy existing applications and shield application program�

mers from the complexities of replica consistency and fail�over support� It

also needs to have the �exibility to accommodate a variety of data manage�

ment mechanisms that network services typically rely on� Under the above

consideration� our system is designed to support multiple levels of replica con�

sistency depending on application characteristics� The objective is to provide

the desired level of replica consistency for large�scale Internet services with the

emphasis on performance scalability and fail�over support�

��� Overview

The rest of this dissertation is organized as follows� Chapter � presents the

overall Neptune clustering architecture and programming interfaces� Chap�

ter � describes cluster load balancing support with the focus on �ne�grain

services� Chapter
 discusses an integrated resource management framework

for scalable network services� Chapter � describes a study on multi�level ser�

vice replication support� Chapter 	 concludes this dissertation and brie�y

discusses some potential future work�

�

Chapter �

Neptune Clustering

Architecture

��� Introduction

Large�scale cluster�based network services are increasingly emerging to de�

liver highly scalable� available� and feature�rich user experiences� Within a

large�scale complex service cluster� service components are usually partitioned�

replicated� and aggregated� Partitioning is introduced when the service pro�

cessing requirement or data volume exceeds the capacity of a single server node�

Service replication is commonly employed to improve the system availability

�

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

and provide load sharing� In addition� the service logic itself may be too com�

plicated such that it needs to be partitioned into multiple service components�

Partial results may need to be aggregated across multiple data partitions or

multiple service modules� and then delivered to external users�

High-throughput low-

latency network

Service cluster

Business

partner

Business

partner

Index

server

Partition 1

Index

server

Partition 1

Index

server

Partition 1
Index

server

Partition 2

Index

server

Partition 2

Index

server

Partition 2

Doc

server

Partition 1

Doc

server

Partition 1

Doc

server

Partition 1

Doc

server

Partition 2

Doc

server

Partition 2

Doc

server

Partition 2Doc

server

Partition 3

Doc

server

Partition 3

Doc

server

Partition 3

XML

gateway

XML

gateway

XML

gateway

Web

server

Web

server

Web

server

Figure ��� Service cluster architecture for a document search engine�

Figure �� illustrates such a clustering architecture for a document search

engine ���
��� In this example� the service cluster delivers search services

to consumers and business partners through Web servers and XML gateways�

Inside the cluster� the main search tasks are performed on a set of index

servers and document servers� both partitioned and replicated� Each search

query �rst arrives at one of the protocol gateways� Then some index servers are

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

contacted to retrieve the identi�cations of top ranked Web pages matching the

search query� Subsequently some document servers are mobilized to retrieve a

short description of these pages and the �nal results are returned through the

original protocol gateway�

High-throughput low-

latency network

Service cluster

Index

server

Partition 1

Index

server

Partition 1

Photo

album

Partition 1

Index

server

Partition 2

Index

server

Partition 2

Image

store

Partition 1

Doc

server

Partition 1

Doc

server

Partition 1

Image

store

Partition 2

Doc server

Partition 3

Doc server

Partition 3

Discussion

group

Partition 1

WAP

gateway

WAP

gateway

WAP

gateway

Web

server

Web

server

Web

server

Figure ���� Service cluster architecture for a discussion group and photo album
service�

As another example� Figure ��� illustrates the service cluster architecture

for a discussion group and photo album service� similar to MSN Groups �
���

We call this service the Groups service� In this case� the service cluster delivers

a discussion group and a photo album service to wide�area browsers and wire�

less clients through Web servers and WAP gateways� The discussion group

service is delivered independently while the photo album service relies on an

�

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

internal image store service� All the components �including protocol gate�

ways� are replicated� In addition� the image store service is partitioned into

two partition groups� The Groups service di�ers from the document search in

two ways� First� all service components are directly invoked by the protocol

gateways in document search� In the Groups service� however� the service in�

vocation is hierarchical in that the image store is only invoked by the photo

album service components� Secondly� external service requests are read�only

toward persistent service data for document search while data updates can be

triggered by external requests for the Groups service�

Given a service application running on a single machine with a modest

amount of persistent data� how can such a service be expanded quickly to run

on a cluster environment for handling a large volume of concurrent request

tra�c with large�scale persistent service data� Scalability and availability are

two main goals that need to be considered� Scalability demands that the in�

crease in hardware resources can maintain a corresponding increase in system

throughput and storage capacity� Availability requires the systems to be op�

erational despite transient hardware or software failures� Previous work has

recognized the importance of providing software infrastructures for cluster�

based network services� For example� the TACC and MultiSpace projects

�

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

have addressed the fail�over support� component reusability and extensibility

for cluster�based services �
��
��� These systems do not provide explicit sup�

port for services with large�scale persistent service data� Recently the DDS

project tackles such an issue with a carefully built data management layer that

encapsulates scalable replica consistency and fail�over support �
	�� While this

approach is demonstrated for services with simple processing logic like dis�

tributed hash tables� constructing such a data management layer tends to

be di�cult for applications with complex data management logic� including

many database applications� One such example is the previously described

discussion group and photo album service�

This dissertation investigates techniques in building a middleware system�

called Neptune� that provides clustering support for scalable network services�

Neptune employs a loosely�connected and functionally�symmetrical approach

in constructing the service cluster� This architecture allows Neptune service

infrastructure to operate smoothly in the presence of transient failures and

through service evolution� In addition� Neptune provides simple programming

interfaces that make it easy to deploy existing applications and shield applica�

tion programmers from clustering complexities� Generally speaking� providing

standard system components to achieve scalability and availability tends to

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

decrease the �exibility of service construction� Neptune demonstrates that it

is possible to achieve these goals by targeting partitionable network services�

The rest of this chapter is organized as follows� Section ��� presents the over�

all Neptune clustering architecture� Section ��� describes the programming

interfaces� Section ��
 discusses the system implementation and a number

of applications that have been successfully deployed� Section ��� examines

related work and Section ��	 concludes this chapter�

��� Overall Clustering Architecture

Neptune�s design takes advantage of the following characteristics existing in

many Internet services� � Information independence� Network services tend

to host a large amount of information addressing di�erent and independent

categories� For example� an auction site hosts di�erent categories of items�

Every bid only accesses data concerning a single item� thus providing an intu�

itive way to partition the data� �� User independence� Information accessed

by di�erent users tends to be independent� Therefore� data may also be par�

titioned according to user accounts� Email service and Web page hosting are

two examples of this� With these characteristics in mind� Neptune is targeted

�

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

at partitionable network services in the sense that persistent data manipulated

by such a service can be divided into a large number of independent partitions

and each service access can be delivered independently on a single partition� or

each access is an aggregate of a set of sub�accesses each of which can be com�

pleted independently on a single partition� With fast growing and wide�spread

usage of Internet applications� partitionable network services are increasingly

common�

Neptune encapsulates an application�level network service through a ser�

vice access interface which contains several RPC�like access methods� Each

service access through one of these methods can be ful�lled exclusively on

one data partition� Neptune employs a functionally symmetrical approach in

constructing the server cluster� Every node in the cluster contains the same

Neptune components and is equipped with the same clustering capabilities�

Each cluster node can elect to host service modules with certain data par�

titions and it can also access service modules hosted at other nodes in the

cluster� Within a Neptune cluster� all the nodes are loosely connected through

a well�known publish�subscribe channel� This channel can be implemented

using IP multicast or through a highly available well�known central directory�

Figure ��� illustrates the architecture of a Neptune node� Again� since

	

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

Request

dispatcher

Availability

publisher

Requests

Request

queue
Availability

listener

Service

yellow page

Load index

server

Load polling

agent

Thread

pool

Service

data

Figure ���� Architecture of a Neptune server node�

Neptune service cluster is functionally symmetrical� all the nodes are based

on the same architecture� The key components are described as follows� The

request dispatcher directs an incoming request to the hosted service module

which contains a request queue and a pool of worker threads or processes�

When all worker threads or processes are busy� subsequent requests will be

queued� This scheme allows a Neptune server to gracefully handle spikes in

the request volume while maintaining a desired level of concurrency� The

availability publisher periodically announces the locally hosted service module�

the data partitions� and the access interface to other nodes in the cluster�

The availability listener monitors those announcements from other nodes and

�

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

maintains a local service yellow page containing available service modules and

their locations in the cluster� The availability information in the yellow page

is kept as soft state such that it has to be refreshed repeatedly to stay alive�

This allows node failures and system upgrades to be handled smoothly without

complex protocol handshakes� When one node needs to access a service module

hosted in the cluster� it �rst contacts the local service yellow page to acquire

the list of nodes in the cluster able to provide the requested service� Then it

randomly chooses a certain number of them and polls for their load indexes

through a load polling agent� The polls are responded by load index servers

at the polled servers� The requesting node �nally forwards the request to the

server responding with the lightest load index�

Figure ��
 illustrates the use of Neptune in application clustering� The

request dispatcher� request queue� thread�process pool� availability publisher�

and load index server can be considered as server�side components in a service

invocation� and they are in aggregate called Neptune server module� Similarly�

the availability listener� service yellow page� and the load polling agent are to�

gether calledNeptune client module� In the Groups service shown in Figure ����

each photo album service instance locates and accesses an image store service

instance through the local Neptune client module� In addition� each gateway

�

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

Cluster environment

Node 1Neptune server

module

Service

instance

Requests

Neptune client

module

Requests

Access other service

modules

Clustering

using Neptune

Service

instance

Service

instance

Service

instance

Node NNeptune server

module

Neptune client

module

Requests

Access other service

modules

Service

instance

Service

instance

Service

instance
… ...

Figure ��
� Clustering using Neptune�

node relies on the same Neptune client module to export the discussion group

and photo album service to external users� Overall� the loosely�connected and

functionally�symmetrical architecture allows Neptune service infrastructure to

operate smoothly in the presence of transient failures and through service evo�

lution�

In a Neptune�enabled service cluster� the application�level service program�

mer only needs to implement the stand�alone application modules� The ag�

gregation of multiple data partitions or application modules as well as data

replication are supported transparently by Neptune clustering modules� Data

replication introduces the complexities of load balancing and consistency en�

�

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

forcement� We will examine cluster load balancing in Chapter � and replica

consistency support will be the main focus of Chapter ��

��� Neptune Programming Interfaces

Neptune supports two communication schemes between service clients and

service instances inside the service cluster� a request�response scheme and a

stream�based scheme� In the request�response scheme� the service client and

the server instance communicate with each other through a request message

and a response message� For the stream�based scheme� Neptune sets up a

bidirectional stream between the client and the service instance as a result of

the service invocation� Stream�based communication can be used for asyn�

chronous service invocation and it also allows multiple rounds of interaction

between the client and the service instance� Currently Neptune only supports

stream�based communication for read�only service accesses because of the com�

plication in replicating and logging streams� The rest of this section focuses on

the programming interfaces for the request�response communication scheme�

The model for stream�based communications can be easily inferred�

For the simplicity of the following discussion� we classify a service access

��

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

as a read access �or read in short� if it does not change the persistent service

data� or as a write access �or write in short� otherwise�

Service

instance partitioned

data

Neptune

server

module

Server node

data request

data response

Service

client

Neptune

client

module

Client node

Figure ���� Interaction among service modules and Neptune modules during
a request�response service invocation�

Figure ��� illustrates the interaction among service modules and Neptune

modules during a request�response service invocation� Basically� each service

access request is made by the client with a service name� a data partition ID�

a service method name� and a read�write access mode� as discussed below on

the client interface� Then the Neptune client module transparently selects a

service node based on the service�partition availability� access mode� consis�

tency requirement� runtime workload� and the load balancing policy� Upon

receiving the request� the Neptune server module in the chosen node spawns

a service instance to serve the request and return the response message when

it completes� Further request propagations may occur in the case of service

replication� which will be discussed in detail in Chapter ��

We discuss below the interfaces between Neptune and service modules at

�

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

both the client and the server sides for the request�response communication

scheme�

� At the client side� Neptune provides a uni�ed interface to service clients

for seeking location�transparent request�response service access� It is

shown below in a language�neutral format�

NeptuneRequest �NeptuneHandle� ServiceName� PartitionID�

ServiceMethod� AccessMode� RequestMsg� ResponseMsg��

A NeptuneHandle should be used in every service request that a client

invokes� It maintains the information related to each client session� The

meanings of other parameters are straightforward�

� At the server side� all the service method implementations need to be

registered at the service deployment phase� This allows the Neptune

server module to invoke the corresponding service instance when a service

request is received�

��

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

��� System Implementation and Service De�

ployments

Neptune has been implemented on Linux and Solaris clusters� The pub�

lish�subscribe channel is implemented using IP multicast� Each multicast

message contains the service announcement and node runtime CPU and I�O

workload� acquired through Linux �proc �le system� Note that this informa�

tion is only used for monitoring purpose and it is not meant for load balancing�

We try to limit the size of each multicast packet to be within an Ethernet max�

imum transmission unit �MTU� in order to minimize the multicast overhead� We

let each node send the multicast message once every second and the published

information is kept as soft state� expiring in �ve seconds� That means a faulty

node will be detected when �ve of its multicast messages are not heard in a

row� This �soft state��based node aliveness information can be inaccurate at

times� especially for servers that keep going up and down� As a result� service

connection setup may fail due to false node aliveness information� Neptune

attempts three retries in these cases� after which failing nodes are excluded

from local service yellow page� Those failing nodes will be added back when

future availability announcements are heard�

��

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

Inside each service node� the service instance could be compiled into a dy�

namically linked library� They are linked into Neptune process space at run�

time and run as threads� Note that di�erent service modules can be compiled

into di�erent library binaries to simplify partial service upgrade� Alternatively�

each service instance could run as a separate OS process� which would provide

better fault isolation and resource control at the cost of degraded performance�

Running service instances as separate processes also allow existing application

binaries being deployed in a Neptune cluster without the need of recompila�

tion� In choosing between thread and process�based deployment� the rule of

thumb is to pick threads for simple and short�running services while using

processes for complex and large service modules�

Cross�platform compatibility is a major goal of this implementation� All

inter�node protocol messages are compatible at the binary level� All multi�

byte numbers are ordered to the big�endian before sending out and they are

transformed to the host order after being received� Neptune has been deployed

in service clusters containing nodes of both Linux�Intel and Solaris�SPARC

architectures� This experience demonstrates Neptune�s cross�platform com�

patibility�

Overall� this implementation incurs moderate overhead� For instance� we

�

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

implemented an echo service on top of a Neptune�enable service cluster� The

echo service simply responds to the client with a message identical to the

request message� The cluster is comprised of nodes with dual
�� Mhz Pen�

tium II processors running Linux ������ All the nodes are connected with a

�� Mb�s switched Ethernet� The response time of such an echo service is

measured at �� us excluding the polling overhead incurred in service load

balancing� Excluding the TCP roundtrip time with connection setup and tear�

down which is measured at �� us� Neptune is responsible for an overhead of

�� us in each service invocation�

Service Deployments

So far we have deployed a document search engine� a scienti�c data mining

application� and three demonstration services on Neptune clusters� described

as follows�

� Document search� This service takes in a group of encoded query words�

checks a memory mapped index database� and returns the identi�cations

of the list of documents matching the input query words� An earlier ver�

sion of Neptune has been deployed in Ask Jeeves search �www�ask�com�

for Web document searching� This Neptune�enabled Solaris cluster hosts

��

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

an index of about ��� million Web documents and is capable of serving

over �� million requests a day �the actual daily tra�c varies��

� Nucleotide and protein sequence similarity matching� We have also de�

ployed the nucleotide and protein sequence similarity matching applica�

tion BLAST ��� from National Center for Biotechnology Information on

a Linux cluster� Unlike other deployed services that service instances

run as threads to gain e�ciency� service instances in this case run as

OS processes such that the original application binaries can be used di�

rectly without the need of recompilation� Currently we have maintained

a nucleotide and protein sequence database with around 	�
 GB data�

acquired from GenBank �	��

� Online discussion group� auction and persistent cache� These three

demonstration services are developed on a Linux cluster� Here we de�

scribe the discussion group service in more detail� Other services will be

explained when they are used in later chapters� The discussion group

handles three types of requests for each discussion topic� viewing the

list of message headers �ViewHeaders�� viewing the content of a message

�ViewMsg�� and adding a new message �AddMsg�� Both ViewHeaders

�	

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

and ViewMsg are read�only requests� The messages are maintained and

displayed in a hierarchical format according to the reply�to relation�

ships among them� The discussion group relies on underlying MySQL

databases to store and retrieve messages and discussion topics�

��� Related Work

Software infrastructure for clustered services� Previous work has

addressed providing clustering support for network service transformation�

aggregation� and composition ���
�� �
�� For instance� the TACC project

employs a two�tier architecture and the service components called �workers�

run on di�erent back�ends while accesses to workers are controlled by front�

ends which dispatch incoming requests to back�ends �
��� Most of these stud�

ies propose two�tier clustering architecture and rely on central components

to maintain the server runtime workload information� Neptune employs a

loosely�connected and functionally�symmetrical architecture that allows com�

plex multi�tier services to be easily supported� In addition� this architecture

does not contain any centralized components so that component failures do

not cause system�wide catastrophe�

��

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

Fail�over and service migration support� Providing service fail�over

and migration support for o��the�shelf applications is addressed in the Sun�

SCALR project ���� and the Microsoft cluster service �MSCS� ����� SunSCLAR

relies on IP fail�over to provide failure detection and automatic recon�gura�

tion� MSCS o�ers an execution environment where existing server applications

can operate reliably on an NT cluster� These studies take advantage of the

low�level network protocol standard or operating system features to provide

maximum transparency to application services in achieving service reliability�

In comparison� Neptune provides a controlled runtime execution environment

for application services which allows complex cluster load balancing� resource

management� and service replication support to be e�ciently incorporated into

one framework�

Component�based programming architecture� Component�based

inter�operable programming architectures are supported in standards like

CORBA ��	�� COM�DCOM ����� and Java ��
�� For example� CORBA pro�

vides standard interfaces for service component interactions and it supports

basic functionalities including naming service� load balancing� and persistent

state services� While sharing the same goal of supporting inter�operable service

components� this dissertation study is focused on supporting highly concurrent

��

CHAPTER �� NEPTUNE CLUSTERING ARCHITECTURE

services in tightly�coupled cluster environments and addressing the scalability

and availability issues in such a context�

��� Concluding Remarks

In this chapter� we present the overall Neptune clustering architecture� its

programming interfaces� and a number of applications that have been suc�

cessfully deployed in Neptune�based service clusters� It should be noted that

providing clustering support for scalable network applications has been ex�

tensively studied in recent years� Neptune distinguishes itself mainly in two

aspects� First� it employs a loosely�connected and functionally�symmetrical

architecture in constructing the service cluster� which allows the service infras�

tructure to operate smoothly in the presence of transient failures and through

service evolution� Secondly� Neptune provides �exible interfaces that allow

existing applications to be easily deployed� even for binary applications with�

out recompilation ���� Overall� the clustering architecture presented in this

chapter serves as the basis for the studies on cluster load balancing� resource

management� and service replication support described in later parts of this

dissertation�

��

Chapter �

Cluster Load Balancing

��� Introduction

While previous research has addressed the issues of providing clustering

support for network service transformation� aggregation� and composition ���

��
�� ���� there is still a lack of comprehensive study on load balancing

support in this context� This chapter investigates the techniques of providing

e�cient load balancing support for accessing replicated services inside the

service cluster�

A large amount of work has been done by the industry and research

community to optimize HTTP request distribution among a cluster of Web

��

CHAPTER �� CLUSTER LOAD BALANCING

servers �� �� �� ��� ��� 	
�� Most load balancing policies proposed in such a

context rely on the premise that all network packets go through a single front�

end dispatcher or a TCP�aware �layer
 or above� switch so that TCP level

connection�based statistics can be accurately maintained� In contrast� clients

and servers inside the service cluster are often connected by high�throughput�

low�latency Ethernet �layer �� or IP �layer �� switches� which do not provide

any TCP level tra�c statistics� This constraint calls for more complex load

information dissemination schemes�

Previous research has proposed and evaluated various load balancing poli�

cies for cluster�based distributed systems ��� �� ��� ���
�� ��� 	� ��� ����

Load balancing techniques in these studies are valuable in general� but not all

of them can be applied for cluster�based network services� This is because they

focus on coarse�grain computation and often ignore �ne�grain jobs by simply

processing them locally� For example� the job trace used in a previous trace�

driven simulation study has a mean job execution time of �
�� seconds ����� In

the context of network services� with the trend toward delivering more feature�

rich services in real time� large number of �ne�grain sub�services need to be

aggregated within a short period of time� For example� a distributed hash

table lookup for keyword search usually only takes a couple of milliseconds�

�

CHAPTER �� CLUSTER LOAD BALANCING

Fine�grain services introduce additional challenges because server workload

can �uctuate rapidly for those services� This dissertation investigates clus�

ter load balancing support for scalable network services with the emphasis on

�ne�grain services� The study is based on simulations as well as experiments

with an implementation on a Linux cluster�

Almost all load balancing policies can be characterized as being either

centralized or distributed� The distinction is whether the policy relies on

any centralized components to maintain system�wide workload information

and�or make load balancing decisions� Centralized approaches tend to be less

scalable and available because any central component can become single point

of failure or performance bottleneck� While acknowledging that those issues

can be addressed to a certain degree through hot backups and coordination

of a set of load balancers ���� we choose to focus on fully distributed load

balancing policies in this study�

The rest of this chapter is organized as follows� Section ��� describes the

service traces and synthetic workloads that are used in this study� Section ���

presents the simulation studies on load balancing policies and the impact of

various parameters� Section ��� describes the system implementation on a

Linux cluster with a proposed optimization� Section ��
 evaluates the system

��

CHAPTER �� CLUSTER LOAD BALANCING

performance based on this implementation� Section ��� discusses related work

and Section ��	 concludes this chapter�

����� Evaluation Workload

Arrival interval Service time
Workload Mean Std�dev Mean Std�dev
Medium�Grain trace �
��ms ���ms �����ms 	���ms
Fine�Grain trace
�	��ms �
��
ms ����ms ���ms

Table ��� Statistics of evaluation traces� Medium�Grain trace contains
�������� accesses with �	��� of them in the peak portion� Fine�Grain trace
contains ������ accesses with ������ of them in the peak portion�

We collected the traces of two internal service cluster components from

search engine Teoma ��	� and their statistics are listed in Table ��� Both

traces were collected across an one�week time span in late July ���� One of

the services provides the translation between query words and their internal

representations� The other service supports a similar translation between Web

page descriptions and their internal representations� Both services support

multiple translations in one access� The �rst trace has a mean service time

of ���� ms and we call it the Fine�Grain trace� The second trace has a mean

service time of ����� ms and we call it the Medium�Grain trace� We use a peak

time portion �early afternoon hours of three consecutive weekdays� from each

��

CHAPTER �� CLUSTER LOAD BALANCING

trace in our study� Most system resources are well under�utilized during non�

peak times� therefore load balancing is less critical during those times� Note

that the arrival intervals of those two traces may be scaled when necessary to

generate workloads at various demand levels during our evaluation�

In addition to the traces� we also include a synthetic workload with Pois�

son process arrivals and exponentially distributed service times� We call this

workload Poisson�Exp in the rest of this chapter� Several previous studies on

Internet connections and workstation clusters suggested that both the HTTP

inter�arrival time distribution and the service time distribution exhibit high

variance� thus are better modeled by Lognormal� Weibull� or Pareto distri�

butions ����
��� We choose Poisson�Exp workload in our study for the fol�

lowing reasons� First� a primary cause for the high variance of HTTP arrival

intervals is the proximity of the HTTP request for the main page and subse�

quent requests for embedded objects or images� However� if we only consider

resource�intensive service requests which require dynamic content generation�

HTTP requests for embedded objects are not counted� Secondly� the service

time distribution tends to have a low variance for services of the same type�

Our analysis on the Teoma traces show that those distributions have similar

variances as an exponentially distributed sample would have� This observation

�

CHAPTER �� CLUSTER LOAD BALANCING

is further con�rmed by larger traces we acquired later at Ask Jeeves search�

��� Simulation Studies

In this section� we present the results of our simulation studies� As men�

tioned before� we con�ne our study to fully distributed load balancing policies

that do not contain any single point of failure� We will �rst examine the load

information inaccuracy caused by its dissemination delay� This delay is gen�

erally insigni�cant for coarse�grain jobs but it can be critical for �ne�grain

services� We will then move on to study two distributed load balancing poli�

cies� � the broadcast policy in which load information is propagated through

server�initiated pushing� and �� the random polling policy in which load infor�

mation is propagated through client�initiated pulling� We choose them because

they represent two broad categories of policies in terms of how load informa�

tion is propagated from the servers to the clients� In addition� they are both

shown to be competitive in a previous trace�driven simulation study �����

In our simulation model� each server contains a non�preemptive processing

unit and a FIFO service queue� The network latency of sending a service

request and receiving a service response is set to be half a TCP roundtrip

��

CHAPTER �� CLUSTER LOAD BALANCING

latency with connection setup and teardown� which is measured at �	 us on

a switched �� Mb�s Linux cluster� Our model does not consider the impact

of memory locality on the service processing time� For cluster�based data�

intensive applications� the service data is typically partitioned such that the

critical working set ��� or the whole service data �
�� can �t into the system

memory� This study on load balancing is geared toward replicated service

nodes of each data partition�

We choose the mean service response time as the performance index to

measure and compare the e�ectiveness of various policies� We believe this is

a better choice than system throughput for evaluating load balancing policies

because system throughput is tightly related to the admission control� which

is beyond the scope of this study�

����� Accuracy of Load Information

Almost all load balancing policies use some sort of load indexes to mea�

sure server load levels� Prior studies have suggested a linear combination of

the resource queue lengths can be an excellent predictor of service response

time ��	� ���� We use the total number of active service accesses� i�e� the queue

length� on each server as the server load index� In most distributed policies�

�	

CHAPTER �� CLUSTER LOAD BALANCING

load indexes are typically propagated from server side to client side in some

way and then each client uses acquired information to direct service accesses to

lightly loaded servers� Accuracy of the load index is crucial for clients to make

e�ective load balancing decision� However� the load index tends to be stale

due to the delay between the moment it is being measured at the server and

the moment it is being used at the client� We de�ne the load index inaccuracy

for a certain delay t as the statistical mean of the queue length di�erence

measured at arbitrary time t and t ! t� Figure �� illustrates the impact of

this delay �normalized to mean service time� on the load index inaccuracy for

a single server through simulations on all three workloads� We also show the

upperbound for Poisson�Exp in a straight line� With the assumption that the

inaccuracy monotonically increases with the increase of t� the upperbound

is the statistical mean of the queue length di�erence measured at any two ar�

bitrary time t� and t�� Let term � be de�ned as the mean service time divided

by the mean arrival interval� which re�ects the level of server load� For a Pois�

son�Exp workload� since the limiting probability that a single server system

has a queue length of k is �� ���k ��	�� the upperbound can be calculated as�

�X
i�j��

�� ����i�jji� jj "
��

� ��
������

��

CHAPTER �� CLUSTER LOAD BALANCING

Calculation� We start with de�ning

UB "
�X

i�j��

�� ����i�jji� jj �������

Let n " i ! j� then we have

UB " �� ���
�X
n��

�n
nX
i��

jn� �ij �������

We de�ne F �n� "
Pn

i�� jn��ij� When n is an even number such that n " �k�

we have

F �n� "
�kX
i��

j�k � �ij

" �
k��X
i��

��k � �i� " �k�k ! �

�����
�

When n is an odd number such that n " �k ! � we have

F �n� "
�k��X
i��

j�k ! � �ij

" �
kX
i��

��k ! � �i� " ��k ! ��

�������

Merge �����
� and ������� into �������� we have

UB " �� ���
�X
k��

���k�k�k ! � ! ��k����k ! ���

" ��� ���
�X
k��

�� ! ��k���k ! � ! ���k��k ! ��k���

�����	�

��

CHAPTER �� CLUSTER LOAD BALANCING

Since we know

�X
k��

��k "

� ��
� �������

�X
k��

k��k "
��

�� ����
� �������

and
�X
k��

k���k "
��� ! ���

�� ����
� �������

Merge them all into �����	�� we have

UB "
��

� ��
�������

0 20 40 60 80 100
0

2

4

6

8

10

Delay (normalized to mean service time)

Lo
ad

 in
de

x
in

ac
cu

ra
cy

<A> server 90% busy

UB for Poisson/Exp
Poisson/Exp
Medium−Grain trace
Fine−Grain trace

0 20 40 60 80 100
0

1

2

3

4

5

Delay (normalized to mean service time)

Lo
ad

 in
de

x
in

ac
cu

ra
cy

 server 50% busy

UB for Poisson/Exp
Poisson/Exp
Medium−Grain trace
Fine−Grain trace

Figure ��� Impact of delay on load index inaccuracy with server
�simulation��

We can make the following observations from the results in Figure ���

When the server is moderately busy ������ the load index inaccuracy quickly

��

CHAPTER �� CLUSTER LOAD BALANCING

reaches the upperbound ���� for Poisson�Exp� when delay increases� but the

inaccuracy is moderate even under high delay� This means a random approach

is likely to work well when servers are only moderately busy and fancier policies

do not improve much� When the server is very busy ������ the load index

inaccuracy is much more signi�cant and it can cause an error of around � in

the load index when the delay is around � times the mean service time� This

analysis reveals that when servers are busy� �ne�grain services require small

dissemination delays in order to have accurate load information on the client

side�

����� Broadcast Policy

In the broadcast policy� an agent is deployed at each server which collects

the server load information and announces it through a broadcast channel

at various intervals� It is important to have non��xed broadcast intervals to

avoid the system self�synchronization ����� The intervals we use are evenly

distributed between ��� and �� times the mean value� Each client listens

at this broadcast channel and maintains the server load information locally�

Then every service request is made to a server with the lightest workload�

Since the server load information maintained at the client side is acquired

�

CHAPTER �� CLUSTER LOAD BALANCING

through periodical server broadcasts� this information becomes stale between

consecutive broadcasts and the staleness is in large part determined by the

broadcast frequency� Figure ��� illustrates the impact of broadcast frequency

through simulations� A �� ms mean service time is used for Poisson�Exp

workload� Sixteen servers are used in the simulation� The mean response time

shown in Figure ��� is normalized to the mean response time under an ideal

approach� in which all server load indexes can be accurately acquired on the

client side free�of�cost whenever a service request is to be made�

31.25 62.5 125 250 500 1000
0

2

4

6

8

10

12

Mean broadcast interval (in milliseconds)M
ea

n
re

sp
on

se
 ti

m
e

(n
or

m
al

iz
ed

 to
 ID

E
A

L) <A> server 90% busy

Poisson/Exp 50ms
Medium−Grain trace
Fine−Grain trace
ideal

31.25 62.5 125 250 500 1000
0

1

2

3

4

5

6

Mean broadcast interval (in milliseconds)M
ea

n
re

sp
on

se
 ti

m
e

(n
or

m
al

iz
ed

 to
 ID

E
A

L) server 50% busy

Poisson/Exp 50ms
Medium−Grain trace
Fine−Grain trace
ideal

Figure ���� Impact of broadcast frequency with 	 servers �simulation��

When servers are ��� busy� we observe that the performance for broadcast

policy with second mean broadcast interval could be an order of magnitude

slower than the ideal scenario for �ne�grain services �Poisson�Exp and Fine�

CHAPTER �� CLUSTER LOAD BALANCING

Grain trace�� The degradation is less severe �up to � times� when servers are

��� busy� but it is still signi�cant� This problem is originally caused by the

staleness of load information due to low broadcast frequency� The staleness is

further severely aggravated by the �ocking e�ect of the broadcast policy� i�e�

all service requests tend to �ock to a single server �the one with the lowest

perceived queue length� between consecutive broadcasts� The performance

under low broadcast interval� e�g� ���� ms� is close to the ideal scenario�

However� we believe the overhead will be prohibitive under such high frequency�

e�g� a sixteen server system with ���� ms mean broadcast interval will make

each client to process a broadcast message every � ms�

����� Random Polling Policy

For every service access� the random polling policy requires a client to

randomly poll several servers for load information and then direct the service

access to the most lightly loaded server according to the polling results� An

important parameter for a random polling policy is the poll size� Mitzenmacher

demonstrated through analytical models that a poll size of two leads to an

exponential improvement over pure random policy� but a poll size larger than

two leads to much less additional improvement �	�� Figure ��� illustrates our

�

CHAPTER �� CLUSTER LOAD BALANCING

simulation results on the impact of poll size using all three workloads� Policies

with the poll size of �� ��
� and � are compared with the random and ideal

approach in a sixteen server system� A �� ms mean service time is used for

Poisson�Exp workload�

50% 60% 70% 80% 90%
0

1000

2000

3000

4000

5000

Server load level

M
ea

n
re

sp
on

se
 ti

m
e

(in
 m

ill
is

ec
on

ds
)

<A> Medium−Grain trace

random
polling 2
polling 3
polling 4
polling 8
ideal

50% 60% 70% 80% 90%
0

100

200

300

400

500

Server load level

M
ea

n
re

sp
on

se
 ti

m
e

(in
 m

ill
is

ec
on

ds
)

 Poisson/Exp with mean service time 50ms

random
polling 2
polling 3
polling 4
polling 8
ideal

50% 60% 70% 80% 90%
0

100

200

300

400

500

Server load level

M
ea

n
re

sp
on

se
 ti

m
e

(in
 m

ill
is

ec
on

ds
)

<C> Fine−Grain trace

random
polling 2
polling 3
polling 4
polling 8
ideal

Figure ���� Impact of poll size with 	 servers �simulation��

This result echoes Mitzenmacher�s analytical results in the sense that a poll

size of two leads to exponential improvement over the pure random policy while

a larger poll size does not provide much additional bene�t �	�� Our simulation

also suggests that this result is consistent across all service granularity and all

server load level� which makes it a very robust policy� Quantitatively� the

mean response time under the random polling policy with a poll size of three

is within ��� from the performance of the ideal case for all studied workloads

�

CHAPTER �� CLUSTER LOAD BALANCING

under ��� server load level� We believe the random polling policy is well�suited

for �ne�grain services because the just�in�time polling always guarantees very

little staleness on the load information�

����� Summary of Simulation Studies

First� our simulation study shows that a long delay between the load in�

dex measurement time at the server and its time of usage at the client can

yield signi�cant inaccuracy� This load index inaccuracy tends to be more se�

vere for �ner�grain services and busier servers� Then we go on to study two

representative policies� broadcast and random polling� Our results show that

random polling based load balancing policies deliver competitive performance

across all service granularities and all server load levels� In particular� the

performance of the random polling policy with a poll size of three is within

��� from the performance of the ideal scenario under ��� server load level�

As for the broadcast policy� we identify the di�culty of choosing a proper

broadcast frequency for �ne�grain services� A low broadcast frequency results

in severe load index inaccuracy� and in turn degrades the system performance

signi�cantly� A high broadcast frequency� on the other hand� introduces high

broadcast overhead� Ideally� the broadcast frequency should linearly scale with

CHAPTER �� CLUSTER LOAD BALANCING

the system load level to cope with rapid system state �uctuation� This cre�

ates a scalability problem because the number of messages under a broadcast

policy would linearly scale with three factors� � the system load level� �� the

number of servers� and �� the number of clients� In contrast� the number of

messages under the random polling policy only scale with the server load level

and the number of servers�

��� System Design and Implementation

The major limitation of simulation studies is that it cannot accurately

capture various system overhead� For example� a TCP roundtrip with con�

nection setup and teardown costs around ms on our Linux cluster� and a

context switch can cost anywhere between tens of microseconds to tens of

milliseconds depending on the size of memory footprint� Those costs could

be very signi�cant for a �� ms service access� In recognizing this limitation�

We have developed an implementation of the random polling policy on top of

a cluster�based service infrastructure� The simulation results in Section ���

favor random polling policy so strongly that we do not consider the broadcast

policy in this implementation�

�

CHAPTER �� CLUSTER LOAD BALANCING

����� System Architecture

This implementation is a continuation of the Neptune clustering architec�

ture� Neptune allows services ranging from read�only to frequently updated

be replicated and aggregated in a cluster environment� Neptune encapsulates

an application�level network service through a service access interface which

contains several RPC�like access methods� Each service access through one

of these methods can be ful�lled exclusively on one data partition� Neptune

employs a functionally symmetrical architecture in constructing the service

network infrastructure� A node can elect to provide services and it can also

access services provided by other nodes� It serves as an internal server or client

in each context respectively�

Conceptually� for each service access� the client �rst acquires the set of

available server nodes able to provide the requested service through a service

availability subsystem� Then it chooses one node from the available set through

a load balancing subsystem before sending the service request� The service

availability subsystem is maintained around a well�known publish�subscribe

channel� which can be implemented using IP multicast or a highly available

well�known central directory� Each cluster node can elect to provide services

through repeatedly publishing the service type� the data partitions it hosts�

	

CHAPTER �� CLUSTER LOAD BALANCING

and the access interface� Each client node subscribes to the well�known channel

and maintains a service yellow page�

We implemented a random polling policy for the load balancing subsystem�

For each service access� the client randomly chooses a certain number of servers

out of the available set returned from the service availability subsystem� Then

it sends out load inquiry requests to those servers through connected UDP

sockets and asynchronously collects the responses using select system call�

Finally the client directs the request to the service node responding with the

lightest load index� Figure ��
 illustrates the client�server architecture in

Neptune service infrastructure�

����� Discarding Slow�responding Polls

On top of the basic random polling implementation� we also made an en�

hancement by discarding slow�responding polls� Through a ping�pong test on

two idle machines within our Linux cluster� we measured that a UDP roundtrip

cost is around ��� us� However� it may take much longer than that for a busy

server to respond a UDP request� We pro�led a typical run under a poll size

of �� a server load index of ���� and 	 server nodes� The pro�ling shows that

��� of the polls are not completed within � ms and ��	� of them are not

�

CHAPTER �� CLUSTER LOAD BALANCING

Server node

Client node

Availability

publisher

Availability

listener

Service

yellow page

Load index

server

Load polling

agent

Service availability

subsystem

Load balancing

subsystem

Service

access

point

Request

queue,

thread pool

Figure ��
� The client�server architecture in Neptune service infrastructure�

completed within �� ms� With this in mind� we enhanced the basic polling

policy by discarding polls not responded within � ms� Intuitively� this results

in a tradeo� between consuming less polling time and acquiring more load

information� However� we also realize that long polls result in inaccurate load

information due to long delay� Discarding those long polls can avoid using

stale load information� which is an additional advantage� And this tends to

be more substantial for �ne�grain services�

�

CHAPTER �� CLUSTER LOAD BALANCING

��� Experimental Evaluations

All the evaluations in this section were conducted on a rack�mounted Linux

cluster with around �� dual
�� Mhz Pentium II nodes� each of which contains

either �� MB or GB memory� Each node runs Linux ����� and has two

�� Mb�s Ethernet interfaces� The cluster is connected by a Lucent P���

Ethernet switch with �� Gb�s backplane bandwidth� All the experiments

presented in this section use 	 server nodes and up to 	 client nodes�

Due to various system overhead� we realize that the server load level cannot

simply be the mean service time divided by the mean arrival interval� For

each workload on a single�server setting� we consider the server reach full load

����� when around ��� of client requests were successfully completed within

two seconds� Then we use this as the basis to calculate the client request rate

for various server load levels� The service processing on the server side is

emulated using a CPU�spinning micro�benchmark that consumes the same

amount of CPU time as the intended service time� The ideal scenario in our

simulation study is achieved when all server load indexes can be accurately

acquired on the client side free�of�cost whenever a service request is to be made�

For the purpose of comparison� we emulate a corresponding ideal scenario in

�

CHAPTER �� CLUSTER LOAD BALANCING

the evaluations� This is achieved through a centralized load index manager

which keeps track of all server load indexes� Each client contacts the load index

manager whenever a service access is to be made� The load index manager

returns the server with the shortest service queue and increments that queue

length by one� Upon �nishing one service access� each client is required to

contact the load index manager again so that the corresponding server queue

length can be properly decremented� This approach closely emulates the actual

ideal scenario with a delay of around one TCP roundtrip without connection

setup and teardown �around ��� us on our Linux cluster��

����� Evaluation on Poll Size

50% 60% 70% 80% 90%
0

100

200

300

400

500

600

Server load level

M
ea

n
re

sp
on

se
 ti

m
e

(in
 m

ill
is

ec
on

ds
)

<A> Medium−Grain trace

random
polling 2
polling 3
polling 4
polling 8
ideal

50% 60% 70% 80% 90%
0

50

100

150

200

Server load level

M
ea

n
re

sp
on

se
 ti

m
e

(in
 m

ill
is

ec
on

ds
)

 Poisson/Exp with mean service time 50ms

random
polling 2
polling 3
polling 4
polling 8
ideal

50% 60% 70% 80% 90%
0

10

20

30

40

50

60

70

80

Server load level

M
ea

n
re

sp
on

se
 ti

m
e

(in
 m

ill
is

ec
on

ds
)

<C> Fine−Grain trace

random
polling 2
polling 3
polling 4
polling 8
ideal

Figure ���� Impact of poll size based on experiments with 	 servers�

��

CHAPTER �� CLUSTER LOAD BALANCING

Figure ��� shows our experimental results on the impact of poll size using

all three workloads� We observe that the results for Medium�Grain trace and

Poisson�Exp workload largely con�rm the simulation results in Section ����

However� for the Fine�Grain trace with very �ne�grain service accesses� we

notice that a poll size of � exhibits far worse performance than policies with

smaller poll sizes and it is even slightly worse than the pure random policy�

This is caused by excessive polling overhead coming from two sources� �

longer polling delays resulting from larger poll size� �� less accurate server

load index due to longer polling delay� And those overheads are more severe

for �ne�grain services� Our conclusion is that a small poll size �e�g� � or ��

provides su�cient information for load balancing� And an excessively large poll

size may even degrade the performance due to polling overhead� especially for

�ne�grain services�

����� Improvement of Discarding Slow�responding Polls

Table ��� shows the overall improvement and the improvement excluding

polling time for discarding slow�responding polls� The experiments are con�

ducted with a poll size of � and a server load index of ���� The experiment

on Medium�Grain trace shows a slight performance degradation due to the

�

CHAPTER �� CLUSTER LOAD BALANCING

Mean response time �mean polling time�
Workload Original Optimized
Medium�Grain trace ����ms ���	ms� ����ms ���ms�
Poisson�Exp ���ms ����ms� ����ms ��ms�
Fine�Grain trace ��	ms ����ms�
���ms ��ms�

Table ���� Performance improvement of discarding slow�responding polls with
poll size � and server ��� busy�

loss of load information� However� the results on both Fine�Grain trace and

Poisson�Exp workload exhibit sizable improvement in addition to the reduc�

tion of polling time and this additional improvement is a result of avoiding

the use of stale load information� Overall� the enhancement of discarding

slow�responding polls can improve the load balancing performance by ����

for Fine�Grain trace� The improvement is ���� if the polling time is excluded�

Note that the performance results shown in Figure ��� are not with discarding

slow�responding polls�

��� Related Work

HTTP load balancing� A large body of work has been done to opti�

mize HTTP request distribution among a cluster of Web servers �� �� ��

��� ��� 	
�� Most load balancing policies proposed in such a context rely on

��

CHAPTER �� CLUSTER LOAD BALANCING

the premise that all network packets go through a single front�end dispatcher

or a TCP�aware �layer
 or above� switch so that TCP level connection�based

statistics can be accurately maintained� However� clients and servers inside the

service cluster are often connected by high�throughput� low�latency Ethernet

�layer �� or IP �layer �� switches� which do not provide any TCP level tra�c

statistics� This dissertation study shows that an optimized random polling

policy that does not require centralized statistics can deliver competitive per�

formance based on an implementation on a Linux cluster�

Load balancing for distributed systems� Previous research has pro�

posed and evaluated various load balancing policies for cluster�based dis�

tributed systems ��� ��� ���
�� ��� 	� ��� ���� Those studies mostly deal

with coarse�grain distributed computation and often ignore �ne�grain jobs by

simply processing them locally� We put our focus on �ne�grain network ser�

vices by examining the sensitivity of the load information dissemination delay

and its overhead� Both are minor issues for coarse�grain jobs but they are

critical for �ne�grain services�

This study has focused on load distribution policies initiated from service

clients� Server�initiated load balancing and work stealing among servers have

been studied in previous research ��� �� ���� In particular� Eager et al�

��

CHAPTER �� CLUSTER LOAD BALANCING

show that client�initiated policies perform better than server�initiated policies

under light to moderate system loads� The performance comparison under

high system loads depends on the job transfer cost� with high transfer cost

favoring client�initiated policies ���� In a di�erent context� work stealing has

been successfully employed in multi�threaded runtime systems like Cilk ���

due to the low job transfer cost in shared memory multi�processors�

Data locality� This study on cluster load balancing does not consider

the impact of memory locality on the service processing time� The service

data for cluster�based data�intensive applications is typically partitioned such

that the critical working set ��� or the whole service data �
�� can �t into

the system memory� This study on load balancing is geared toward replicated

service nodes for each data partition� On the other hand� for systems without

such a careful partitioning� locality�based request distribution often results in

greater performance impact than load balancing� The exact impact of data

locality in these cases tends to be application�speci�c and a previous study

has addressed this issue for cluster�based HTTP servers �	
��

Impact of high�performance networks� Several recent studies show

that network servers based on Virtual Interface �VI� Architecture provide sig�

ni�cant performance bene�ts over standard server networking interfaces ���

�

CHAPTER �� CLUSTER LOAD BALANCING

	��� Generally speaking� the advance in network performance improves the

e�ectiveness of all load balancing policies� In particular� such an advance has

certain impact on our results� First� a high�performance network layer may

allow e�cient and high frequency server broadcasts� which improves the feasi�

bility of the broadcast policy� However� the �ocking e�ect and the scalability

issue we raised in Section ��� remain to be solved� Secondly� a reduction in

network overhead might change some quantitative results of our experimen�

tal evaluations� For instance� the overhead of the random polling policy with

a large poll size might not be as severe as those shown in our experiments�

Those issues should be addressed when advanced network standards become

more widespread�

��� Concluding Remarks

In this chapter� we study load balancing policies for cluster�based network

services with the emphases on �ne�grain services� Our evaluation is based on

a synthetic workload and two traces we acquired from an online search engine�

In addition to simulations� we also conducted experimental evaluations with

an implementation on a Linux cluster� Our study and evaluations identify

��

CHAPTER �� CLUSTER LOAD BALANCING

techniques that are e�ective for �ne�grain services and lead us to make several

conclusions� First� this study shows that the broadcast policies are ill�suited

for �ne�grain services while random polling based load�balancing policies per�

form much better� In terms of random polling policy� our simulation study

echoes the previous analytical result that a poll size of two leads to exponential

improvement over the pure random policy� but a poll size of larger than two

leads to much less additional improvement �	�� Quantitatively� our evaluation

shows that the mean response time under the random polling policy with a

poll size of three is within ��� from the performance of the ideal case under

��� server load level� In addition� our experiments demonstrate that an ex�

cessively large poll size can even degrade the performance substantially due to

polling overhead� Finally� this study shows that an optimization of discarding

slow�responding polls can further improve the performance by up to �����

�	

Chapter �

Quality�Aware Resource

Management

��� Introduction

Previous studies show that the client request rates for Internet services tend

to be bursty and �uctuate dramatically from time to time ��� ��� ���� For

instance� the daily peak�to�average load ratio at Internet search service Ask

Jeeves �www�ask�com� is typically �� and it can be much higher and unpre�

dictable when the system experiences astronomical growth or in the presence

of extraordinary events� As another vivid example� the online site of Ency�

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

clopedia Britannica �www�britannica�com� was taken o�ine �
 hours after

its initial launch in ��� due to a site overload� Over�provisioning system

resources for a service site to accommodate the potential peak will not be

cost�e�ective� As a consequence� it is desirable to achieve e�cient resource

utilization for those services under a wide range of load conditions�

Network clients typically seek services interactively and maintaining rea�

sonable response times is imperative� In addition� providing di�erentiated

service qualities and resource allocation to multiple service classes can also be

desirable at times� especially when the system is reaching its capacity limit

and cannot provide interactive responses to all the requests� Quality of ser�

vice �QoS� support and service di�erentiation have been studied extensively in

network packet switching with respect to packet delay and connection band�

width ��� ��� ��� �
�� It is equally important to extend network�level QoS sup�

port to endpoint systems where service ful�llment and content generation take

place� Those issues are especially critical for cluster�based network services in

which contents are dynamically generated and aggregated ���
��
�� 	���

This chapter presents the design and implementation of an integrated re�

source management framework for cluster�based services� This framework is

part of the Neptune system� a cluster�based software infrastructure for aggre�

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

High-throughput low-

latency network

Service cluster

Business

partner

Business

partner

Index

server

Partition 1

Index

server

Partition 1

Index

server

Partition 1
Index

server

Partition 2

Index

server

Partition 2

Index

server

Partition 2

Doc

server

Partition 1

Doc

server

Partition 1

Doc

server

Partition 1

Doc

server

Partition 2

Doc

server

Partition 2

Doc

server

Partition 2Doc

server

Partition 3

Doc

server

Partition 3

Doc

server

Partition 3

XML

gateway

XML

gateway

XML

gateway

Web

server

Web

server

Web

server

Figure
�� Service cluster architecture for a document search engine�

gating and replicating partitionable network services� Figure
� illustrates the

clustering architecture for a document search engine ���
�� which has been

described in Chapter �� In this example� the service cluster delivers search

services to consumers and business partners through Web servers and XML

gateways� Inside the cluster� the main search tasks are performed on a set of

index servers and document servers� both partitioned and replicated� Typi�

cally� the service data for cluster�based data�intensive applications is carefully

partitioned such that the critical working set ��� or the whole service data �
��

can �t into the system memory� This study of resource management is geared

toward replicated service nodes for each such data partition� e�g� the replicas

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

for partition of the index servers in the document search engine�

Although cluster�based network services have been widely deployed� we

have seen limited research in the literature on comprehensive resource man�

agement with service di�erentiation support� Recent studies on endpoint re�

source management and QoS support have been mostly focused on single�host

systems �� 	�
� �� ��� ��� ��� or clustered systems serving static HTTP con�

tent ��� 	��� In comparison� Neptune is intended for clustered services with

dynamic service ful�llment or content generation� This dissertation study on

resource management for cluster�based network services addresses the inade�

quacy of the previous studies and complements them in the following three

aspects�

� Flexible resource management objectives� Most previous studies

have been using a monolithic metric to measure resource utilization and

de�ne QoS constraints� Commonly used ones include system through�

put� mean response time� mean stretch factor ����� or the tail distribu�

tion of the response time �	��� Neptune introduces a uni�ed metric that

links the overall system e�ciency with individual service response time�

To be more speci�c� we consider the ful�llment of a service request pro�

duces certain quality�aware service yield depending on the response time�

	�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

which can be linked to the amount of economical bene�t or social reach

resulting from serving this request� The overall goal of the system is

to maximize the aggregate service yield resulting from all requests� As

an additional goal� Neptune supports service di�erentiation for multiple

service classes through two means� � service classes can acquire di�er�

entiated service support by being con�gured to produce di�erent service

yield� �� each service class can also be guaranteed to receive a certain

proportion of system resources� if so requested�

� Fully decentralized clustering architecture� Scalability and avail�

ability are always overriding concerns for large�scale cluster�based ser�

vices� Several prior studies have been relying on centralized components

to manage resources for a cluster of replicated servers ��� ��� 	�� ����

In contrast� our framework employs a functionally symmetrical architec�

ture that does not rely on any centralized components� Such a design

not only eliminates potential single point of failure in the system� it is

also crucial to ensuring a smooth and prompt response to demand spikes

and server failures�

� Ecient resource utilization under quality constraints� Neptune

	

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

achieves e�cient resource utilization through a two�level request dis�

tribution and scheduling scheme� At the cluster level� requests for each

service class are evenly distributed to all replicated service nodes without

explicit partitioning� Inside each service node� an adaptive scheduling

policy adjusts to the runtime load condition and seeks high aggregate

service yield at a wide range of load levels� When desired� the service

scheduler also provides proportional resource allocation guarantee for

speci�ed service classes�

The rest of this chapter is organized as follows� Section
�� describes

the multi�fold objective of our resource management framework� Section
��

presents Neptune�s two�level request distribution and scheduling architecture�

Section
�
 illustrates the service scheduling inside each service node� Sec�

tion
�� presents the system implementation and experimental evaluations

based on traces and service components from a commercial search engine�

Section
�	 discusses related work and Section
�� concludes this chapter�

	�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

��� Resource Management Objective

In this section� we illustrate Neptune�s multi�fold resource management

objective� We �rst introduce the concepts of quality�aware service yield and

service yield functions� Through these concepts� service providers can express a

variety of quality constraints based on the service response time� Furthermore�

using service yield functions and resource allocation guarantees� our framework

allows service providers to determine the desired level of service di�erentiation

among multiple service classes�

����� Quality�aware Resource Utilization

Most previous studies have been using a monolithic metric such as system

throughput� mean response time� mean stretch factor ����� or the tail distri�

bution of the response time �	�� to measure the e�ciency of system resource

management� We use a more comprehensive metric by conceiving that the ful�

�llment of a service request provides certain yield depending the response time�

This yield� we call quality�aware service yield� can be linked to the amount of

economical bene�t or social reach resulting from serving this request in a timely

fashion� Both goals of provisioning QoS and e�cient resource utilization can

	�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

be naturally combined as producing high aggregate yield� Furthermore� Nep�

tune considers the service yield resulting from serving each request to be a

function of the service response time� The service yield function is normally

determined by service providers to give them �exibility in expressing desired

service qualities� Let r�� r�� � � � � rk be the response times of the k service

accesses completed in an operation period� Let Yi�� represent the service yield

function for the ith service access� The goal of our system is to maximize the

aggregate yield� i�e�

maximize
kX
i��

Yi�ri�� �
����

We can also illustrate the concept of quality�aware service yield using an eco�

nomical model� Basically we consider the ful�llment of each service request

results in certain economical revenue for the service providers� the exact value

of which depends on the service response time� The goal of the system� in

this case� is to maximize the aggregate economical revenue resulting from all

served requests�

The concept of service quality in this model refers to only the service

response time� We do realize that service quality can have various additional

dimensions� oftentimes application�speci�c� For instance� the partial failure

	

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

in an partitioned search database results in a loss of harvest ����� Neptune

focuses on the service response time because it is one of the most general

service qualities so that the proposed techniques can be e�ective for a large

number of applications� In addition� we believe the current framework can

be enhanced to support application�speci�c service qualities like harvest in a

partitioned search engine�

In general� the service yield function can be any monotonically non�

increasing function that returns non�negative numbers with non�negative in�

puts� We give a few examples to illustrate how service providers can use

yield functions to express desired service qualities� For instance� the system

with the yield function Ythroughput depicted in Equation �
����� is intended to

achieve high system throughput with a deadline D� In other words� the goal

of such a system is to complete as many service accesses as possible with the

response time � D� Similarly� the system with the yield function Yresptime in

Equation �
����� is designed to achieve low mean response time� Note that the

traditional concept of mean response time does not count dropped requests�

Yresptime enhances that concept by considering dropped requests as if they are

	�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

completed in D�

Ythroughput�r� "

�����
����

C if � � r � D�

� if r � D�

�
�����

Yresptime�r� "

�����
����

C�� r
D
� if � � r � D�

� if r � D�

�
�����

We notice that Ythroughput does not care about the exact response time of

each service access as long as it is completed within the deadline� In contrast�

Yresptime always reports higher yield for accesses completed faster� As a hybrid

version of these two� Yhybrid in Equation �
���
� produces full yield when the

response time is within a pre�deadline D�� and the yield decreases linearly

thereafter� The yield �nally declines to a drop penalty C � when the response

time reaches the deadline D� The drop penalty can be used to re�ect the

importance of requests such that a large value of C � discourages dropping

requests when their deadlines are close�

Yhybrid�r� "

����������
���������

C if � � r � D��

C � �C � C �� r�D
�

D�D�
if D� � r � D�

� if r � D�

�
���
�

		

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

This hybrid version corresponds to the real world scenario that users are gen�

erally comfortable as long as a service request is completed in D�� They get

more or less annoyed when the service takes longer and they most likely aban�

don the service after waiting for D� C represents the full yield resulting from a

prompt response and the drop penalty C � represents the loss when the service

is not completed within the �nal deadline D� Figure
�� gives the illustration

of these three functions� We want to point out that Ythroughput is a special

case of Yhybrid when D
� " D� and Yresptime is also a special case of Yhybrid when

D� " � and C � " �� Figure
�� gives an illustration of these three types of

yield functions�

0 D
0

C

Response time

S
er

vi
ce

 y
ie

ld

(A) Maximizing throughput

Y
throughput

0 D
0

C

Response time

S
er

vi
ce

 y
ie

ld

(B) Minimizing mean resptime

Y
resptime

0 D’ D
0

C’

C

Response time

S
er

vi
ce

 y
ie

ld

(C) Hybrid version

Y
hybrid

Figure
��� Illustration of service yield functions�

In certain sense� our de�nition of service yield is similar to the concept

of value in value�based real�time database systems ���� ���� One major dis�

	�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

tinction is that real�time systems are usually sized to handle transient heavy

load ����� For Internet services� however� the client request rates tend to be

bursty and over�provisioning system resources for a service site to accommo�

date the potential peak will not be cost�e�ective ��� ��� ���� More detailed

discussions on scheduling schemes to achieve high aggregate service yield are

given in Section
�
���

����� Service Di�erentiation

Service di�erentiation is another goal of our multi�fold resource manage�

ment objective� Service di�erentiation is based on the concept of service

classes� A service class is de�ned as a category of service accesses that obtain

the same level of service support� On the other hand� service accesses belong�

ing to di�erent service classes may receive di�erentiated QoS support� Service

classes can be de�ned based on client identities� For instance� a special group

of clients may be con�gured to receive preferential service support or a guar�

anteed share of system resources� Service classes can also be de�ned based on

service types or data partitions� For example� a order placement transaction

is typically considered more important than a catalog�browsing request� A

previous research on dynamic page caching and invalidation has proposed a

	�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

�exible service class speci�cation language and how it can be implemented ef�

�ciently ��	�� In this dissertation study� we simply use these results for request

classi�cation�

Our framework provides di�erentiated services to di�erent service classes

on two fronts� First� service classes can acquire di�erentiated service support

by specifying di�erent yield functions� For instance� serving a VIP�class client

can be con�gured to produce higher service yield than serving a regular client�

Secondly� each service class can be guaranteed to receive a certain portion of

system resources� Most previous service di�erentiation studies have focused

on one of the above two means of QoS support ��� ��� 	�� ���� We believe

a combination of them provide two bene�ts when system is overloaded� �

the resource allocation is biased toward high�yield classes for e�cient resource

utilization� �� a certain portion of system resources can be guaranteed for each

service class� if needed� The second bene�t is crucial to preventing starvation

for low�priority service classes�

	�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

��� Two�level Request Distribution and Sche�

duling

In our framework� each external service request enters the service cluster

through one of the protocol gateways and it is classi�ed into one of the service

classes according to rules speci�ed by service providers� The gateway node

then accesses one or more �in the case of service aggregation� internal services

to ful�ll the request� Inside the service cluster� each service can be made

available at multiple nodes through replication� In this section� we discuss the

cluster�level request distribution on the replicated servers for a single service

on a single data partition or a partition group�

The dynamic partitioning approach proposed in a previous study adap�

tively partitions all replicas for each service into several groups and each group

is assigned to handle requests from one service class ����� We believe such a

scheme has a number of drawbacks� First� a cluster�wide scheduler is re�

quired to make server partitioning decisions� which is not only a single�point

of failure� but also a potential performance bottleneck� Secondly� cluster�wide

server groups cannot be repartitioned very frequently� which makes it di�cult

to respond promptly to changing resource demand� In order to address these

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

problems� Neptune does not explicitly partition server groups� Instead� we use

a symmetrical and decentralized two�level request distribution and scheduling

architecture illustrated in Figure
���

Node-level
service

scheduling

Protocol
gateway

Protocol
gateway

Protocol
gateway

Cluster-level
request distribution

Node-level
service

scheduling

Node-level
service

scheduling

Node-level
service

scheduling

Service cluster

External requests

Figure
��� Two�level request distribution and scheduling�

Each service node in this architecture can process requests from all ser�

vice classes� The resource management decision is essentially made at two

levels� First� each service request is directed to one of the replicated service

node through a cluster�level request distribution� Upon arriving at the service

node� it is then subject to a node�level service scheduling� At the cluster level�

Neptune employs a class�aware load balancing scheme to evenly distribute re�

�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

quests for each class to all servers� Our load balancing scheme uses a random

polling policy that discards slow�responding polls� Under this policy� when�

ever a client is about to seek a service for a particular service class� it polls

a certain number of randomly selected service nodes to obtain the load in�

formation� Then it directs the service request to the node with the smallest

number of active and queued requests� Polls not responded within a deadline

are discarded� This strategy also helps excluding faulty nodes from request

distribution� We use a poll size of � and a polling deadline of � ms in our

system� Our study in Chapter � shows that such a policy is scalable and well

suited for services of a large spectrum of granularities� Inside each service

node� our approach must also deal with the resource allocation across multiple

service classes� This is handled by a node�level class�aware scheduling scheme�

which will be discussed in Section
�
� Note that the node�level class�aware

scheduling is not necessary for the server partitioning approach because every

node is con�gured to serve a single service class under that approach�

An Alternative Approach for Comparison� For the purpose of com�

parison� we also design a request distribution scheme based on server partition�

ing ����� Server partitioning is adjusted periodically at �xed intervals� This

scheme uses the past resource usage to predict the future resource demand and

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

makes di�erent partitioning decisions during system under�load and overload

situations�

� When the aggregate demand does not exceed the total system resources�

every service class acquires their demanded resource allocation� The

remaining resources will be allocated to all classes proportional to their

demand�

� When the system is overloaded� in the �rst round we allocate to each

class its resource demand or its resource allocation guarantee� whichever

is smaller� Then the remaining resources are allocated to all classes under

a priority order� The priority order is sorted by the full yield divided

by the mean resource consumption for each class� which can be acquired

through o�ine pro�ling�

Fractional server allocations are allowed in this scheme� All servers are par�

titioned into two pools� a dedicated pool and a shared pool� A service class

with ��
 server allocation� for instance� will get two servers from the dedicated

pool and acquire ��
 server allocation from the shared pool through sharing

with other classes with fractional allocations�

The length of the adjustment interval should be chosen carefully so that

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

it is not too small to avoid excessive repartitioning overhead and maintain

system stability� nor is it too large to promptly respond to demand changes�

We choose the interval to be � seconds in this study� Within each allocation

interval� service requests are randomly directed to one of the servers allocated

to the corresponding service class according to the load balancing policy�

��� Node�level Service Scheduling

Neptune employs a multi�queue �one per service class� scheduler inside each

node� Whenever a service request arrives� it enters the appropriate queue for

the service class it belongs to� When resources become available� the scheduler

dequeues a request from one of the queues for service� Figure
�
 illustrates

such a runtime environment of a service node� This scheduling framework

does not directly consider dependencies or associations among service requests

like those belonging to one client session� However� we believe features like

providing preferential service qualities for particular clients can be indirectly

supported through the proper con�guration of service classes�

For a service node hosting N service classes� C�� C�� � � � � CN � each class

Ck is con�gured with a service yield function Yk and optionally a minimum

�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

Class 1

Class 2

... ...
Class N

Service
scheduler
Service

scheduler

Figure
�
� Runtime environment of a service node�

system resource share guarantee gk� which is expressed as a percentage of

total system resources �
PN

� gk � �� The goal of the scheduling scheme is to

provide the guaranteed system resources for all service classes and schedule the

remaining resources to achieve high aggregate service yield� Note that when

PN

k�� gk " � our system falls back to a static resource partitioning scheme�

Figure
�� illustrates the framework of our service scheduling algorithm at

each scheduling point� In the rest of this section� we will discuss two aspects

of the scheduling algorithm� � maintaining resource allocation guarantee� and

�� achieving high aggregate service yield�

����� Estimating Resource Consumption for Allocation

Guarantee

In order to maintain resource allocation guarantee� we need to estimate

resource consumption for each service class at each scheduling time� This

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

� Drop from each queue head those requests that are likely to generate

zero or very small yield according to the request arrival time� expected

service time and the yield function�

�� Search for the service classes with non�empty request queues that have

an estimated resource consumption of less than the guaranteed share�

�a� If found� schedule the one with the largest gap between the re�

source consumption and the guaranteed share�

�b� Otherwise� schedule a queued request that is likely to produce

high aggregate service yield�

Figure
��� The node�level service scheduling algorithm�

estimation should be biased toward recent usage to stabilize quickly when the

actual resource consumption jumps from one level to another� It should not be

too shortsighted either in order to avoid oscillations or over�reactions to short�

term spikes� Among many possible functions that exhibit those properties�

we de�ne the resource consumption for class Ck at time t to be the weighted

summation of the resource usage for all class Ck requests completed no later

�	

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

than t� The weight is chosen to decrease exponentially with regard to the

elapsed time since the request completion� For each request r� let ct�r� be its

completion time and s�r� be its actual resource usage �we will discuss how to

measure it in the end of this sub�section�� which is known after its completion�

Equation
�
� de�nes uk�t� to be the resource consumption for class Ck at

time t� Note that the time in all the following equations is denominated in

seconds�

uk�t� "
X

frjr�Ck and ct�r��tg

�t�ct�r�s�r��

� � � �

�
�
��

Another reason for which we choose this function is that it can be incre�

mentally calculated without maintaining the entire service scheduling history�

Let t� be the previous calculation time� the resource consumption at time t

can be calculated incrementally through Equation
�
���

uk�t� " �t�t
�

uk�t
�� !

X
frjr�Ck and t��ct�r��tg

�t�ct�r�s�r� �
�
���

If we adjust uk�t� at the completion of every request� or� in other words� there

is only one request completed between t� and t� then Equation
�
�� becomes

Equation
�
�� where r is the most recent request�

uk�t� " �t�t
�

uk�t
�� ! �t�ct�r�s�r� �
�
���

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

The selection of � should be careful to maintain the smooth and stable

reaction for both short�term spikes and long�term consumption changes� In

this study we empirically choose � to be ����� Since we use second as the unit

of time in those equations� this means a service request completed one second

ago carries ��� the weight of a service request completed right now�

With the de�nition of uk�t�� the proportional resource consumption of class

Ck can be represented by
uk�t�P
N

k��
uk�t�

� In step � of the service scheduling� this

proportional consumption is compared with the guaranteed share to search for

under�allocated service classes�

Our estimation scheme is related to the exponentially�weighted moving

average �EWMA� �lter used as the round�trip time predictor in TCP ��
��

It di�ers from the original EWMA �lter in that the weight in our scheme

decreases exponentially with regard to the elapsed time instead of the elapsed

number of measurement samples� This is more appropriate for estimating

resource consumption due to its time�decaying nature�

The detailed measurement of resource consumption s�r� for each request r

is application�dependent� Generally speaking� each request can involve mixed

CPU and I�O activities and it is di�cult to de�ne a generic formula for all

applications� Our approach is to let application developers decide how the re�

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

source consumption should be accounted� Large�scale service clusters are typ�

ically composed of multiple sub�clusters of replicated service components ����

Each sub�cluster typically hosts a single type of service for modularity and

easier management� Thus requests in the same sub�cluster tend to share sim�

ilar resource characteristics in terms of I�O and CPU demand and it is not

hard in practice to identify a suitable way to account resource consumptions�

In the current implementation� we use the accumulated CPU consumption for

a thread or process acquired through Linux �proc �lesystem� This account�

ing is fairly e�ective in our evaluations even though one of the evaluation

benchmarks involves signi�cant disk I�O�

����� Achieving High Aggregate Yield

In this section� we examine the policies employed in step �b of the service

scheduling in Figure
�� to achieve high aggregated yield� In general� the

optimization problem speci�ed in Equation
��� is di�cult to solve given the

fact that it relies on the future knowledge of the response time of pending

requests� Various priority�based scheduling policies were proposed in real�

time database systems to maximize aggregate realized value ���� ���� Typical

policies considered in those systems include Earliest Deadline First scheduling

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

�EDF� and Yield or Value�In�ated Deadline scheduling �YID�� EDF always

schedules the queued request with the closest deadline� YID schedules the

queued request with the smallest in�ated deadline� de�ned as the relative

deadline divided by the expected yield if the request is being scheduled�

Both EDF and YID are designed to avoid or minimize the amount of

lost yield� They work well when the system resources are sized to handle

transient heavy load ����� For Internet services� however� the client request

rates tend to be bursty and �uctuate dramatically from time to time ��� ���

���� Over�provisioning system resources for a service site to accommodate the

potential peak will not be cost�e�ective� During load spikes when systems

are facing sustained arrival demand exceeding the available resources� missed

deadlines become unavoidable and the resource management should instead

focus on utilizing resources in the most e�cient way� This leads us to design

a Greedy scheduling policy that schedules the request with the lowest resource

consumption per unit of expected yield�

In order to have a scheduling policy that works well at a wide range of load

conditions� we further design an Adaptive policy that dynamically switches

between YID and Greedy scheduling depending on the runtime load condi�

tion� The scheduler maintains a ���second window of recent request dropping

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

statistics� If more than �� of incoming requests are dropped in the watched

window� the system is considered as overload and the Greedy scheduling is

employed� Otherwise� the YID scheduling is used�

All the above scheduling polices are priority�based scheduling with di�erent

de�nition of priorities� Table
� summarizes the priority metrics of the four

policies�

Policy Priority �the smaller the higher�

EDF Relative deadline
YID Relative deadline divided by expected yield
Greedy Expected resource consumption divided by expected yield
Adaptive Dynamically switch between YID �in under�load� and

Greedy �in overload�

Table
�� Summary of scheduling policies�

Three of above policies require a predicted response time and resource con�

sumption for each request at the scheduling time� For the response time� we

use an exponentially�weighted moving average of the response time of past

requests belonging to the same service class� An accurate prediction of the

resource consumption typically demands service�speci�c knowledges� includ�

ing the resource usage pattern of the application�level services and the input

parameter for individual service accesses� In our current implementation� such

�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

a prediction is based on an exponentially�weighted moving average of the CPU

consumptions of past requests belonging to the same service class� Such an

approximation does not a�ect the applicability of the proposed scheduling

policies as our evaluation in Section
�� demonstrates�

��� System Implementation and Experimen�

tal Evaluations

The proposed resource management framework has been implemented on

top of Neptune clustering architecture� Each external service request is as�

signed a service class ID upon arriving at any of the gateways� Those requests

are directed to one of the replicated service nodes according to the class�

aware load balancing scheme� Each server node maintains multiple request

queues �one per service class� and a thread pool� To process each service re�

quest� a thread is dispatched to invoke the application service module through

dynamically�linked libraries� The size of the thread pool is chosen to strike

the balance between concurrency and e�ciency depending on the application

characteristics� The aggregate services are exported to external clients through

protocol gateways�

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

The �rst goal of the performance evaluation is to examine the system per�

formance of our service scheduling schemes over a wide range of load condi�

tions� Secondly� we will study the performance and scalability of the proposed

cluster�level request distribution scheme� Our third goal is to investigate the

system behavior in terms of service di�erentiation during demand spikes and

server failures� All the evaluations were conducted on a rack�mounted Linux

cluster with around �� dual
�� MHz Pentium II nodes� each of which con�

tains either �� MB or GB memory� Each node runs Linux ����� and has

two �� Mb�s Ethernet interfaces� The cluster is connected by a Lucent P���

Ethernet switch with �� Gb�s backplane bandwidth�

����� Evaluation Workloads

Our evaluation studies are based on two service workloads� The �rst service

is a Di�erentiated Search service based on an index search component from

Ask Jeeves search� This service takes in a group of encoded query words�

checks an memory mapped index database� and returns the identi�cations of

the list of documents matching input query words� The index database size

is around ��� GB at each node and it cannot completely �t in memory� The

mean service time for this service is around ��� ms in our testbed when each

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

request is served in a dedicated environment�

Di�erentiated Search distinguishes three classes of clients� representing

Gold� Silver and Bronze memberships� We let the request composition for

these three classes be ��� ���� 	�� respectively� The yield functions of

these service classes can be one of the three forms that we described in Sec�

tion
���� i�e� Ythroughput��� Yresptime��� or Yhybrid��� In each case� the shapes of

the yield functions for three service classes are the same other than the mag�

nitude� We determine the ratio of such magnitudes to be
���� The deadline

D is set to be � seconds� In the case of Yhybrid��� the drop penalty C
� is set to

be half of the full yield and the pre�deadline D� is set to be half of the absolute

deadline D� Figure
�	 illustrates the yield functions when they are in each

one of the three forms�

0 1 2 3
0

2

4

6

Response time (seconds)

S
er

vi
ce

 y
ie

ld

(A) Y
throughput

Y() for Gold
Y() for Silver
Y() for Bronze

0 1 2 3
0

2

4

6

Response time (seconds)

S
er

vi
ce

 y
ie

ld

(B) Y
resptime

Y() for Gold
Y() for Silver
Y() for Bronze

0 1 2 3
0

2

4

6

Response time (seconds)

S
er

vi
ce

 y
ie

ld

(C) Y
hybrid

Y() for Gold
Y() for Silver
Y() for Bronze

Figure
�	� Service yield functions in evaluation workloads�

�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

Sun Mon Tue Wed Thu Fri Sat
0

5

10

15

20

25
S

ea
rc

h
ra

te
 (

hi
ts

/s
ec

) total
non−cached

Figure
��� Search requests to Ask Jeeves search via one of its edge Web servers
�January 	��� ������

The request arrival intervals and the query words for the three Di�erenti�

ated Search classes are based on a one�week trace we collected at Ask Jeeves

search via one of its edge Web servers� Figure
�� shows the total and non�

cached search rate of this trace� The search engine employs a query cache to

directly serve those queries that have already been served before and cached�

The cached requests are of little interests in our evaluation because they con�

sume very little system resources� We use the peak�time portion of Tuesday�

Wednesday� and Thursday�s traces to drive the workload for Gold� Silver� and

Bronze classes respectively� For each day� the peak�time portion we choose is

a ��hour period from am to 	pm EST� The statistics of these three traces

are listed in Table
��� Note that the arrival intervals of these traces may be

scaled when necessary to generate workloads at various demand levels during

our evaluation�

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

Number of accesses Arrival interval Service time
Total Non�cached Mean Std�dev Mean Std�dev

Gold ������� �
�
		 	��ms 	
��ms �
���ms ����ms
Silver ������ ����� 		��ms 	���ms �
���ms ����ms
Bronze ���	 �	��
 	��ms 	
��ms �
��ms ����ms

Table
��� Statistics of evaluation traces�

The three service classes in Di�erentiated Search are based on the same

service type and thus have the same average resource consumption� The sec�

ond service we constructed for the evaluation is designed to have di�erent

resource consumption for each service class� representing services di�erenti�

ated on their types� This service� we call Micro�benchmark� is based on a

CPU�spinning micro�benchmark� It contains three service classes with the

same yield functions as the Di�erentiated Search service� The mean service

times of the three classes are
�� ms� ��� ms� and �� ms respectively� We

use Poisson process arrivals and exponentially distributed service times for the

Micro�benchmark service�

�	

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

����� Evaluation on Node�level Scheduling and Service

Di�erentiation

In this section� we study the performance of four service scheduling policies

�EDF� YID� Greedy and Adaptive� and their impact on service di�erentiation�

The performance metric we use in this study is LossPercent ����� which is

computed as

LossPercent "
O�eredYield� RealizedYield

O�eredYield
� ���

O�eredYield is the aggregated full yield of all arrived requests and Real�

izedYield is the amount of yield realized by the system�

0% 25% 50% 75% 100%
0%

2%

4%

6%

Arrival demand

Lo
st

 p
er

ce
nt

(A) Underload − Y
hybrid

EDF
YID
Greedy
Adaptive

100% 125% 150% 175% 200%
0%

15%

30%

45%

60%

Arrival demand

Lo
st

 p
er

ce
nt

(B) Overload − Y
hybrid

EDF
YID
Greedy
Adaptive

Figure
��� Performance of scheduling policies on Micro�benchmark�

Figure
�� shows the performance of scheduling policies on Di�erentiated

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

0% 25% 50% 75% 100%
0%

2%

4%

6%

Arrival demand

Lo
st

 p
er

ce
nt

(A) Underload − Y
throughput

EDF
YID
Greedy
Adaptive

0% 25% 50% 75% 100%
0%

10%

20%

30%

40%

Arrival demand

Lo
st

 p
er

ce
nt

(B) Underload − Y
resptime

EDF
YID
Greedy
Adaptive

0% 25% 50% 75% 100%
0%

3%

6%

9%

Arrival demand

Lo
st

 p
er

ce
nt

(C) Underload − Y
hybrid

EDF
YID
Greedy
Adaptive

100% 125% 150% 175% 200%
0%

15%

30%

45%

60%

Arrival demand

Lo
st

 p
er

ce
nt

(D) Overload − Y
throughput

EDF
YID
Greedy
Adaptive

100% 125% 150% 175% 200%
0%

25%

50%

75%

100%

Arrival demand

Lo
st

 p
er

ce
nt

(E) Overload − Y
resptime

EDF
YID
Greedy
Adaptive

100% 125% 150% 175% 200%
0%

20%

40%

60%

Arrival demand

Lo
st

 p
er

ce
nt

(F) Overload − Y
hybrid

EDF
YID
Greedy
Adaptive

Figure
��� Performance of scheduling policies on Di�erentiated Search�

Search in a single�server setting� The experiments were conducted for all three

forms of yield functions� Ythroughput��� Yresptime��� and Yhybrid��� Figure
��

shows the performance of scheduling policies on Micro�benchmark� Only the

result for yield functions in Yhybrid�� form is shown for this service� In each

case� we show the performance results with a varying arrival demand of up to

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

���� of the available resources� The demand level cannot simply be the mean

arrival rate times the mean service time due to various system overhead� We

probe the maximum arrival rate such that more than ��� of all requests are

completed within the deadline under EDF scheduling� Then we consider the

request demand is ��� at this arrival rate� The desired demand level is then

achieved by scaling the request arrival intervals� The performance results are

separated into the under�load �arrival demand � ���� and overload �arrival

demand � ���� situations� We employ no minimum resource guarantee for

both services to better illustrate the comparison on the aggregate yield�

We observe that YID outperforms Greedy by up to
�� when the system is

under�loaded and Greedy performs up to ��� better during system overload�

The Adaptive policy is able to dynamically switch between YID and Greedy

policies to achieve good performance on all studied load levels�

To further understand the performance di�erence among the scheduling

policies and the impact on service di�erentiation� Figure
�� lists the per�class

performance breakdown for Di�erentiated Search service with Yhybrid�� yield

functions under ���� arrival demand� In terms of the throughput� all four

policies achieve similar aggregate throughput� however� Greedy and Adaptive

policies complete more requests of higher�priority classes� representing more

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

EDF YID GreedyAdaptive Demand
0

50

100

150

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

(A) Throughput breakdown

Gold
Silver
Bronze

EDF YID Greedy Adaptive
0

0.5

1

1.5

2

2.5

M
ea

n
re

sp
on

se
 ti

m
e

(s
ec

on
d)

(B) Mean response time breakdown

Gold
Silver
Bronze

Figure
��� Per�class performance breakdown of Di�erentiation Search at
���� arrival demand�

e�cient resource utilization� In terms of the mean response time� Greedy

and Adaptive policies complete requests with shorter mean response time�

representing better quality for completed requests�

����� Evaluation on Request Distribution across Repli�

cated Servers

Figure
� illustrates our evaluation results on two request distribution

schemes� class�aware load balancing �used in Neptune� and server partition�

ing� For each service� we show the aggregate service yield of up to 	 replicated

servers under slight under�load ���� demand�� slight overload ���� demand��

and severe overload ����� demand�� The Adaptive scheduling policy is used

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

0 5 10 15 20
0

5

10

15

20

Number of servers

A
gg

re
ga

te
 y

ie
ld

 (
no

rm
al

iz
ed

)

(A) Differentiated Search

Neptune, 200%
Partitioning, 200%
Neptune, 125%
Partitioning, 125%
Neptune, 75%
Partitioning, 75%

0 5 10 15 20
0

5

10

15

20

Number of servers

A
gg

re
ga

te
 y

ie
ld

 (
no

rm
al

iz
ed

)

(B) Micro−benchmark

Neptune, 200%
Partitioning, 200%
Neptune, 125%
Partitioning, 125%
Neptune, 75%
Partitioning, 75%

Figure
�� Performance and scalability of request distribution schemes�

in each server for those experiments� The aggregate yield shown in Figure
�

is normalized to the Neptune yield under ���� arrival demand� Our result

shows that both schemes exhibit good scalability� which is attributed to our

underlying load balancing strategy� the random�polling policy that discards

slow�responding polls� In comparison� Neptune produces up to 	� more yield

than server partitioning under high demand� This is because Neptune allows

the whole cluster�wide load balancing for all service classes while server parti�

tioning restricts the scope of load balancing to the speci�c server partition for

the corresponding service class� which a�ects the load balancing performance�

�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

����� Service Di�erentiation during Demand Spikes and

Server Failures

In this section� we study the service di�erentiation during demand spikes

and server failures� We use the Di�erentiated Search service with ��� resource

guarantee for each class� In order to produce constantly controllable demand

levels� we altered this service to generate �xed interval request arrivals and

constant service time� Figure
�� illustrates the system behavior of such a

service under Neptune and server partitioning approaches in a 	�server con�g�

uration� For each service class� we show the resource demand and the resource

allocation� measured in two�second intervals� over a ����second period�

Initially the total demand is ��� of the available resources� with ���

���� and 	�� of which belong to Gold� Silver� and Bronze class respectively�

Then there is a demand spike for the Silver class between time �� and time ���

We observe that Neptune promptly responds to the demand spike by allocating

more resources to meet high�priority Silver class demand and dropping some

low�priority Bronze class requests� This shift stops when Bronze class resource

allocation drops to around ��� of total system resources� which is its guar�

anteed share� We also see the resource allocations for Silver and Bronze class

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

quickly stabilize when they reach new allocation levels� In comparison� the

server partitioning scheme responds to this demand spike in a slower pace be�

cause it cannot adjust to immediate demand changes until the next allocation

interval� We also observe that the resource allocation for the highest�priority

Gold class is isolated from this demand spike under both schemes�

At time ���� one server �allocated to the Gold class under server parti�

tioning� fails and it recovers at time ���� Immediately after the server failure�

we see a deep drop of Gold class resource allocation for about � seconds un�

der server partitioning� This is again because it cannot adjust to immediate

resource change until the next allocation interval� In comparison� Neptune

exhibits much smoother behavior because losing any one server results in a

proportional loss of resources for each class� Also note that the loss of a server

reduces the available resources� which increases the relative demand to the

available resources� This e�ectively results in another resource shortage� The

system copes with it by maintaining enough allocation to Gold and Silver

classes while dropping some of the low�priority Bronze class requests�

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

��� Related Work

Quality�of�service support and service di�erentiation� The impor�

tance of providing QoS support and service di�erentiation has been recog�

nized in the networking community and the focuses of these studies are net�

work bandwidth allocation and packet delay ��� ��� ��� ��� 	�� �
�� The

methods for ensuring bandwidth usage include delaying or dropping user re�

quests ���� ��� 	�� or reducing service qualities �� ���� In comparison� Neptune

focuses on achieving e�cient resource utilization and providing service di�eren�

tiation for cluster�based services in which contents are dynamically generated

and aggregated� Recent advances in OS research have developed approaches

to provide QoS support at OS kernel level �
� ��� ��� 	�� ��� ���� Our work

can be enhanced by those studies to support hard QoS guarantees and service

di�erentiation at �ner granularities�

The concept of service quality in this resource management framework

refers to only the service response time� Service quality can have various

application�speci�c additional dimensions� For instance� the partial failure

in an partitioned search database results in a loss of harvest ����� Neptune

focuses on the service response time because it is one of the most general

�

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

service qualities so that the proposed techniques can be e�ective for a large

number of applications� In addition� we believe the current framework can

be enhanced to support application�speci�c service qualities like harvest in a

partitioned search engine�

Resource management for clustered services� A large body of work

has been done in request distribution and resource management for cluster�

based server systems ��� � ��� 	
� ��� ���� In particular� demand�driven ser�

vice di�erentiation �DDSD� provides a dynamic server partitioning approach

to di�erentiating services from di�erent service classes ����� Similar to a few

other studies ��� ���� DDSD supports service di�erentiation in the aggregate

allocation for each service class� In comparison� Neptune employs request�

level service scheduling to achieve high service throughput as well as limit the

response time of individual service requests� In addition� Neptune utilizes a

fully decentralized architecture to achieve high scalability and availability�

It is worth mentioning that a previous study has proposed locality�aware

request distribution �LARD� to exploit application�level data locality for Web

server clusters �	
�� Neptune does not directly address the data locality issue

because the service data for cluster�based data�intensive applications is typ�

ically partitioned such that the critical working set ��� or the whole service

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

data �
�� can �t into the system memory� This study of resource management

is geared toward replicated service nodes for each such data partition�

Service scheduling� Deadline scheduling� proportional�share resource

scheduling� and value�based scheduling have been studied in both real�time

systems and general�purpose operating systems ��� ��� ��� ��� 	�� ��� ����

Client request rates for Internet services tend to be bursty and �uctuate dra�

matically from time to time ��� ��� ���� Delivering satisfactory user experience

is important during load spikes� Based on an adaptive scheduling approach

and a resource consumption estimation scheme� the service scheduling in Nep�

tune strives to achieve e�cient resource utilization under quality constraints

and provide service di�erentiation�

��� Concluding Remarks

This chapter presents the design and implementation of an integrated re�

source management framework for cluster�based network services� This frame�

work is �exible in allowing service providers to express desired service qualities

based on the service response time� At the cluster level� a scalable decentral�

ized request distribution architecture ensures prompt and smooth response to

�	

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

service demand spikes and server failures� Inside each node� an adaptive multi�

queue scheduling scheme is employed to achieve e�cient resource utilization

under quality constraints and provide service di�erentiation�

��

CHAPTER �� QUALITY�AWARE RESOURCE MANAGEMENT

0 50 100 150 200 250 300
0%

5%

10%

15%

20%

R
es

ou
rc

e
de

m
an

d/
al

lo
ca

tio
n (A) Gold class

Resource demand
Neptune
Server partitioning

0 50 100 150 200 250 300
0%

20%

40%

60%

80%

100%

R
es

ou
rc

e
de

m
an

d/
al

lo
ca

tio
n (B) Silver class

Resource demand
Neptune
Server partitioning

0 50 100 150 200 250 300
0%

20%

40%

60%

80%

100%

Timeline (seconds)

R
es

ou
rc

e
de

m
an

d/
al

lo
ca

tio
n (C) Bronze class

Resource demand
Neptune
Server partitioning

Figure
��� System behavior during demand spike and server failure with 	
servers� Di�erentiated Search with ��� resource guarantee for each class is
used� One server �allocated to the Gold class under server partitioning� fails
at time ��� and it recovers at time ����

��

Chapter �

Service Replication

��� Introduction

High availability� incremental scalability� and manageability are some of

the key challenges faced by designers of Internet�scale network services and

using a cluster of commodity machines is cost�e�ective for addressing these

issues ���
�� 	�� ���� Previous work has recognized the importance of provid�

ing software infrastructures for cluster�based network services� For example�

the TACC and MultiSpace projects have addressed load balancing� fail�over

support� and component reusability and extensibility for cluster�based ser�

vices �
��
��� These systems do not provide explicit support for managing

��

CHAPTER �� SERVICE REPLICATION

frequently updated persistent service data and mainly leave the responsibil�

ity of storage replication to the service layer� Recently the DDS project has

addressed replication of persistent data using a layered approach �
	�� This

work is focused on a class of distributed data structures and it cannot be easily

applied to existing applications with complex data management logic�

Replication of persistent data is crucial to achieving high availability� Pre�

vious work has shown that synchronous replication based on eager update

propagations does not deliver scalable solutions ���

�� Various asynchronous

models have been proposed for wide�area or wireless distributed systems ���

��

� 		�� However� these studies have not explicitly address the high scal�

ability�availability demand and potentially weak consistency requirement of

large�scale network services� Additional studies are needed to investigate the

replica consistency and fail�over support for large�scale cluster�based Internet

services�

In this chapter� we investigate techniques in providing scalable replication

support for cluster�based network services� This work is built upon a large

body of previous research in network service clustering� fault�tolerance� and

data replication� The goal of this work is to provide �exible and e�cient service

replication support for network services with frequently updated persistent

��

CHAPTER �� SERVICE REPLICATION

data� This model should make it simple to deploy existing applications and

shield application programmers from the complexities of replica consistency

and fail�over support� It also needs to have the �exibility to accommodate a

variety of data management mechanisms that network services typically rely

on� Under the above consideration� our system is designed to support multiple

levels of replica consistency depending on application characteristics� The

objective is to provide the desired level of replica consistency for large�scale

Internet services with the emphasis on performance scalability and fail�over

support�

Generally speaking� providing standard system components to achieve scal�

ability and availability tends to decrease the �exibility of service construction�

Neptune demonstrates that it is possible to achieve these goals by targeting

partitionable network services and by providing multiple levels of replica con�

sistency� Neptune addresses consistency in three levels� The highest level can

ensure that network clients obtain and update information in a progressive

order� which is desirable for many services� Data objects in network services

are typically managed by databases or �le systems and adding new object lay�

ers with replication support reduces the applicability of Neptune� To increase

the compatibility with the existing applications� Neptune employs operation

�

CHAPTER �� SERVICE REPLICATION

replication to maintain replica consistency indirectly�

The rest of this chapter is organized as follows� Section ��� presents the

assumptions that Neptune�s replication support is based upon� Section ���

describes Neptune�s multi�level replica consistency scheme and the failure re�

covery model� Section ��� illustrates three service deployments on a Linux

cluster� Section ��
 evaluates Neptune�s performance and failure management

using those three services� Section ��� describes related work and Section ��	

concludes this chapter�

����� Assumptions

We assume all hardware and software system modules follow the fail�stop

failure model and network partitions do not occur inside the service clus�

ter� We bear this principle in mind throughout the system implementation�

Each module will simply terminate itself when an unexpected situation oc�

curs� Nevertheless� we do not preclude catastrophic failures in our model� In

other words� persistent data can survive through a failure that involves a large

number of modules or even all nodes� In this case� the replica consistency will

be maintained after the recovery� This is important because software failures

are often not independent� For instance� a replica failure triggered by high

��

CHAPTER �� SERVICE REPLICATION

workload results in even higher workload in remaining replicas and may cause

cascading failures of all replicas� While the service will be certainly unavailable

for a period of time� it is pivotal to maintain data consistency after recovery�

Neptune supports atomic execution of data operations through failures

only if each underlying service module can ensure atomicity in a stand�alone

con�guration� This assumption can be met when the persistent data is main�

tained in transactional databases or transactional �le systems� To facilitate

atomic execution� we assume that each service module provides a CHECK

callback so that the Neptune server module can check if a previously spawned

service instance has been successfully completed� The CHECK callback is

very similar to the REDO and UNDO callbacks that resource managers pro�

vide in the transaction processing environment �
��� It is only invoked during

the node recovery phase and we will further discuss its usage and a potential

implementation in Section ������

We also assume that the service abort happens either at all replicas or not

at all� Note that a server failure does not necessarily cause the active service

request to abort because it can be logged and successfully reissued when the

failing server recovers� This assumption can be met when service aborts are

related to the state of service data only� e�g� violations of data integrity con�

��

CHAPTER �� SERVICE REPLICATION

straints� In other words� we do not consider the situations such that a service

aborts because of insu�cient disk space� Under this assumption� Neptune does

not have to coordinate the service aborts because they either happen at all

replicas or not at all� This assumption is not crucial to Neptune�s fundamental

correctness but it does greatly simplify our implementations� Without such an

assumption� a proper UNDO mechanism will be required to maintain replica

consistency�

��� Replica Consistency and Failure Recovery

In general� data replication is achieved through either eager or lazy write

propagations ��
�

�� Eager propagation keeps all replicas exactly synchro�

nized by acquiring locks and updating data at all replicas in a globally coor�

dinated manner� In comparison� lazy propagation allows lock acquisitions and

data updates to be completed independently at each replica� Previous work

shows that synchronous eager propagation leads to high deadlock rates when

the number of replicas increases �

�� The DDS project uses this synchronous

approach and they rely on the timeout abort and client retry to resolve the

deadlock issue �
	�� In order to ensure replica consistency while providing high

�

CHAPTER �� SERVICE REPLICATION

scalability� the current version of Neptune adopts a primary copy approach to

avoid distributed deadlocks and a lazy propagation of updates to the replicas

where the updates are completed independently at each replica� In addition�

Neptune addresses the load�balancing problems of most primary copy schemes

through data partitioning�

Lazy propagation introduces the problems of out�of�order writes and ac�

cessing stale data versions� Neptune provides a three�level replica consistency

model to address these problems and exploit their performance tradeo�� Our

consistency model extends the previous work in lazy propagation with a focus

on high scalability and runtime fail�over support� Particularly Neptune�s high�

est consistency level provides a staleness control which contains not only the

quantitative staleness bound but also a guarantee of progressive version deliv�

ery for each client�s service accesses� We can e�ciently achieve this staleness

control by taking advantage of the low latency� high throughput system�area

network and Neptune�s service publishing mechanism�

The rest of this section discusses the multi�level consistency model and

Neptune�s support for failure recovery� It should be noted that the current

version of Neptune does not have full��edged transactional support because

Neptune restricts each service access to a single data partition�

��

CHAPTER �� SERVICE REPLICATION

����� Multi�level Consistency Model

As mentioned in Chapter �� Neptune is targeted at partitionable network

services in which service data can be divided into independent partitions�

Therefore� Neptune�s consistency model does not address the data consistency

across partition boundaries� Neptune�s �rst two levels of replica consistency

are more or less generalized from the previous work ��
� 	�� and we provide

an extension in the third level to address the data staleness problem from two

di�erent perspectives� Notice that a consistency level is speci�ed for each ser�

vice and thus Neptune allows co�existence of services with di�erent consistency

levels�

Level �� Write�anywhere replication for commutative writes� In this

level� each write is initiated at any replica and is propagated to other

replicas asynchronously� When writes are commutative� eventually the

client view will converge to a consistent state for each data partition� The

append�only discussion groups in which users can only append messages

satisfy this commutativity requirement� Another example is a certain

kind of email service �	��� in which all writes are total�updates� so out�of�

order writes could be resolved by discarding all but the newest� The �rst

�	

CHAPTER �� SERVICE REPLICATION

level of replica consistency is intended for taking advantage of application

characteristics and achieving high performance in terms of scalability and

fail�over support�

Level �� Primary�secondary replication for ordered writes� In this

consistency level� writes for each data partition are totally ordered� A

primary�copy node is assigned to each replicated data partition� and

other replicas are considered as secondaries� All writes for a data parti�

tion are initiated at the primary� which asynchronously propagates them

in a FIFO order to the secondaries� At each replica� writes for each parti�

tion are serialized to preserve the order� Serializing writes simpli�es the

write ordering for each partition� but it results in a loss of write concur�

rency within each partition� Since many Internet services have a large

number of data partitions due to the information and user independence�

There should be su�cient write concurrency across partitions� Besides�

concurrency among read operations is not a�ected by this scheme� Level

two consistency provides the same client�viewed consistency support as

level one without requiring writes to be commutative� As a result� it

could be applied to more services�

��

CHAPTER �� SERVICE REPLICATION

Level �� Primary�secondary replication with staleness control� Level

two consistency is intended to solve the out�of�order write problem result�

ing from lazy propagation� This additional level is designed to address

the issue of accessing stale data versions� The primary�copy scheme is

still used to order writes in this level� In addition� we assign a ver�

sion number to each data partition and this number increments after

each write� The staleness control provided by this consistency level con�

tains two parts� � Soft quantitative bound� Each read is serviced at

a replica that is at most x seconds stale compared to the primary ver�

sion� The quantitative staleness between two data versions is de�ned by

the elapsed time between the two corresponding writes accepted at the

primary� Thus our scheme does not require a global synchronous clock�

Currently Neptune only provides a soft quantitative staleness bound and

it is described later in this section� �� Progressive version delivery� From

each client�s point of view� the data versions used to service her read and

write accesses should be monotonically non�decreasing� Both guarantees

are important for services like large�scale on�line auction in which users

would like to get as recent information as possible and they do not expect

to see declining bidding prices in two consecutive accesses�

��

CHAPTER �� SERVICE REPLICATION

We explain below our implementations for the two staleness control guaran�

tees in level three consistency� The quantitative bound ensures that all reads

are serviced at a replica at most x seconds stale compared to the primary

version� In order to achieve this� each replica publishes its current version

number as part of the service announcement message and the primary pub�

lishes its version number at x seconds ago in addition� With this information�

Neptune client module can ensure that all reads are only directed to replicas

within the speci�ed quantitative staleness bound� Notice that the published

replica version number may be stale depending on the service publishing fre�

quency� so it is possible that none of the replicas has a high enough version

number to ful�ll a request� In this case� the read is directed to the primary�

which always has the latest version� Also note that the �x seconds� is only a

soft bound because the real guarantee depends on the latency� frequency and

intermittent losses of service announcements� However� these problems are

insigni�cant in a low latency� reliable system area network�

The progressive version delivery guarantees that� � After a client writes

to a data partition� she always sees the result of this write in her subsequent

reads� �� A user never reads a version that is older than another version she

has seen before� In order to accomplish this� each service invocation returns

��

CHAPTER �� SERVICE REPLICATION

a version number to the client side� For a read� this number stands for the

data version used to ful�ll this access� For a write� it stands for latest data

version as a result of this write� Each client keeps this version number in a

NeptuneHandle and carries it in each service invocation� The Neptune client

module can ensure that each client read access is directed to a replica with a

published version number higher than any previously returned version number�

����� Failure Recovery

In this section� we focus on the failure detection and recovery for the

primary�copy scheme that is used in level two�three consistency schemes� The

failure management for level one consistency is much simpler because the repli�

cas are more independent from each other�

In order to recover lost propagations after failures� each Neptune service

node maintains a REDO write log for each data partition it hosts� Each log

entry contains the service method name� partition ID� the request message

along with an assigned log sequence number �LSN�� The write log consists of

a committed portion and an uncommitted portion� The committed portion

records those writes that are already completed while the uncommitted portion

records the writes that are received but not yet completed�

�

CHAPTER �� SERVICE REPLICATION

Neptune assigns a static priority for each replica of a data partition� The

primary is the replica with the highest priority� When a node failure is de�

tected� for each partition that the faulty node is the primary of� the remaining

replica with the highest priority is elected to become the new primary� This

election algorithm is the same as the classical Bully Algorithm �
� with the

exception that each replica has a priority for each data partition it hosts� This

fail�over scheme also requires that the elected primary does not miss any write

that has committed in the failed primary� To ensure that� before the primary

executes a write locally� it has to wait until all other replicas have acknowl�

edged the reception of its propagation� If a replica does not acknowledge in a

timeout period� this replica is considered to fail due to our fail�stop assumption

and thus this replica can only rejoin the service cluster after going through the

recovery process described below�

When a node recovers after its failure� the underlying single�site service

module �rst recovers its data into a consistent state� Then this node will enter

Neptune�s three�phase recovery process as follows�

Phase �� Internal synchronization� The recovering node �rst synchronizes

its write log with the underlying service module� This is done by using

the registered CHECK callbacks to determine whether each write in the

CHAPTER �� SERVICE REPLICATION

uncommitted log has been completed by the service module� The com�

pleted writes are merged into the committed portion of the write log and

the uncompleted writes are reissued for execution�

Phase �� Missing write recovery� In this phase� the recovering node an�

nounces its priority for each data partition it hosts� If the partition has

a higher priority than the current primary� this node will bully the cur�

rent primary into a secondary as soon as its priority announcement is

heard� Then it contacts the deposed primary to recover the writes that

it missed during its down time� For a partition that does not have a

higher priority than the current primary� this node simply contacts the

primary to recover the missed writes�

Phase �� Operation resumption� After the missed writes are recovered�

this recovering node resumes normal operations by publishing the ser�

vices it hosts and accepting requests from the clients�

Note that if a recovering node has the highest priority for some data par�

titions� there will be no primary available for those partitions during phase

two of the recovery� This temporary blocking of writes is essential to ensure

that the recovering node can bring itself up�to�date before taking over as the

�

CHAPTER �� SERVICE REPLICATION

new primary� We will present the experimental study for this behavior in Sec�

tion ��
��� We also want to emphasize that a catastrophic failure that causes

all replicas for a certain partition to fail requires special attention� No replica

can successfully complete phase two recovery after such a failure because there

is no pre�existing primary in the system to recover missed writes� In this case�

the replica with newest version needs to be manually brought up as the primary

then all other replicas can proceed the standard three�phase recovery�

Before concluding our failure recovery model� we describe a possible

CHECK callback support provided by the service module� We require the

Neptune server module to pass the LSN with each request to the service in�

stance� Then the service instance ful�lls the request and records this LSN

on persistent storage� When the CHECK callback is invoked with an LSN

during a recovery� the service module compares it with the LSN of the lat�

est completed service access and returns appropriately� As we mentioned in

Section ���� Neptune provides atomic execution through failures only if the

underlying service module can ensure atomicity on single�site service accesses�

Such support can ensure the service access and the recording of LSN take place

as an atomic action� A transactional database or a transactional �le system

can be used to achieve atomicity for single�site service accesses�

�

CHAPTER �� SERVICE REPLICATION

��� Service Deployments

We have deployed three demonstration services on a Neptune�enabled Linux

cluster for performance evaluation� The �rst service is on�line discussion

group� which handles three types of requests for each discussion topic� viewing

the list of message headers �ViewHeaders�� viewing the content of a mes�

sage �ViewMsg�� and adding a new message �AddMsg�� Both ViewHeaders and

ViewMsg are read�only requests� The messages are maintained and displayed

in a hierarchical format according to the reply�to relationships among them�

The discussion group uses MySQL database to store and retrieve messages

and topics�

The second service is a prototype auction service� which is also implemented

on MySQL database� The auction service supports �ve types of requests�

viewing the list of categories �ViewCategories�� viewing the available items in

an auction category �ViewCategory�� viewing the information about a speci�c

item �ViewItem�� adding a new item for auction �AddItem�� and bidding for

an item �BidItem�� Level three consistency with proper staleness bound and

progressive version delivery is desirable for this service in order to prevent

auction users from seeing declining bidding prices�

CHAPTER �� SERVICE REPLICATION

The third service in our study is a persistent cache service� This service

supports two service methods� storing a key�data pair into the persistent cache

�CacheUpdate� and retrieving the data for a given key �CacheLookup�� The

persistent cache uses an MD� encoding based hashing function to map the

key space into a set of buckets� Each bucket initially occupies one disk block

���
 bytes� in the persistent storage and it may acquire more blocks in the

case of over�ow� We use mmap�� utilities to keep an in�memory reference to

the disk data and we purge the updates and the corresponding LSN into the

disk at every tenth CacheUpdate invocation� The LSN is used to support the

CHECK callback that we discussed in Section ������ The persistent cache is

most likely an internal service� which provides a scalable and reliable data store

for other services� We used level two consistency for this service� which allows

high throughput with intermittent false cache misses� A similar strategy was

adopted in an earlier study on Web cache clustering ����

We note that MySQL database does not have full��edged transactional

support� but its latest version supports �atomic operations�� which is enough

for Neptune to provide cluster�wide atomicity� On the other hand� our current

persistent cache is built on a regular �le system without atomic recovery sup�

port� However� we believe such a setting is su�cient for illustrative purposes�

�

CHAPTER �� SERVICE REPLICATION

��� System Evaluations

Our experimental studies are focused on performance�scalability� availabil�

ity� and consistency levels of Neptune cluster services� All the evaluations in

this section were conducted on a rack�mounted Linux cluster with around ��

dual
�� Mhz Pentium II nodes� each of which contains either �� MB or

 GB memory� Each node runs Linux ����� and has two �� Mb�s Ethernet

interfaces� The cluster is connected by a Lucent P��� Ethernet switch with

�� Gb�s backplane bandwidth� All the experiments presented in this section

use up to 	 server nodes and up to 	 client nodes� MySQL ��������Beta was

used as the service database�

Even though all the services rely on protocol gateways to reach end clients�

the performance between protocol gateways and end clients is out of the scope

of this study� Our experiments are instead focused on studying the perfor�

mance between clients and services inside a Neptune service cluster�

We used synthetic workloads in all the evaluations� Two types of workloads

were generated for this purpose� � Balanced workloads where service requests

are evenly distributed among data partitions were used to measure the best

case scalability� �� Skewed workloads� in comparison� were used to measure the

	

CHAPTER �� SERVICE REPLICATION

system performance when some particular partitions draw a disproportional

number of service requests� We measured the maximum system throughput

when more than ��� of client requests were successfully completed within two

seconds� Our testing clients attempted to saturate the system by probing the

maximum throughput� In the �rst phase� they doubled their request sending

rate until �� of the requests failed to complete in � seconds� Then they

adjusted the sending rates in smaller steps and resumed probing�

The rest of this section is organized as follows� Section ��
� and Sec�

tion ��
�� present the system performance under balanced and skewed work�

load� Section ��
�� illustrates the system behavior during failure recoveries�

The discussion group service is used in all the above experiments� Section ��
�

presents the performance of the auction and persistent cache service�

����� Scalability under Balanced Workload

We use the discussion group to study the system scalability under balanced

workload� In this evaluation� we studied the performance impact when varying

the replication degree� the number of service nodes� the write percentage�

and consistency levels� The write percentage is the percentage of writes in

all requests and it is usually small for discussion group services� However�

�

CHAPTER �� SERVICE REPLICATION

0 5 10 15 20
0

500

1000

1500

2000

Number of service nodes

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

(A) Level 1, 50% writes

NoRep
Rep=2
Rep=3
Rep=4

0 5 10 15 20
0

500

1000

1500

2000

Number of service nodes

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

(B) Level 2, 50% writes

NoRep
Rep=2
Rep=3
Rep=4

0 5 10 15 20
0

500

1000

1500

2000

Number of service nodes

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

(C) Level 3, 50% writes

NoRep
Rep=2
Rep=3
Rep=4

0 5 10 15 20
0

500

1000

1500

2000

Number of service nodes

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

(D) Level 1, 10% writes

NoRep
Rep=2
Rep=3
Rep=4

0 5 10 15 20
0

500

1000

1500

2000

Number of service nodes

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

(E) Level 2, 10% writes

NoRep
Rep=2
Rep=3
Rep=4

0 5 10 15 20
0

500

1000

1500

2000

Number of service nodes

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

(F) Level 3, 10% writes

NoRep
Rep=2
Rep=3
Rep=4

Figure ��� Scalability of discussion group service under balanced workload�

we are also interested in assessing the system performance under high write

percentage� which allows us to predict the system behavior for services with

more frequent writes� We present the results under two write percentages�

�� and ���� In addition� we measured all three consistency levels in this

study� Level one consistency requires writes to be commutative and thus� we

�

CHAPTER �� SERVICE REPLICATION

used a variation of the original service implementation to facilitate it� For

the purpose of performance comparison with other consistency levels� we kept

the changes to be minimum� For level three consistency� we chose one second

as the staleness bound� We also noticed that the performance of level three

consistency is a�ected by the request rate of individual clients� This is because

a higher request rate from each client means a higher chance that a read has to

be forwarded to the primary node to ful�ll progressive version control� which in

turn restricts the system load balancing capabilities� We recognized that most

Web users spend at least several seconds between consecutive requests� Thus

we chose one request per second as the client request rate in this evaluation

to measure the worst case impact�

The number of discussion groups in our synthetic workload was
�� times

the number of service nodes� Those groups were in turn divided into 	
 parti�

tions� These partitions and their replicas were evenly distributed across service

nodes� Each request was sent to a discussion group chosen according to an even

distribution� The distribution of di�erent requests �AddMsg� ViewHeaders and

ViewMsg� was determined based on the write percentage�

Figure �� shows the scalability of discussion group service with three con�

sistency levels and two write percentages ��� and ����� Each sub��gure

�

CHAPTER �� SERVICE REPLICATION

illustrates the system performance under no replication �NoRep� and repli�

cation degrees of two� three and four� The NoRep performance is acquired

through running a stripped down version of Neptune which does not contain

any replication overhead except logging� The single node performance under

no replication is �� requests�second for �� writes and �� requests�second

for ��� writes� We can use them as an estimation for the basic service over�

head� Notice that a read is more costly than a write because ViewHeaders

displays the message headers in a hierarchical format according to the reply�to

relationships� which may invoke some expensive SQL queries�

We can draw the following conclusions based on the results in Figure ���

� When the number of service nodes increases� the throughput steadily scales

across all replication degrees� �� Service replication comes with an overhead

because every write has to be executed more than once� Not surprisingly� this

overhead is more prominent under higher write percentage� In general� a non�

replicated service performs twice as fast as its counterpart with a replication

degree of four at ��� writes� However� Section ��
�� shows that replicated

services can outperform non�replicated services under skewed workloads due

to better load balancing� �� All three consistency levels perform very closely

under balanced workload� This means level one consistency does not provide

��

CHAPTER �� SERVICE REPLICATION

a signi�cant performance advantage and a staleness control does not incur

signi�cant overhead either� We recognize that higher levels of consistency re�

sult in more restrictions on Neptune client module�s load balancing capability�

However� those restrictions in�ict very little performance impact for balanced

workload�

����� Impact of Workload Imbalance

This section studies the performance impact of workload imbalance� Each

skewed workload in this study consists of requests that are chosen from a set of

partitions according to a Zipf distribution� Each workload is also labeled with a

workload imbalance factor� which indicates the proportion of the requests that

are directed to the most popular partition� For a service with 	
 partitions� a

workload with an imbalance factor of �	
 is completely balanced� A workload

with an imbalance factor of is the other extremity in which all requests are

directed to one single partition� Again� we use the discussion group service in

this evaluation�

Figure ��� shows the impact of workload imbalance on services with di�er�

ent replication degree� The �� write percentage� level two consistency� and

eight service nodes were used in this experiment� We see that even though

�

CHAPTER �� SERVICE REPLICATION

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Workload imbalance factor

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

NoRep
Rep=2
Rep=3
Rep=4

Figure ���� Impact of workload imbalance on the replication degrees with �
service nodes�

service replication carries an overhead under balanced workload �imbalance

factor " �	
�� replicated services can outperform non�replicated ones under

skewed workload� Speci�cally� under the workload that directs all requests

to one single partition� the service with a replication degree of four performs

almost three times as fast as its non�replicated counterpart� This is because

service replication provides better load�sharing by spreading hot�spots over

several service nodes� which completely amortizes the overhead of extra writes

in achieving the replica consistency�

We learned from Section ��
� that all three consistency levels perform very

closely under balanced workload� Figure ��� illustrates the impact of workload

imbalance on di�erent consistency levels� The �� write percentage� a replica�

��

CHAPTER �� SERVICE REPLICATION

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

Workload imbalance factor

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Level 1: commutative writes
Level 2 : ordered writes
Level 3: staleness control at 1 second

Figure ���� Impact of workload imbalance on consistency levels with � service
nodes�

tion degree of four� and eight service nodes were used in this experiment� The

performance di�erence among three consistency levels becomes slightly more

prominent when the workload imbalance factor increases� Speci�cally under

the workload that directs all requests to one single partition� level one consis�

tency yields �� better performance than level two consistency� which in turn

performs �� faster than level three consistency with staleness control at one

second� Based on these results� we learned that� � The freedom of directing

writes to any replica in level one consistency only yields moderate performance

advantage� �� Our staleness control scheme carries an insigni�cant overhead

even though it appears slightly larger for skewed workload�

��

CHAPTER �� SERVICE REPLICATION

����� System Behavior during Failure Recoveries

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000
System behavior during three node failure and recoveries (r equest rate at 800 per second)

time(seconds)

re
qu

es
ts

/s
ec

on
d

response rate
error/timeout rate

three nodes fail

node1 recovers

node2 recovers

node3 recovers

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000
System behavior during three node failure and recoveries (r equest rate at 800 per second)

time(seconds)

re
qu

es
ts

/s
ec

on
d

response rate
error/timeout rate

three nodes fail

node1 recovers

node2 recovers

node3 recovers

Figure ��
� Behavior of the discussion group service during three node failure
and recoveries� Eight service nodes� level two consistency� and a replication
degree of four were used in this experiment�

Figure ��
 depicts the behavior of a Neptune�enabled discussion group ser�

vice during three node failures in a ����second period� Eight service nodes�

level two consistency� and a replication degree of four were used in the exper�

iments� Three service nodes fail simultaneously at time ��� Node recovers

�� seconds later� Node � recovers at time � and node � recovers at time

�� It is worth mentioning that a recovery may take much longer than ��

seconds in practice� especially when large data �les need to be loaded over the

network as part of such recovery ���� However� we believe those variations do

not a�ect the fundamental system behavior illustrated in this experiment� We

�

CHAPTER �� SERVICE REPLICATION

observe that the system throughput goes down during the failure period� And

we also observe a tail of errors and timeouts trailing each node recovery� This

is caused by the lost of primary and the overhead of synchronizing lost updates

during the recovery as discussed in Section ������ However� the service quickly

stabilizes and resumes normal operations�

����� Auction and Persistent Cache

In this section� we present the performance of the Neptune�enabled auction

and persistent cache service� We analyzed the data published by eBay about

the requests they received fromMay �� to June �� ���� Excluding the requests

for embedded images� we estimate that about �� of the requests were for

bidding� and �� were for adding new items� More information about this

analysis can be found in our earlier study on dynamic Web caching ��	�� We

used the above statistical information in designing our test workload� We

chose the number of auction categories to be
�� times the number of service

nodes� Those categories were in turn divided into 	
 partitions� Each request

was made for an auction category selected from a population according to an

even distribution� We chose level three consistency with staleness control at

one second in this experiment� This consistency level �ts the auction users�

��

CHAPTER �� SERVICE REPLICATION

needs to acquire the latest information�

0 5 10 15 20
0

200

400

600

800

1000

Number of service nodes

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

NoRep
Rep=2
Rep=3
Rep=4

Figure ���� Performance of auction on Neptune�

Figure ��� shows the performance of a Neptune�enabled auction service�

Its absolute performance is slower than that of the discussion group because

the auction service involves extra overhead in authentication and user account

maintenance� In general the results match the performance of the discussion

group with �� writes in Section ��
�� However� we do observe that the

replication overhead is smaller for the auction service� The reason is that the

tradeo� between the read load sharing and extra write overhead for service

replication depends on the cost ratio between a read and a write� For the auc�

tion service most writes are bidding requests which incur very little overhead

by themselves�

�	

CHAPTER �� SERVICE REPLICATION

0 5 10 15 20
0

1000

2000

3000

4000

5000

Number of service nodes

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

NoRep
Rep=2
Rep=3
Rep=4

Figure ��	� Performance of persistent cache on Neptune�

Figure ��	 illustrates the performance of the persistent cache service� Level

two consistency and �� write percentage were used in the experiment� The

results show large replication overhead caused by extra writes� This is because

CacheUpdate may cause costly disk accesses while CacheLookup can usually

be ful�lled with in�memory data�

��� Related Work

Replica consistency� Replication of persistent data is crucial to achiev�

ing high availability� The earlier analysis by Gray et al� shows that the syn�

chronous replication based on eager update propagations leads to high dead�

��

CHAPTER �� SERVICE REPLICATION

lock rates �

�� A recent study by Anderson et al� con�rms this using simula�

tions ���� The asynchronous replication based on lazy propagations has been

used in Bayou �		�� Adya et al� have studied lazy replication with a type of lazy

consistency in which server data is replicated in a client cache �
�� The serializ�

ability for lazy propagations with the primary�copy method is further studied

by a few other research groups ��� �
� and they address causal dependence when

accessing multiple objects� The most recent work by Yu and Vahdat provides

a tunable framework to exploit the tradeo� among availability� consistency�

and performance ���� Neptune�s replica consistency maintenance is close to

the previous work on asynchronous replication in the use of logging�REDO

facilities� Neptune di�ers from them in providing �exible replica consistency

for cluster�based network services with the emphasis on performance scalabil�

ity and fail�over support� In particular� Neptune employs a multi�level replica

consistency model with data staleness control at its highest level�

Persistent data management for clustered services� The Porcupine

project has developed a scalable cluster�based email service and its replication

model is intended for services with only commutative writes �	��� Recently

the DDS project has addressed replication of persistent data with a carefully

built data management layer that encapsulates scalable replica consistency

��

CHAPTER �� SERVICE REPLICATION

and fail�over support �
	�� While this approach is demonstrated for services

with simple processing logic like distributed hash tables� constructing such a

data management layer could be di�cult for applications with complex data

management logic� including many database applications� Our work comple�

ments these studies by providing replication support for clustering stand�alone

service modules with the capability of accommodating various underlying data

management mechanisms� In addition� Neptune is novel in providing multiple

levels of replica consistency support to exploit application�level service seman�

tics and the performance tradeo��

Replication support in database and transaction processing sys�

tems� Commercial database systems from Oracle� Sybase and IBM support

lazy updates for data replication and they rely on user�speci�ed rules to re�

solve con�icts� Neptune di�ers from those systems by taking advantage of the

inherently partitionable property of most Internet services� As a result� Nep�

tune�s consistency model is built with respect to single data partition� which

enables Neptune to deliver highly consistent views to clients without losing

performance and availability� Nevertheless� Neptune�s design on communica�

tion schemes and failure recovery model bene�ts greatly from previous work

on transactional RPC and transaction processing systems �
�� ����

��

CHAPTER �� SERVICE REPLICATION

��� Concluding Remarks

Our work is targeted at aggregating and replicating partitionable network

services in a cluster environment� The main contributions are the develop�

ment of a scalable and highly available clustering infrastructure with repli�

cation support and the proposal of a weak replica consistency model with

staleness control at its highest level� In addition� our clustering and repli�

cation infrastructure is capable of supporting application�level services built

upon a heterogeneous set of databases� �le systems� or other data management

systems�

Service replication increases availability� However� it may compromise the

throughput of applications with frequent writes due to the consistency man�

agement overhead� Our experiments show that Neptune�s highest consistency

scheme with staleness control can still deliver scalable performance with in�

signi�cant overhead� This advantage is gained by targeting at partitionable

services and focusing on the consistency for a single data partition� In terms

of service guarantees� our level three consistency ensures that client accesses

are serviced progressively within a speci�ed soft staleness bound� which is suf�

�cient for many Internet services� In that sense� a strong consistency model�

��

CHAPTER �� SERVICE REPLICATION

which allows clients to always get the latest version with the cost of degraded

throughput� may not be necessary in many cases� Nevertheless� further inves�

tigation is needed for the incorporation of stronger consistency models�

�

Chapter �

Conclusion and Future Work

Building large�scale network services with the ever�increasing demand on

scalability and availability is a challenging task� This dissertation investigates

techniques in building a middleware system� calledNeptune� that provides clus�

tering support for scalable network services� In particular� Neptune focuses on

three speci�c aspects of service clustering support� the overall clustering ar�

chitecture with load balancing support� a quality�aware resource management

framework� and service replication support� Neptune has been implemented

on Linux and Solaris clusters and a number of applications have been success�

fully deployed on Neptune platforms� including a large�scale document search

engine�

��

CHAPTER �� CONCLUSION AND FUTURE WORK

Neptune employs a loosely�connected and functionally�symmetrical archi�

tecture in constructing the service cluster� which allows the service infrastruc�

ture to operate smoothly in the presence of transient failures and through

service evolution� In addition� Neptune provides �exible interfaces that enable

existing applications to be easily deployed in a Neptune service cluster� even

for binary applications without recompilation ���� Generally speaking� provid�

ing standard system components to achieve scalability and availability tends

to decrease the �exibility of service construction� Neptune demonstrates that

it is possible to achieve these goals by targeting partitionable network services�

As part of the clustering architecture� this dissertation investigates cluster load

balancing techniques with the focus on �ne�grain services� Based on simula�

tion and experimental studies� this dissertation �nds that the random polling

policy with small poll sizes are well�suited for �ne�grain network services� And

discarding slow�responding polls can further improve system performance�

This dissertation also presents the design and implementation of an inte�

grated quality�aware resource management framework for cluster�based ser�

vices� Although cluster�based network services have been widely deployed� we

have seen limited research in the literature on comprehensive resource manage�

ment with service di�erentiation support� This dissertation study is focused

��

CHAPTER �� CONCLUSION AND FUTURE WORK

on clustered services with dynamic service ful�llment or content generation�

In particular� it addresses the inadequacy of the previous studies and com�

plements them in the following three aspects� First� it allows quality�aware

resource management objectives which combine the individual service response

times with the overall system resource utilization e�ciency� Secondly� it em�

ploys a functionally symmetrical architecture that does not rely on any central�

ized components for high scalability and availability� Thirdly� it employs an

adaptive scheduling policy that achieves e�cient resource utilization at a wide

range of load levels� This study on cluster resource management is focused

on a single service tier� Our future work is to support comprehensive service

quality guarantees for aggregated network services� Resource allocation across

di�erent service domains� however� requires service nodes capable of deploying

components from multiple service domains� This is di�cult for data intensive

services that involve large data volume and long service warm�up time�

Finally� this dissertation studies service replication support for cluster�

based network services� The main contributions are the development of a

scalable and highly available clustering infrastructure with replication support

and the proposal of a weak replica consistency model with staleness control at

its highest level� In addition� our clustering and replication infrastructure is

�

CHAPTER �� CONCLUSION AND FUTURE WORK

capable of supporting application�level services built upon a variety of underly�

ing data management systems� Service replication increases availability� how�

ever� it may compromise the throughput of applications with frequent writes

due to the consistency management overhead� Our experiments show that

Neptune�s highest consistency scheme with staleness control can still deliver

scalable performance with insigni�cant overhead� This advantage is gained by

targeting at partitionable services and focusing on the consistency for a sin�

gle data partition� In terms of service guarantees� our level three consistency

ensures that client accesses are serviced progressively within a speci�ed soft

staleness bound� which is su�cient for many Internet services� In that sense� a

strong consistency model� which allows clients to always get the latest version

with the cost of degraded throughput� may not be necessary in many cases�

Nevertheless� further investigation is needed for the incorporation of stronger

consistency models�

Neptune assumes all service components inside a cluster belong to a single

administrative domain and it does not explicitly support security and access

control� When third�party service components are deployed inside a service

cluster� however� proper access control and resource accounting are required�

These issues remain to be solved�

��

Bibliography

�� T� F� Abdelzaher and N� Bhatti� Web Server QoS Management by Adap�

tive Content Delivery� In International Workshop on Quality of Service�

London� UK� June ����

��� A� Acharya� Google Inc�� Personal Communication� �����

��� ADL� Alexandria digital library project�

http���www�alexandria�ucsb�edu�

�
� A� Adya and B� Liskov� Lazy Consistency Using Loosely Synchronized

Clocks� In Proc� of the ACM Symposium on Principles of Distributed

Computing� pages ������ Santa Barbara� CA� August ����

��� D� Agrawal� A� El Abbadi� and R� C� Steinke� Epidemic Algorithms in

Replicated Databases� In Proc� of the �	th Symposium on Principles of

Database Systems� pages 	���� Montreal� Canada� May ����

�	

BIBLIOGRAPHY

�	� J� Almeida� M� Dabu� A� Manikutty� and P� Cao� Providing Di�erentiated

Levels of Service in Web Content Hosting� In Proc� of SIGMETRICS

Workshop on Internet Server Performance� Madison� WI� June ����

��� S� F� Altschul� W� Gish� W� Miller� E� W� Myers� and D� J� Lipman� Basic

Local Alignment Search Tool� Journal of Molecular Biology� ���
���
��

����

��� T� Anderson� Y� Breitbart� H� F� Korth� and A� Wool� Replication� Con�

sistency� and Practicality� Are These Mutually Exclusive� In Proc� of

�

� ACM SIGMOD Intl� Conf� on Management of Data� pages
�
�
���

Seattle� WA� June ����

��� D� Andresen� T� Yang� V� Holmedahl� and O� Ibarra� SWEB� Towards a

Scalable WWW Server on MultiComputers� In Proc� of the ��th IEEE

Intl� Parallel Processing Symposium� pages ������	� Honolulu� HI� April

��	�

��� M� Aron� P� Druschel� and W� Zwaenepoel� Cluster Reserves� A Mech�

anism for Resource Management in Cluster�based Network Servers� In

Proc� of the ��� ACM SIGMETRICS Intl� Conf� on Measurement and

��

BIBLIOGRAPHY

Modeling of Computer Systems� pages ����� Santa Clara� CA� June

�����

�� M� Aron� D� Sanders� P� Druschel� and W� Zwaenepoel� Scalable Content�

aware Request Distribution in Cluster�based Network Services� In Proc�

of the ��� USENIX Annual Technical Conf�� San Diego� CA� June �����

��� ArrowPoint� Web Switching White Papers�

http���www�arrowpoint�com�solu�tions�white papers��

��� AskJeeves� Ask jeeves search� http���www�ask�com�

�
� G� Banga� P� Druschel� and J� C� Mogul� Resource Containers� A New

Facility for Resource Management in Server Systems� In Proc� of the �rd

USENIX Symposium on Operating Systems Design and Implementation�

pages
����� New Orleans� LA� February ����

��� A� Barak� S� Guday� and R� G� Wheeler� The MOSIX Distributed Oper�

ating System� Load Balancing for UNIX� volume 	�� of Lecture Notes in

Computer Science� Springer�Verlag� ����

�	� D� A� Benson� I� Karsch�Mizrachi� D� J� Lipman� J� Ostell� B� A� Rapp�

and D� L� Wheeler� GenBank� Nucleic Acids Research� ���������� �����

��

BIBLIOGRAPHY

��� N� Bhatti and R� Friedrich� Web Server Support for Tiered Services� IEEE

Network� �����	
��� September ����

��� S� Blake� D� Black� M� Carlson� E� Davies� Z� Wang� and W� Weiss� An

Architecture for Di�erentiated Services� Internet Draft� IETF Di�serv

Working Group� August ����

��� R� D� Blumofe� C� F� Joerg� B� C� Kuszmaul� C� E� Leiserson� K� H�

Randall� and Y� Zhou� Cilk� An E�cient Multithreaded Runtime Sys�

tem� In Proc� of ACM Symposium on Principles � Practice of Parallel

Programming� pages �����	� Santa Barbara� CA� July ����

���� J� Bruno� E� Gabber� B� Ozden� and A� Silberschatz� The Eclipse Oper�

ating System� Providing Quality of Service via Reservation Domains� In

Proc� of USENIX Annual Technical Conf�� pages �����
	� Orleans� LA�

June ����

��� E� V� Carrera and R� Bianchini� E�ciency vs� Portability in Cluster�based

Network Servers� In Proc� of the �th ACM SIGPLAN Symposium on Prin�

ciples and Practice of Parallel Programming� pages ����� Snowbird�

UT� June ����

��

BIBLIOGRAPHY

���� S� Chandra� C� S� Ellis� and A� Vahdat� Di�erentiated Multimedia Web

Services Using Quality Aware Transcoding� In Proc� of IEEE INFO�

COM����� Tel�Aviv� Israel� March �����

���� J� S� Chase� D� C� Anderson� P� N� Thakar� and A� M� Vahdat� Man�

aging Energy and Server Resources in Hosting Centers� In Proc� of the

��th ACM Symposium on Operating Systems Principles� Ban�� Canada�

October ����

��
� P� Chundi� D� J� Rosenkrantz� and S� S� Ravi� Deferred Updates and

Data Placement in Distributed Databases� In Proc� of the �th Intl� Conf�

on Data Engineering� pages
	��
�	� New Orleans� Louisiana� February

��	�

���� COM� Component Object Model� http���www�microsoft�com�com�

��	� CORBA� Common Object Request Broker Architecture�

http���www�corba�org�

���� M� E� Crovella and A� Bestavros� Self�similarity in World Wide Web

Tra�c� Evidence and Possible Causes� IEEE�ACM Transactions on Net�

working� ��	�������
	� ����

�

BIBLIOGRAPHY

���� S� Dandamudi� Performance Impact of Scheduling Discipline on Adaptive

Load Sharing in Homogeneneous Distributed Systems� In Proc� of Intl�

Conf� on Distributed Computer Systems� pages
�
�
��� Vancouver� BC�

May ����

���� C� Dovrolis� D� Stiliadis� and P� Ramanathan� Proportional Di�erentiated

Services� Delay Di�erentiation and Packet Scheduling� In Proc� of ACM

SIGCOMM�

� pages ������ Cambridge� MA� August ����

���� P� Druschel and G� Banga� Lazy Receiver Processing �LRP�� A Network

Subsystem Architecture for Server Systems� In Proc� of the nd USENIX

Symposium on Operating Systems Design and Implementation� Seattle�

WA� October ��	�

��� D� L� Eager� E� D� Lazowska� and J� Zahorjan� A Comparison of Receiver�

Initiated and Sender�Initiated Adaptive Load Sharing� Performance Eval�

uation� 	����	�� ��	�

���� D� L� Eager� E� D� Lazowska� and J� Zahorjan� Adaptive Load Sharing in

Homogeneous Distributed Systems� IEEE Trans� on Software Engineer�

ing� �����		��	��� May ��	�

BIBLIOGRAPHY

���� eBay� ebay online auctions� http���www�ebay�com�

��
� J� Postel Ed� Transmission Control Protocol Speci�cation� SRI Interna�

tional� Menlo Park� CA� September ��� RFC�����

���� A� Feldmann� Characteristics of TCP Connection Arrivals� Technical

report� AT#T Labs Research� ����

��	� D� Ferrari� A Study of Load Indices for Load Balancing Schemes� Techni�

cal Report CSD�����	�� EECS Department� UC Berkeley� October ����

���� S� Floyd and V� Jacobson� The Synchronization of Periodic Routing Mes�

sages� In Proc� of ACM SIGCOMM�
�� pages ���

� San Francisco� CA�

September ����

���� Foundry� Serveriron server load balancing switch�

http���www�foundrynet�com�serverironspec�html�

���� A� Fox and E� A� Brewer� Harvest� Yield� and Scalable Tolerant Systems�

In Proc� of HotOS�VII� Rio Rico� AZ� March ����

�
�� A� Fox� S� D� Gribble� Y� Chawathe� E� A� Brewer� and P� Gauthier�

Cluster�Based Scalable Network Services� In Proc� of the �	th ACM Sym�

�

BIBLIOGRAPHY

posium on Operating System Principles� pages ����� Saint Malo� October

����

�
� H� Garcia�Molina� Elections in a Distributed Computing System� IEEE

Trans� on Computers� ��
����� January ����

�
�� Google� Google search� http���www�google�com�

�
�� K� K� Goswami� M� Devarakonda� and R� K� Iyer� Prediction�Based Dy�

namic Load�Sharing Heuristics� IEEE Trans� on Parallel and Distributed

Systems�
�	��	���	
�� June ����

�

� J� Gray� P� Helland� P� O�Neil� � and D� Shasha� The Dangers of Repli�

cation and a Solution� In Proc� of �

	 ACM SIGMOD Intl� Conf� on

Management of Data� pages ������ Montreal� Canada� June ��	�

�
�� J� Gray and A� Reuter� Transaction Processing� Concepts and Techniques�

Morgan Kaufmann Publishers� San Francisco� California� ����

�
	� S� D� Gribble� E� A� Brewer� J� M� Hellerstein� and D� Culler� Scalable�

Distributed Data Structures for Internet Service Construction� In Proc�

of the �th USENIX Symposium on Operating Systems Design and Imple�

mentation� San Diego� CA� October �����

�

BIBLIOGRAPHY

�
�� S� D� Gribble� M� Welsh� E� A� Brewer� and D� Culler� The MultiSpace�

An Evolutionary Platform for Infrastructural Services� In Proc� of the

USENIX Annual Technical Conf�� Monterey� CA� June ����

�
�� MSN Groups� http���groups�msn�com�

�
�� M� Harchol�Balter and A� B� Downey� Exploiting Process Lifetime Distri�

butions for Dynamic Load Balancing� ACM Transactions on Computer

Systems� ������������� ����

���� J� R� Haritsa� M� J� Carey� and M� Livny� Value�Based Scheduling in

Real�Time Database Systems� VLDB Journal� ������� ����

��� V� Holmedahl� B� Smith� and T� Yang� Cooperative Caching of Dynamic

Content on a Distributed Web Server� In Proc� of the �th IEEE Sym�

posium on High Performance Distributed Computing� Chicago� IL� July

����

���� J� Huang� J� Stankovic� D� Towsley� and K� Ramamritham� Experimental

Evaluation of Real�Time Transaction Processing� In Proc� of the Tenth

IEEE Real�Time System Symposium� pages

���� Santa Monica� CA�

����

BIBLIOGRAPHY

���� G� D� H� Hunt� G� S� Goldszmidt� R� P� King� and R� Mukherjee� Network

Dispatcher� A Connection Router for Scalable Internet Services� In Proc�

of the �th Intl� World Wide Web Conf�� Brisbane� Australia� April ����

��
� Java� Java Platform� http���java�sun�com�

���� M� B� Jones� D� Rosu� and M��C� Rosu� CPU Reservations and Time

Constraints� E�cient� Predictable Scheduling of Independent Activities�

In Proc� of the �	th ACM Symposium on Operating Systems Principles�

pages ����� Saint�Malo� France� October ����

��	� L� Kleinrock� Queueing Systems� volume I� Theory� Wiley� New York�

����

���� T� Kunz� The in�uence of Di�erent Workload Descriptions on a Heuris�

tic Load Balancing Scheme� IEEE Trans� on Software Engineering�

������������� July ���

���� J� Kurose� Open Issues and Challenges in Providing Quality of Service

Guarantees in High�Speed Networks� ACM Computer Communication

Review� �����	��� ����

�

BIBLIOGRAPHY

���� K� Li and S� Jamin� A Measurement�Based Admission�Controlled Web

Server� In Proc� of IEEE INFOCOM����� pages 	��	��� Tel�Aviv� Is�

rael� March �����

�	�� Z� Liu� M� S� Squillante� and J� L� Wolf� On Maximizing Service�Level�

Agreement Pro�ts� In Proc� of �rd ACM Conference on Electronic Com�

merce� pages
��� Tampa� FL� October ����

�	� M� Mitzenmacher� On the Analysis of Randomized Load Balancing

Schemes� In Proc� of the
th ACM Symposium on Parallel Algorithms

and Architectures� pages ������� Newport� RI� June ����

�	�� J� Mogul and K� K� Ramakrishnan� Eliminating Receive Livelock in an

Interrupt�driven Kernel� In Proc� of USENIX Annual Technical Conf��

San Diego� CA� January ��	�

�	�� S� Nagy and A� Bestavros� Admission Control for Soft�Deadline Transac�

tions in ACCORD� In Proc� of IEEE Real�Time Technology and Applica�

tions Symposium� pages 	��	�� Montreal� Canada� June ����

�	
� V� S� Pai� M� Aron� G� Banga� M� Svendsen� P� Druschel� W� Zwaenepoel�

and E� Nahum� Locality�Aware Request Distribution in Cluster�based

	

BIBLIOGRAPHY

Network Servers� In Proc� of the ACM �th Intl� Conf� on Architectural

Support for Programming Languages and Operating Systems� pages ����

�	� San Jose� CA� October ����

�	�� R� Pandey� J� F� Barnes� and R� Olsson� Supporting Quality of Service

in HTTP Servers� In Proc� of ��th ACM Symposium on Principles of

Distributed Computing� pages �
����	� Puerto Vallarta� Mexico� June

����

�		� K� Petersen� M� J� Spreitzer� D� B� Terry� M� M� Theimer� and A� J�

Demers� Flexible Update Propagation for Weakly Consistent Replication�

In Proc� of the �	th ACM Symposium on Operating Systems Principles�

pages ������� Saint Malo� France� October ����

�	�� Y� Saito� B� N� Bershad� and H� M� Levy� Manageability� Availability� and

Performance in Porcupine� a Highly Scalable� Cluster�based Mail Service�

In Proc� of the ��th ACM Symposium on Operating Systems Principles�

pages ��� Charleston� SC� December ����

�	�� H� V� Shah� D� B� Minturn� A� Foong� G� L� McAlphine� R� S� Madukkaru�

mukumana� and G� J� Regnier� CSP� A Novel System Architecture

for Scalable Internet and Communication Services� In Proc� of the �rd

�

BIBLIOGRAPHY

USENIX Symposium on Internet Technologies and Systems� pages 	����

San Francisco� CA� March ����

�	�� K� Shen� H� Tang� T� Yang� and L� Chu� Integrated Resource Manage�

ment for Cluster�based Internet Services� In Proc� of the �th USENIX

Symposium on Operating Systems Design and Implementation �To ap�

pear�� Boston� MA� December �����

���� K� Shen� T� Yang� and L� Chu� Cluster Load Balancing for Fine�grain Net�

work Services� In Proc� of International Parallel � Distributed Processing

Symposium� Fort Lauderdale� FL� April �����

��� K� Shen� T� Yang� L� Chu� J� L� Holliday� D� A� Kuschner� and H� Zhu�

Neptune� Scalable Replication Management and Programming Support

for Cluster�based Network Services� In Proc� of the �rd USENIX Sympo�

sium on Internet Technologies and Systems� pages ������� San Francisco�

CA� March ����

���� A� Singhai� S��B� Lim� and S� R� Radia� The SunSCALR Framework for

Internet Servers� In Proc� of the �th Intl� Symposium on Fault�Tolerant

Computing� Munich� Germany� June ����

�

BIBLIOGRAPHY

���� D� C� Steere� A� Goel� J� Gruenberg� D� McNamee� C� Pu� and J� Walpole�

A Feedback�driven Proportion Allocator for Real�Rate Scheduling� In

Proc� of �rd USENIX Operating Systems Design and Implementation

Symposium� New Orleans� LA� February ����

��
� I� Stoica and H� Zhang� LIRA� An Approach for Service Di�erentiation

in the Internet� In Proc� of Nossdav� June ����

���� D� G� Sullivan and M� I� Seltzer� Isolation with Flexibility� A Re�

source Management Framework for Central Servers� In Proc� of the ���

USENIX Annual Technical Conf�� San Diego� CA� June �����

��	� Teoma� Teoma search� http���www�teoma�com�

���� Tuxedo� WebLogic and Tuxedo Transaction Application Server White

Papers� http���www�bea�com�products�tuxedo�papers�html�

���� W� Vogels� D� Dumitriu� K� Birman� R� Gamache� M� Massa� R� Short�

J� Vert� J� Barrera� and J� Gray� The Design and Architecture of the

Microsoft Cluster Service � A Practical Approach to High�Availability

and Scalability� In Proc� of the �th Intl� Symposium on Fault�Tolerant

Computing� Munich� Germany� June ����

�

BIBLIOGRAPHY

���� T� Voigt� R� Tewari� D� Freimuth� and A� Mehra� Kernel Mechanisms for

Service Di�erentiation in Overloaded Web Servers� In Proc� of USENIX

Annual Technical Conf�� Boston� MA� June ����

���� C� A� Waldspurger and W� E� Weihl� Lottery Scheduling� Flexible

Proportional�Share Resource Management� In Proc� of USENIX Oper�

ating Systems Design and Implementation Symposium� pages �� Mon�

terey� CA� November ��
�

��� H� Yu and A� Vahdat� Design and Evaluation of a Continuous Consistency

Model for Replicated Services� In Proc� of the �th USENIX Symposium on

Operating Systems Design and Implementation� San Diego� CA� October

�����

���� S� Zhou� An Experimental Assessment of Resource Queue Lengths as

Load Indices� In Proc� of the Winter USENIX Technical Conf�� pages

������ Washington� DC� January ����

���� S� Zhou� A Trace�Driven Simulation Study of Dynamic Load Balancing�

IEEE Trans� on Software Engineering�
���������
� September ����

��

BIBLIOGRAPHY

��
� H� Zhu� B� Smith� and T� Yang� Scheduling Optimization for Resource�

Intensive Web Requests on Server Clusters� In Proc� of the ��th ACM

Symposium on Parallel Algorithms and Architectures� pages ����� Saint�

Malo� France� June ����

���� H� Zhu� H� Tang� and T� Yang� Demand�driven Service Di�erentiation

for Cluster�based Network Servers� In Proc� of IEEE INFOCOM�����

Anchorage� AK� April ����

��	� H� Zhu and T� Yang� Class�based Cache Management for Dynamic Web

Contents� In Proc� of IEEE INFOCOM����� Anchorage� AK� April ����

�

