
Towards Practical Page Coloring-based

Multi-core Cache Management ∗

Xiao Zhang Sandhya Dwarkadas Kai Shen

Department of Computer Science, University of Rochester

{xiao, sandhya, kshen}@cs.rochester.edu

Abstract

Modern multi-core processors present new resource man-

agement challenges due to the subtle interactions of simulta-

neously executing processes sharing on-chip resources (par-

ticularly the L2 cache). Recent research demonstrates that

the operating system may use the page coloring mechanism

to control cache partitioning, and consequently to achieve

fair and efficient cache utilization. However, page coloring

places additional constraints on memory space allocation,

which may conflict with application memory needs. Fur-

ther, adaptive adjustments of cache partitioning policies in

a multi-programmed execution environment may incur sub-

stantial overhead for page recoloring (or copying).

This paper proposes a hot-page coloring approach—

enforcing coloring on only a small set of frequently accessed

(or hot) pages for each process. The cost of identifying hot

pages online is reduced by leveraging the knowledge of spa-

tial locality during a page table scan of access bits. Our re-

sults demonstrate that hot page identification and selective

coloring can significantly alleviate the coloring-induced ad-

verse effects in practice. However, we also reach the some-

what negative conclusion that without additional hardware

support, adaptive page coloring is only beneficial when re-

coloring is performed infrequently (meaning long schedul-

ing time quanta in multi-programmed executions).

Categories and Subject Descriptors C.4 [Performance of

Systems]: Design studies, Performance attributes

General Terms Management, Performance

∗This work was supported in part by the U.S. National Science Founda-

tion (NSF) grants CNS-0411127, CAREER Award CCF-0448413, CNS-

0509270, CNS-0615045, CNS-0615139, CCF-0621472, CCF-0702505,

and CNS-0834451; by NIH grants 5 R21 GM079259-02 and 1 R21

HG004648-01; and by several IBM Faculty Partnership Awards.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’09 April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

Keywords Multi-core, Resource management, Cache par-

titioning, Page coloring

1. Introduction

Today’s operating systems manage multi-core processors

in a time-shared manner similar to traditional single-core

uniprocessor systems. While some attention is paid to local-

ity and to balancing load among the multiple cores, the ad-

ditional challenges due to the subtle interactions of simulta-

neously executing processes sharing on-chip resources have

not been incorporated into mainstream operating systems,

largely due to the complex nature of the interactions. For ex-

ample, the L2 cache is a shared resource that can result in

unexpected performance anomalies due to contention or un-

fair allocation. The performance of a process that would nor-

mally have been high due to the cache being large enough to

fit its working set could be severely impacted by a simultane-

ously executing process with high cache demand, resulting

in the first process’s cache lines being evicted.

Without specific hardware support to control cache shar-

ing, the operating system’s only recourse in a physically

addressed cache is to control the virtual to physical map-

pings used by individual processes. In today’s processors,

the shared cache is normally physically indexed. Traditional

page coloring [Taylor 1990] attempts to ensure that contigu-

ous pages in virtual memory are allocated to physical pages

that will be spread across the cache. In order to accomplish

this, contiguous pages of physical memory are allocated dif-

ferent colors, with the maximum number of colors being a

function of the size and associativity of the cache relative to

the page size. The free page list is organized to differentiate

these colors, and contiguous virtual pages are guaranteed to

be assigned distinct colors. A different use of page color-

ing also allows the operating system to restrict a process’s

accesses so that it utilizes only a subset of the cache. The

shared cache space can thereby be partitioned among mul-

tiple simultaneously executing applications on a multi-core

platform.

Previous work [Tam 2007, Lin 2008, Soares 2008] has

demonstrated the potential for improved performance and

fair resource utilization via page color restriction. However,

several challenges remain. The first issue is that of constrain-

ing the allocated memory space. Imposing page color re-

strictions on an application implies that only a portion of

the memory can be allocated to this application. When the

system runs out of pages of a certain color, the application is

under memory pressure while there still may be abundant

memory in other colors. This application can either evict

some of its own pages to secondary storage or steal pages

from other page colors. The former can result in dramatic

slowdown due to page swapping while the latter may yield

negative performance effects on other applications due to

cache conflicts.

Another issue is the high overhead of online recoloring

in a dynamic, multi-programmed execution environment.An

adaptive system may require online adjustments of the cache

partitioning policy (e.g., context switch at one of the cores

brings in a new program with different allocation and re-

quirements from the program that was switched out). Such

an adjustment requires a change of color for some appli-

cation pages. Without special hardware support, recoloring

a page implies memory copying, which takes several mi-

croseconds on commodity platforms. Frequent recoloring of

a large number of application pages may incur excessive

overhead that more than negates the benefit of page color-

ing.

This paper proposes a hot-page coloring approach in

which cache mapping colors are only enforced on a small

set of frequently accessed (or hot) pages for each process.

We present an efficient approach to tracking application page

hotness on-the-fly. We periodically scan page table entries,

but reduce the cost by leveraging the spatial locality inher-

ent in access patterns to jump over multiple entries, while

at the same time back-tracking when the guess is incorrect.

Hot-page coloring may realize much of the benefit of all-

page coloring, but with reduced memory space allocation

constraint and much less online recoloring overhead in an

adaptive and dynamic environment.

The rest of this paper is organized as follows.We describe

background on the page coloring mechanism and cache par-

tition policies in Section 2. Section 3 presents our page

hotness tracking mechanism and discusses its general util-

ity beyond supporting hot-page coloring in this paper. In

Section 4, we utilize hotness-based page coloring to miti-

gate memory allocation constraints and expensive recolor-

ing. Using a Linux-based implementation, Section 5 evalu-

ates the effectiveness and overhead of our hot-page coloring

approach. Section 6 describes related work and we conclude

in Section 7.

2. Background

Page coloring Page coloring is a software technique that

controls the mapping of physical memory pages to a pro-

cessor’s cache blocks. Memory pages that map to the same

cache blocks are assigned the same color (as illustrated by

Figure 1. An illustration of the page coloring technique.

Figure 1). By controlling the color of pages assigned to

an application, the operating system can manipulate cache

blocks at the granularity of the page size times the cache as-

sociativity. This granularity is the unit of cache space that

can be allocated to an application. The maximum number of

colors that a platform can support is the cache line size mul-

tiplied by the number of sets and divided by the page size.

Page coloring was first implemented in the MIPS oper-

ating system to improve performance stability (by matching

virtual and physical page colors, an application’s cache be-

havior remains the same even when pages are remapped in

physical memory [Taylor 1990]). More commonly, it was

employed to distribute cache accesses evenly across the

whole cache and subsequently reduce cache misses within

a single application [Kessler 1992, Romer 1994, Bugnion

1996, Sherwood 1999]. Recently, several studies have rec-

ognized the potential of utilizing page coloring to manage

shared cache space on multi-core platforms [Tam 2007, Lin

2008, Soares 2008].

Cache partitioning policies Given page coloring-based

cache partitioning, the operating system must effect an ap-

propriate policy in terms of how the cache space is allocated.

Such policies are usually based on certain characterizations

of application performance under a given cache allocation.

One such characterization, the application cache miss ratio

at each possible allocation (called cache miss ratio curve, or

MRC), has been used in past research on cache space man-

agement (and in particular to minimize the overall cache

miss ratio [Stone 1992, Suh 2001]). Additional characteri-

zations such as the stall rate curve [Tam 2007] may also be

employed to guide the cache partition policy.

Cache partitioning policies are typically devised to achieve

high application performance [Stone 1992, Suh 2001, Tam

2007, Lin 2008] or better fairness [Kim 2004, Hsu 2006].

The fairness objective can mean equal use of resources or

equal impact on performance. Policies that gear toward per-

formance alone (e.g., maximizing the whole system instruc-

tion throughput or IPC) may suffer on the fairness measure

(e.g., starvation of programs that inherently contribute little

to the overall IPC). Policies that consider both performance

and fairness have also been evaluated. As an example, our

previous work [Zhang 2007] evaluates a performance mea-

sure (geometric mean of each application’s normalized per-

formance) as well as a fairness measure (coefficient of vari-

ation of all application performance).

Many cache partitioning policies determine different al-

location for different sets of competing applications. In a

dynamic, multi-programmed execution environment where

the applications executing simultaneously may change over

time, this implies that cache allocations must be adaptively

adjusted. Static partitioning may also be employed in such

dynamic environments. One example is the equal partition-

ing policy that allocates a fixed (and equal) proportion of the

cache space to each application. Equal partitioning follows

the simple fairness heuristic of equal resource usage.

3. Page Hotness Identification

Our hot-page coloring approach builds on effective identifi-

cation of frequently accessed pages for each application. Its

overhead must be kept low for online continuous identifica-

tion during dynamic application execution.

3.1 Sequential Page Table Scan

The operating system (OS) has two main mechanisms

for monitoring access to individual pages. First, on most

hardware-filled TLB platforms (e.g., Intel processors), each

page table entry has an access bit, which is automatically

set by hardware when the page is accessed [Intel]. By peri-

odically checking and clearing this access bit, one can esti-

mate each page’s access frequency (or hotness). The second

mechanism is via page read/write protection so that accesses

to a page will be caught by page faults. One drawback for

the page protection approach is the high page fault over-

head. On the other hand, it has the advantage (in comparison

to the access bit checking) that overhead is only incurred

when pages are indeed accessed. Given this tradeoff, Zhou

et al. [Zhou 2004] proposed a combined method for tracking

an application’s page accesses—link together frequently ac-

cessed pages and periodically check their access bits; invali-

date those infrequently accessed pages and catch accesses to

them via page faults.

However, traversing the list of frequently accessed pages

involves pointer chasing, which exhibits poor efficiency

on modern processor architectures. In contrast, a sequen-

tial scan of the application (or its corresponding process)’s

page table can be much faster on platforms with high peak

memory bandwidth and hardware prefetching. For a set of

12 SPECCPU2000 applications, our experiments on a dual-

core Intel Xeon 5160 3.0GHz “Woodcrest” processor shows

that the sequential table scan takes tens of cycles (36 cycles

on average) per page entry while the list traversal takes hun-

dreds of cycles (258 cycles on average) per entry. Given the

trend that memory latency improvement lags memory band-

Figure 2. Unused bits of page table entry (PTE) for 4K

page on 64-bit and 32-bit x86 platforms. Bits 11-9 are hard-

ware defined unused bits for both platforms [IA32-manual,

AMD64-manual]. Bits 62-48 on the 64-bit platform are re-

served but not used by hardware right now. Our current im-

plementation utilizes 8 bits in this range for maintaining the

page hotness counter.

width improvement [Patterson 2004], we chose sequential

table scan over random pointer chasing in our design.

We consider several issues in the design and implemen-

tation of the sequential page table scan-based hot page iden-

tification. An accurate page hotness measure requires cumu-

lative statistics on continuous page access checking. Given

the necessity of checking the page table entries and the high

efficiency of sequential table scan, we maintain the page ac-

cess statistics (typically in the form of an access count) using

a small number of unused bits within the page table entry.

Specifically, we utilize 8 unused page table entry bits in our

implementation on a 64-bit Intel platform (as illustrated in

Figure 2). Some, albeit fewer, unused bits are also available

in the smaller page table entry on 32-bit platforms. Fewer

bits may incur more frequent counter overflow but do not

fundamentally affect our design efficiency. In the worst case

when no spare bit is available, we could maintain a sepa-

rate “hotness counter table” that shadows the layout of the

page table. In that case, two parallel sequential table scans

are required instead of one, which would incur slightly more

overhead.

In our hardware-implemented TLB platform, the OS is

not allowed to directly read TLB contents.With hypothetical

hardware modification to allow this, we could then sample

TLB entries to gather hotness information. Walking through

TLBs (e.g., 256 entries on our experimental platform) is

much lighter-weight than walking through the page table

(usually 1 to 3 orders of magnitude larger than the TLB).

The hotness counter for a page is incremented at each

scan that the page is found to be accessed. To deal with

potential counter overflows, we apply a fractional decay

(e.g., halving or quartering the access counters) for all pages

when counter overflows are possibly imminent (e.g., ev-

ery 128/192 scans for halving/quartering). Applied contin-

Benchmark # of physically # of excess page

allocated pages table entries

gzip 46181 1141

wupwise 45008 1617

swim 48737 1617

mgrid 14185 1582

applu 45981 4135

mesa 2117 1255

art 903 1028

mcf 21952 1334

equake 12413 1057

parser 10183 699

bzip 47471 954

twolf 1393 88

Table 1. Memory footprint size and number of excess page

table entries for 12 SPECCPU2000 benchmarks. The excess

page table entries are those that do not correspond to physi-

cally allocated pages.

uously, the fractional decay also serves the purpose of grad-

ually screening out stale statistics, as in the widely used

exponentially-weighted moving average (EWMA) filters.

We decouple the frequency at which the hotness sampling

is performed from the time window during which the access

bits are sampled (by clearing the access bits at the begin-

ning and reading them at the end of the access time win-

dow). We call the former sampling frequency and the latter

sampled access time window. In practice, one may want to

enforce an infrequent page table scan for low overheadwhile

at the same time collecting access information over a much

smaller time window to avoid hotness information loss. The

latter allows distinguishing the relative hotness across dif-

ferent pages accessed in the recent past. Consider a con-

crete example in which the sampling frequency is once per

100 milliseconds and the sampled access time window is 2

milliseconds. In the first sampling, we clear all page access

bits at time 0-millisecond and then check the bits at time 2-

millisecond. In the next sampling, the clearing and checking

occur at time 100-millisecond and 102-millisecond respec-

tively.

A page table scan is expensive since there is no a priori

knowledge of whether each page has been accessed, let alone

allocated. There may be invalid page table entries that are

not yet mapped and mapped virtual pages that are not yet

physically substantiated (some heap management systems

may only commit a physical page when it is first accessed).

As shown in Table 1, however, such excess page table entries

are usually few in practice (particularly for applications with

larger memory footprints). We believe the excess checking

of non-substantiated page table entries does not constitute a

serious overhead.

1 2 4 8 16 32 64 128 256 512 1024 2048
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial page distance

P
a

g
e

 n
o

n
−

a
s
s
e

s
s
 c

o
rr

e
la

ti
o

n

gzip
wupwise
swim
mgrid
applu
mesa
art
mcf
equake
parser
bzip
twolf

Figure 3. Illustration of page non-access correlation as a

function of the spatial page distance. Results are for 12

SPECCPU2000 benchmarkswith 2-millisecond sampled ac-

cess time windows. For each distance value D, the non-

access correlation is defined as the probability that the next

D pages are not accessed in a time window if the current

page is not accessed.We take snapshots of each benchmark’s

page table every 5 seconds and present average non-access

correlation results here.

3.2 Acceleration for Non-Accessed Pages

A conventional page table scan checks every entry regardless

of whether the corresponding page was accessed in the last

time window. Given that a page list traversal approach [Zhou

2004] only requires continuous checking of frequently ac-

cessed pages, the checking of non-accessed page table en-

tries may significantly offset the sequential scan’s perfor-

mance advantage on per-entry checking cost.

We propose an accelerated page table scan that skips the

checking of many non-accessed pages. Our acceleration is

based on the widely observed data access spatial locality—

i.e., if a page was not accessed in a short time window, then

pages spatially close to it were probably not accessed either.

Intuitively, the non-access correlation of two nearby pages

degrades when the spatial distance between them increases.

To quantitatively understand this trend, we calculate such

non-access correlation as a function of the spatial page dis-

tance. Figure 3 illustrates that in most cases (except mcf), the

correlation is quite high (around 0.9) for a spatial distance as

far as 64 pages. Beyond that, the correlation starts dropping,

sometimes precipitously.

Driven by such page non-access correlation, we propose

to quickly bypass cold regions of the page table through an

approach we call locality jumping. Specifically, when en-

countering a non-accessed page table entry during the se-

quential scan, we jump page table entries while assuming

that the intermediate pages were not accessed (thus requiring

no increment of their hotness counters). To minimize false

Figure 4. Illustration of sequential page table scan with

locality jumping.

jumps, we gradually increase the jump distance in an expo-

nential fashion until we reach a maximum distance (empiri-

cally determined to be 64 in our case) or touch an accessed

page table entry. In the former case, we will continue jump-

ing at the maximum distance without further increasing it. In

the latter case, we jump back to the last seen non-accessed

entry and restart the sequential scan. Figure 4 provides a sim-

ple illustration of our approach.

Locality jumping that follows a deterministic pattern

(e.g., doubling the distance after each jump) runs the risk

of synchronizing with a worst-case application access pat-

tern to incur abnormally high false jump rates. To avoid

such unwanted correlation with application access patterns,

we randomly adjust the jump distance by a small amount at

each step. Note, for instance, that the fourth jump in Figure 4

has a distance of 6 (as opposed to 8 in a perfectly exponential

pattern).

It is important to note that by breaking the sequential scan

pattern, we may sacrifice the per-entry checking cost (partic-

ularly by degrading the effectiveness of hardware prefetch-

ing). Quantitatively, we observe that the per-entry overhead

increases from 36 cycles to 56 cycles on average. Such an

increase of per-entry cost is substantially outweighed by the

significant reduction of page entry checking.

Finally, it is worth pointing out that spatial locality also

applies to accessed pages. However, jumping over accessed

page table entries is not useful in our case for at least two

reasons. First, in the short time window for fine-grained

hotness checking (e.g., 2 milliseconds), the number of non-

accessed pages far exceeds that of accessed pages. Second,

a jump over an accessed page table entry would leave no

chance to increment its hotness counter.

3.3 Additional Uses of Page Hotness Identification

Beyond supporting hot-page coloring in this paper, the page

hotness identification has a range of additional utilizations in

operating systems. We provide some examples below. Our

discussion is at a high level and details of their realizations

are beyond the scope of this paper.

The page hotness information we acquire is an approx-

imation of page access frequency. Therefore our approach

can support the implementation of LFU (Least-Frequently-

Used) memory page replacement. As far as we know, ex-

isting LFU systems [Lee 2001, Sokolinsky 2004] are in the

areas of storage buffers, database caches, and web caches

where each data access is a heavy-duty operation and pre-

cise data access tracking does not bring significant addi-

tional cost. In comparison, it is challenging to efficiently

track memory page access frequency for LFU replacement

and our page hotness identification helps tackle this prob-

lem.

In service hosting platforms, multiple services (often run-

ning inside virtual machines) may share a single physical

machine. It is desirable to allocate the shared memory re-

source among the services according to their needs. The

page hotness identification may help such adaptive alloca-

tion by estimating the service memory needs at a given

hotness threshold. This is a valuable addition to existing

methods. For instance, it provides more fine-grained, accu-

rate information than sampling-based working set estima-

tion [Waldspurger 2002]. Additionally, it incurs much less

runtime overhead than tracking exact page accesses through

minor page faults [Lu 2007].

4. Hot Page Coloring

In this section, we utilize hotness-based partial page color-

ing to relieve the coloring-induced memory allocation con-

straints and to alleviate the online recoloring overhead in an

adaptive and dynamic environment.

4.1 Relief of Memory Allocation Constraints

Page coloring introduces new constraints on the memory

space allocation. When a system has plenty of free memory

but is short of pages in certain colors, an otherwise avoid-

able memory pressure may arise. As a concrete example, two

applications on a dual-core platform would like to equally

partition the cache by page coloring (to follow the simple

fairness goal of equal resource usage). Consequently each

can only use up to half of the total memory space. However,

one of the applications is an aggressive memory user and

would benefit frommore than its memory share. At the same

time, the other application needs much less memory than its

entitled half. The system faces two imperfect choices—to

enforce the equal cache use (and thus force expensive disk

swapping for the aggressive memory user); or to allow an ef-

ficient memory sharing (and consequently let the aggressive

memory user pollute the other’s cache partition).

In the latter case of memory sharing, a naive approach

that colors some random pages from the aggressive applica-

tion to the victim’s cache partition may result in unneces-

sary contention. Since a page’s cache occupancy is directly

related to its access frequency, preferentially coloring cold

pages to the victim’s cache partition would mitigate the ef-

fect of cache pollution. Our page hotness identification can

be naturally employed to support such an approach. Note

that the resulting reduction of cache pollution can benefit

adaptive as well as static cache partitioning policies (like the

example given above).

4.2 Adaptive Page Recoloring

We consider an adaptive cache partition policy that may

modify the partition if the set of co-running applications

changes in a dynamic execution environment. We then de-

scribe how a page hotness-driven approach can alleviate the

overhead associated with cache partition changes.

MRC-driven partition policy For a given set of co-running

applications, the goal of our cache partition policy is to im-

prove overall system performance (defined as the geomet-

ric mean of co-running applications’ performance relative to

running independently). The realization of this goal depends

on an estimation of the optimization target at each candi-

date partitioning point. Given the dominance of data access

time on modern processors, we estimate that the applica-

tion execution time is proportional to the combined memory

and cache access latency, i.e., roughly hit + r ·miss, where
hit/miss is the cache hit/miss ratio and r indicates the ra-

tio between cache and memory access latency. For a given

application, the cache miss ratio under a specific cache allo-

cation size can be estimated from a cache miss ratio curve

(or MRC). Note that while the cache MRC generation re-

quires profiling, the cost per application is independent of

the number of processes running in the system. An on-the-

fly mechanism to learn the cache MRC is possible. Figure 5

illustrates a simple example of our cache partitioning policy.

The cache partition point chosen for best overall system per-

formance may result in either an increase or a decrease of

the number of page colors allocated to an application.

Hotness-driven page recoloring The above change in

page color allocation may require page recoloring in order

to redirect the application’s accesses to the prescribed cache

partition. Frequent recoloring of all incorrectly mapped

pages may incur substantial page copying overhead, in some

cases more than negating the benefit of adaptive cache par-

titioning. Our approach is to recolor a subset of hot (or fre-

quently accessed) pages, which may realize much of the

benefit of all-page coloring at reduced cost.

We specify an overhead budget, which is the maximum

number of recolored pages (or page copying operations)

allowed at each recoloring. Given this budget K, we attempt

to recolor the hottest (most frequently accessed) K pages.

We can locate these pages by using the hotness value of

Figure 5. An example of our cache partitioning policy be-

tween swim and mcf. The cache miss ratio curve for each

application is constructed (offline or during an online learn-

ing phase) by measuring the miss ratio at a wide range of

possible cache partition sizes. Given the estimation of ap-

plication performance at each cache partitioning point, we

determine that the best partition point for the two applica-

tions is if 1MB cache is allocated to swim and 3MB cache

to mcf.

the K-th hottest page as a threshold. One approach is to

maintain a histogram during hotness sampling that counts

the number of pages with each possible hotness value. We

can scan from the highest hotness value downward until

we have accumulated K pages, at which point the hotness

threshold is set to the hotness value of the current bin. In

our implementation, the histogram is associated with each

task (process or thread)’s control structure in the operating

system. To better control its space usage, we reduce the

number of bins by grouping multiple, similar hotness values

together.

Given the change in the range of colors allocated to a pro-

cess (which is determined by the cache partitioning policy)

and the above hotness threshold, we scan the page table to

locate the pages with hotness values above the threshold, and

recolor them by uniformly assigning them to the new color

range. This uniform recoloring helps to achieve low intra-

application cache conflicts. Pseudo-code for our recoloring

approach is shown in Figure 6.

5. Evaluation

We implemented the proposed page hotness identification

approach and used it to drive hot page coloring (includ-

ing adaptive recoloring in dynamic, multi-programmed en-

vironments) in the Linux 2.6.18 kernel. We have also im-

plemented lazy page copying (proposed earlier by Lin et

al. [Lin 2008]), which delays the copying to the time of first

access, to further reduce the coloring overhead. Specifically,

each to-be-recolored page is set invalid in the page table en-

procedure Recolor

budget (recoloring budget)

old-colors (thread’s color set under old partition)

new-colors (thread’s color set under new partition)

if new-colors is a subset of old-colors then

subtract-colors = old-colors−new-colors.

Find the hot pages in subtract-colors within the budget

limit and reallocate to new-colors in a round-robin fash-

ion.

end if

if old-colors is a subset of new-colors then

add-colors = new-colors−old-colors.

Find the hot pages in old-colors within the
|new-colors|
|add-colors| ∗budget limit, and then move at most budget

(i.e.
|add-colors|
|new-colors| proportion) of them to add-colors.

end if

Figure 6. Procedure for hotness-based page recoloring. A

key goal is that hot pages are distributed to all assigned

colors in a balanced way.

try, and the actual page copying is performedwithin the page

fault handler triggered by the next access to the page.

We performed experiments on a dual-core Intel Xeon 5160

3.0GHz “Woodcrest” platform. The two cores share a single

4MB L2 cache (16-way set-associative, 64-byte cache line,

14 cycles latency, writeback). Our evaluation benchmarks

are a set of 12 programs from SPECCPU2000.

5.1 Overhead and Accuracy of Page Hotness

Identification

Overhead We compare the page hotness identification

overheads of three methods—page linked list traversal [Zhou

2004] and our proposed sequential table scan with and with-

out locality-jumping. In our approach, the page table is tra-

versed twice per scan: once to clear the access bits at the

beginning of the sampled access time window and once to

check them at the end of the window. We set the access time

window to 2 milliseconds in our experiments.

The list traversal approach [Zhou 2004] maintains a

linked list of frequently accessed pages while the remain-

ing pages are invalidated and monitored through page faults.

The size of the frequently accessed page linked list is an im-

portant parameter that requires careful attention. If the size is

too large, list traversal overhead dominates; if the size is too

small, page fault overhead can be prohibitively high. Raghu-

raman [Raghuraman 2003, Zhou 2004] suggests that a good

list size is 30K pages. Our evaluation revealed that even a

value of 30K was insufficient to keep the page fault rate low

in some instances. We therefore measured performance us-

ing both the 30K list size and no limit for the linked list size

(meaning all accessed pages are included into the list), and

present the better of the two as a comparison point.

0%

10%

20%

30%

40%

50%

60%

70%

O
v
e

rh
e

a
d

10 milliseconds sampling frequency

gzip
wupwise

swim
mgrid

applu
mesa

art mcf
equake

parser

bzip
twolf

Average

list traversal

sequential table scan

plus locality−jump

0%

2%

4%

6%

8%

10%

12%

O
v
e

rh
e

a
d

100 milliseconds sampling frequency

gzip
wupwise

swim
mgrid

applu
mesa

art mcf
equake

parser

bzip
twolf

Average

list traversal

sequential table scan

plus locality−jump

Figure 7. Overhead comparisons under different page hot-

ness identification methods.

The overhead results at two different sampling frequen-

cies (once per 10 milliseconds and once per 100 millisec-

onds) are shown in Figure 7. When the memory footprint is

small, the linked list of pages can be cached and the over-

head is close to that of a sequential table scan. As the mem-

ory footprint becomes larger, the advantage of spatial lo-

cality with a sequential table scan becomes more apparent.

On average, sequential table scan with locality jumping in-

volves modest (7.1%, 1.9%) overhead at 10 and 100 mil-

lisecond sampling frequencies. It improves over list traversal

by 71.7% and 47.2%, and over sequential table scan without

locality jumping by 58.1% and 19.6%, at 10 and 100 mil-

liseconds sampling frequencies. To understand the direct ef-

fect of locality jumping, Figure 8 shows the percentage of

page table entries skipped during the scan. On average we

save checking on 63.3% of all page table entries.

Accuracy We measure the accuracy of our page hotness

identification methods. We are also interested in knowing

whether the locality jumping technique (which saves over-

head) would lead to less accurate identification. The ideal

measurement goal is to tell how close our identified page

hotness is to the ”true page hotness”. Acquiring the true page

hotness, however, is challenging.We approximate it by scan-

ning the page table entries at high frequency without any

locality jumping. Specifically, we employ a high sampling

frequency of once per 2 milliseconds in this approximation

and we call its identified page hotness the baseline.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
S

k
ip

p
e

d
 e

n
tr

ie
s
 (

in
 p

ro
p

o
rt

io
n

 t
o

 a
ll

P
T

E
s
)

gzip
wupwise

swim
mgrid

applu
mesa

art mcf
equake

parser

bzip
twolf

Average

Figure 8. Proportion of skipped page table entries (PTEs)

due to our locality-jumping approach in page hotness iden-

tification.

For a given hotness identification approach, we measure

its accuracy by calculating the difference between its identi-

fied page hotness and the baseline. To mitigate any poten-

tial weakness of using a single difference metric, we use

two difference metrics in our evaluation. The first is the

Jeffrey-divergence, which is a numerically robust variant

of Kullback-Liebler divergence. More precisely, the Jeffrey-

divergence of two probability distributions p and q is defined

as:

JD(p,q) = ∑
i

(

p(i) log
2p(i)

p(i)+q(i)
+q(i) log

2q(i)

p(i)+q(i)

)

.

JD(p,q) measures the divergence in terms of relative en-

tropy from p and q to p+q
2 and it is in the range of [0, 2].

In order to calculate Jeffrey-divergence, page hotness is nor-

malized such that hotness sums up to 1. Here p(i) and q(i)
represent page i’s measured hotness from the two methods

being compared.

The second difference metric we utilize is the rank error

rate. Specifically, we rank pages in hotness order (pages

of the same hotness are ranked equally at the highest rank

available) and sum up the absolute rank difference between

the two methods being compared. The rank error rate is the

average absolute rank difference per page divided by the

total number of pages.

We measure the page hotness identification of our se-

quential table scan approach and its enhancement with

locality-jumping. These approaches employ a sampling fre-

quency of once per 100 milliseconds. As a point of compar-

ison, we also measure the accuracy of a naive page hotness

identification approach that considers all pages to be equally

hot. Note that under our rank order definition, all pages un-

der the naive method have the highest rank.

Figure 9 shows the accuracy of various page hotness

identification approaches (in terms of Jeffrey divergence to

the baseline). Figure 10 shows similar results on the rank

error rate. Results demonstrate that our proposed methods

0

0.2

0.4

0.6

0.8

1

1.2

J
e
ff
re

y
 d

iv
e
rg

e
n
c
e
 t
o
 b

a
s
e
lin

e

gzip
wupwise

swim
mgrid

applu
mesa

art mcf
equake

parser

bzip
twolf

Average

sequential table scan

plus locality−jump

naive method

Figure 9. Jeffrey divergence on identified page hotness be-

tween various approaches and the baseline (an approxima-

tion of “true page hotness”).

0%

10%

20%

30%

40%

50%

R
a

n
k
 e

rr
o

r
ra

te
 t

o
 b

a
s
e

lin
e

gzip
wupwise

swim
mgrid

applu
mesa

art mcf
equake

parser

bzip
twolf

Average

sequential table scan

plus locality−jump

naive method

Figure 10. Rank error rate on identified page hotness be-

tween various approaches and the baseline (an approxima-

tion of “true page hotness”).

achieve substantially better accuracy than the naive method.

Further, the locality-jumping technique does not appear to

degrade the accuracy of our results.

Figure 11 visually presents the deviation of our identified

page hotness from the baseline for all 12 applications. A vi-

sual analysis suggests that our hotness identification results

are fairly accurate overall. The high Jeffrey divergence ob-

served for gzip in Figure 9 is due to a large relative difference

(but a small absolute difference as Figure 11 shows) for the

large number of pages with extremely low hotness values.

5.2 Effectiveness of Hot-Page Coloring— Relieving

Memory Allocation Constraints

As explained in Section 4.1, page coloring introduces new

memory allocation constraints that may cause otherwise

avoidable memory pressure or cache pollution. We exam-

ine the effectiveness of hot-page coloring in reducing the

negative effect of such coloring-induced memory allocation

constraints. In this experiment, two applications on a dual

core platform would like to equally partition the cache using

page coloring (to follow the simple fairness goal of equal

resource usage). Consequently each can only use up to half

of the total memory space. However, one of the applications

0 1 2 3 4 5

x 10
4

0

5

10

15

x 10
−3

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

gzip

baseline

our result

0 1 2 3 4 5

x 10
4

0

0.2

0.4

0.6

0.8

1

x 10
−4

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

wupwise

baseline

our result

0 1 2 3 4 5

x 10
4

0

0.2

0.4

0.6

0.8

1

x 10
−4

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

swim

baseline

our result

0 5000 10000 15000
0

1

2

x 10
−4

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

mgrid

baseline

our result

0 1 2 3 4 5

x 10
4

0

5

10

15

x 10
−4

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

applu

baseline

our result

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

x 10
−3

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

mesa

baseline

our result

0 200 400 600 800 1000
0

0.5

1

1.5

x 10
−3

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

art

baseline

our result

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4

6

x 10
−4

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

mcf

baseline

our result

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

x 10
−4

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

equake

baseline

our result

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

x 10
−3

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

parser

baseline

our result

0 1 2 3 4 5

x 10
4

0

5

10

15

20

x 10
−4

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

bzip

baseline

our result

0 200 400 600 800 1000 1200 1400

0

1

2

3

x 10
−3

Pages sorted on baseline hotness

N
o

rm
a

liz
e

d
 h

o
tn

e
s
s

twolf

baseline

our result

Figure 11. All-page comparison of page hotness identification results for our sequential table scan with locality-jumping

approach (at once-per-100-millisecond sampling frequency) and the baseline page hotness. Pages are sorted by their baseline

hotness. The hotness is normalized so that the hotness of all pages in an application sum up to 1.

uses more memory than its entitled half. Without resorting

to expensive disk swapping, this application would have to

use some memory pages beyond its allocated colors and

therefore pollute the other application’s cache partition.

Specifically, we consider a system with 256MB mem-

ory1. We pick swim as the polluting application with a

190MB memory footprint. When only half of the total

256MBmemory is available, swim has to steal about 62MB

from the victim application’s page colors. Figure 11 shows

that in swim, 20% of the pages are exceptionally hotter than

the other 80% of the pages, which provides a good oppor-

tunity for our hot-page coloring. We choose six victim ap-

1The relatively small system memory size is chosen to match the small

memory usage in our SPECCPU benchmarks. We expect that the results of

our experiment should also reflect the behaviors of larger-memory-footprint

applications in larger systems.

plications with small memory footprints that, without the

coloring-induced allocation constraint, would fit well into

the system memory together with swim. They are mesa,

mgrid, equake, parser, art, and twolf.

We evaluate three policies: random, in which the pollut-

ing application randomly picks the pages to move to the vic-

tim application’s entitled colors; hot-page coloring, which

uses the page hotness information to pollute the victim appli-

cation’s colors with the coldest (least frequently used) pages;

and no pollution, a hypothetical comparison base that is only

possible with expensive disk swapping, which we idealize

by providing enough memory so that swapping is avoided.

Figure 12 shows the victim applications’ slowdowns under

different cache pollution policies. Compared to random pol-

lution, the hotness-aware policy reduces the slowdown for

applications with high cache space sensitivity. Specifically,

mesa mgrid equake parser art twolf

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Victim applications

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Random pollution
Hotness−aware pollution
No pollution

Figure 12. Normalized execution time of different victim

applications under different cache pollution schemes. The

polluting application is swim.

for the two most sensitive victims (art and twolf), the ran-

dom cache pollution yields 55% and 124% execution time

increases (from no pollution) while the hotness-aware pollu-

tion causes 36% and 86% execution time increases.

5.3 Effectiveness of Hot-Page Coloring— Alleviating

Page Recoloring Cost

In a multi-programmed system where context switches oc-

cur fairly often, an adaptive cache partitioning policy may

need to recolor pages to reflect the dynamically changing

co-running applications. Each of our multi-programmed ex-

periments runs four applications on a dual-core processor.

Specifically, we employ two such four-application groups

with significant intra-group cache contention. These two

groups are {swim, mgrid, bzip, mcf} and {art, mcf, equake,

twolf}, and their contention relations are shown in Figure 13.
Within each group, we assign two applications to each sib-

ling core on a dual-core processor and run all possible com-

binations. In total, there are 6 tests:

test1 = {swim, mgrid} vs. {mcf, bzip};
test2 = {swim, mcf} vs. {mgrid, bzip};
test3 = {swim, bzip} vs. {mgrid, mcf};
test4 = {art, mcf} vs. {equake, twolf};
test5 = {art, equake} vs. {mcf, twolf};
test6 = {art, twolf} vs. {mcf, equake}.
We compare system performance under several static

cache management policies.

• In default sharing, applications freely compete for the

shared cache space.

• In equal partition, the two cores statically partition the

cache evenly and applications can only use their cores’

entitled cache space. Under such equal partition, there

is no need for recoloring when co-running applications

change in a dynamic execution environment.

Figure 13. Contention relations of two groups of SPEC-

CPU2000 benchmarks. If A points to B, that means B has

more than 50% performance degradation when running to-

gether with A on a shared cache, compared to running alone

when B can monopolize the whole cache.

We then consider several adaptive page coloring schemes.

As described in Section 4.2, adaptive schemes utilize the

miss-ratio-curve (MRC) to determine a desired cache par-

tition between co-running applications. Whenever an appli-

cation’s co-runner changes, the application re-calculates an

optimal partition point and recolors pages.

• In all-page coloring, we recolor all pages necessary to

achieve the new desired cache partition after a change of

co-running applications. This is the obvious alternative

without the guidance of our hot-page identification.

• The ideal page coloring is a hypothetical approach that

models the all-page coloring but without incurring any

recoloring overhead. Specifically, consider the test of

{A,B} vs. {C,D}. We run each possible pairing (A-C,

A-D, B-C, and B-D) on two dedicated cores (without

context switches) and assume that the resulting average

performance for each application would match its perfor-

mance in the multi-programmed setting.

• In hot page coloring, we utilize our page hotness identi-

fication to only recolor hot pages within a target recolor-

ing budget that limits its overhead. The recoloring bud-

get is defined as an estimated relative slowdown of the

application (specifically as the cost of each recoloring di-

vided by the time interval between adjacent recoloring

events, which is estimated as the CPU scheduling quan-

tum length). Our experiments consider two recoloring-

caused application slowdown budgets—5% (conserva-

tive) and 20% (aggressive). In our implementation, a

given recoloring budget is translated into a cap on the

number of recolored pages according to the page copying

cost. Copying one page takes roughly 3 microseconds on

our experimental platform.

The recoloring overhead in the adaptive schemes depends

on the change frequency of co-running applications, and

therefore it is directly affected by the CPU scheduling quan-

tum. We evaluate this effect by experimenting with a range

of scheduling quantum lengths (100–800milliseconds). Fig-

ure 14 presents the system performance of the 6 tests under

different cache management policies. Our performance met-

ric is defined as the geometric mean of individual applica-

100 200 500 800
0.9

0.95

1

1.05

1.1

1.15

scheduling time quantum in milliseconds

A
v
e
ra

g
e
 s

y
s
te

m
 n

o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e test1: {swim, mgrid} vs. {mcf, bzip}

100 200 500 800
0.5

0.6

0.7

0.8

0.9

1

1.1

A
v
e
ra

g
e
 s

y
s
te

m
 n

o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

scheduling time quantum in milliseconds

test2: {swim, mcf} vs. {mgrid, bzip}

100 200 500 800
0.5

0.6

0.7

0.8

0.9

1

1.1

A
v
e
ra

g
e
 s

y
s
te

m
 n

o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

scheduling time quantum in milliseconds

test3: {swim, bzip} vs. {mgrid, mcf}

100 200 500 800
0.95

1

1.05

1.1

1.15

A
v
e
ra

g
e
 s

y
s
te

m
 n

o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

scheduling time quantum in milliseconds

test4: {art, mcf} vs. {equake, twolf}

100 200 500 800
0.7

0.8

0.9

1

1.1

A
v
e
ra

g
e
 s

y
s
te

m
 n

o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

scheduling time quantum in milliseconds

test5: {art, equake} vs. {mcf, twolf}

100 200 500 800
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

A
v
e
ra

g
e
 s

y
s
te

m
 n

o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

scheduling time quantum in milliseconds

test6: {art, twolf} vs. {mcf, equake}

Default Equal Hot (5% budget) Hot (20% budget) All−page Ideal

Figure 14. Performance comparisons under different cache management policies for 6 multi-programmed tests (four applica-

tions each) on a dual-core platform.

tions’ relative performance compared to when running alone

and utilizing the whole cache. All performance numbers are

normalized to that of the equal partition policy.

Our first observation is that the simple policy of equal

cache partition achieves quite good performance generally

speaking. It does so by reducing inter-core cache conflicts

without incurring any adjustment costs in multi-programmed

environments. On average, it has a 3.5% performance im-

provement over default sharing and its performance is about

7.7% away from that of ideal page coloring.

All-page coloring achieves quite poor performance over-

all. Compared to equal partitioning, it degrades performance

by 20.1%, 11.7%, and 1.7% at 100, 200, and 500 millisec-

onds scheduling time quanta respectively. It only manages to

achieve a slight improvement of 1.6% at the long 800 mil-

liseconds scheduling quantum. The poor performance of all-

page coloring is due to the large recoloring overhead at con-

text switches. To provide an intuition of such cost, we did a

simple back-of-the-envelope calculation as follows. The av-

erage working set of the 7 benchmarks used in these exper-

iments is 82.1MB. If only 10% of the working set is recol-

ored at every time quantum (default 100 milliseconds), the

page copying cost alone would incur 6.3% application slow-

down, negating most of the benefit gained by the ideal page

coloring.

The hot page coloring greatly improves performance over

all-page coloring. It can also improve the performance over

equal partitioning at 500 and 800 milliseconds scheduling

time quanta. Specifically, the conservative hot page color-

ing (at 5% budget) achieves 0.3% and 4.3% performance

improvement while aggressive hot page coloring (at 20%

budget) achieves 2.9% and 4.0% performance improvement.

However, it is somewhat disappointing that the page copying

overhead still outweighs the adaptive page coloring’s bene-

fit when context switches occur at a finer granularity (ev-

ery 100 or 200 milliseconds). Specifically, the conservative

hot page coloring yields 3.8% and 0.5% performance degra-

dation compared to equal partition while the aggressive hot

page coloring yields 7.1% and 2.3% performance degrada-

tion.

We notice that in test4 of Figure 14, the ideal scheme does

not always provide the best performance. One possible ex-

planation for this unintuitive result is that our page recolor-

ing algorithm (described in Section 4.2) also considers intra-

thread cache conflicts by distributing pages to all assigned

colors in a balanced way. Such intra-thread cache conflicts

are not considered in our ideal scheme.

5.4 An Evaluation of Fairness

We also study how these cache management policies affect

the system fairness. We use an unfairness metric, defined as

100 200 500 800
0.05

0.1

0.15

0.2

0.25

0.3

scheduling time quantum in milliseconds

A
v
e
ra

g
e
 u

n
fa

ir
n
e
s
s

test1: {swim, mgrid} vs. {mcf, bzip}

100 200 500 800
0

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 u

n
fa

ir
n
e
s
s

scheduling time quantum in milliseconds

test2: {swim, mcf} vs. {mgrid, bzip}

100 200 500 800
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
v
e
ra

g
e
 u

n
fa

ir
n
e
s
s

scheduling time quantum in milliseconds

test3: {swim, bzip} vs. {mgrid, mcf}

100 200 500 800
0.05

0.1

0.15

0.2

0.25

0.3

A
v
e
ra

g
e
 u

n
fa

ir
n
e
s
s

scheduling time quantum in milliseconds

test4: {art, mcf} vs. {equake, twolf}

100 200 500 800
0.15

0.2

0.25

0.3

0.35

0.4

A
v
e
ra

g
e
 u

n
fa

ir
n
e
s
s

scheduling time quantum in milliseconds

test5: {art, equake} vs. {mcf, twolf}

100 200 500 800
0.15

0.2

0.25

0.3

A
v
e
ra

g
e
 u

n
fa

ir
n
e
s
s

scheduling time quantum in milliseconds

test6: {art, twolf} vs. {mcf, equake}

Default Equal Hot (5% budget) Hot (20% budget) All−page Ideal

Figure 15. Unfairness comparisons (the lower the better) under different cache management policies for 6 multi-programmed

tests (four applications each) on a dual-core platform.

the coefficient of variation (standard deviation divided by the

mean) of all applications’ normalized performance. Here,

each application’s performance is normalized to its execu-

tion time when it monopolizes the whole cache resource. If

normalized performance is fluctuating across different ap-

plications, unfairness tends to be large; if every application

has a uniform speedup/slowdown, then unfairness tends to

be small.

We evaluate the execution unfairness of the 6 tests we

examined in Section 5.3. Figure 15 shows the results un-

der different cache management policies. Results show that

equal partition performs poorly, simply because it allocates

cache space without knowledge of how individual applica-

tions’ performance will be affected. The unfairness of de-

fault sharing is not as high as one may expect, because

this set of benchmarks exhibits contention in both direc-

tions for most pairs, resulting in relatively uniform poor per-

formance for individual ones. Ideal page coloring is gener-

ally better (lower unfairness metric value) than default shar-

ing and equal partition. Hot and all-page coloring perform

similarly to what they did in the performance results: they

gradually approach the fairness of ideal page coloring as the

page copying cost is amortized over longer scheduling time

quanta. It also suggests that expensive page coloring may be

worthwhile in cases where the quality-of-service (like those

in service level agreements) is the first priority and cus-

tomized resource allocation is needed. Note that our cache

partition policy does not directly take fairness into consider-

ation. It should be possible to derive other metrics to opti-

mize fairness and to use other metrics for fairness.

6. Related Work

Hardware-based cache partitioning Hardware-based cache

partitioning schemes mainly focus on modifying cache re-

placement policies and can be categorized by partition gran-

ularity: way-partitioning [Chiou 2000, Qureshi 2006] and

block-partitioning [Suh 2001, Zhao 2007, Rafique 2006].

Way-partitioning (also called column partitioning in [Chiou

2000]) restricts cache block replacement for a process

to within a certain way, resulting in a maximum of n

slices or partitions with an n-way associative cache. Block-

partitioning allows partitioning blocks within a set, but is

more expensive to implement. It usually requires hardware

support to track cache line ownership. When a cache miss

occurs, a cache line belonging to an over-allocated owner is

preferentially evicted.

Page coloring based cache partitioning Cho and Jin [Cho

2006] first proposed the use of page coloring to manage data

placement in a tiled CMP architecture. Their goal was to

reduce a single application’s cache miss and access latency.

Tam et al. [Tam 2007] first implemented page coloring in the

Linux kernel for cache partitioning purposes, but restricted

their implementation and analysis to static partitioning of the

cache among two competing threads. Lin et al. [Lin 2008]

further extended the above to dynamic page coloring. Their

evaluation acknowledged that page recoloring is clearly an

expensive operation and should be attempted rarely in or-

der to make page coloring beneficial. Soares et al. [Soares

2008] remap high cache miss pages to dedicated cache sets

to avoid polluting pages with low cache misses. These pre-

vious works either only consider a single application or two

co-running competing threads, where frequent page recol-

oring is not incurred. Also, they mainly target one benefi-

cial aspect of page coloring, rather than developing a prac-

tical and viable solution within the operating system. Our

approach alleviates two important obstacles: memory pres-

sure and frequent recoloring when using the page coloring

technique.

Cache management policies Kim et al. [Kim 2004] pro-

posed 5 different metrics for L2 cache fairness. They use

cache miss or cache miss ratio as performance (or normal-

ized performance) and define fairness as the difference be-

tween the maximum and minimum performance of all ap-

plications. Our fairness metric in Section 5.4 takes all ap-

plications’ performance into consideration and tends to be

more numerically robust than only considering max and

min. Iyer et al. [Iyer 2007] proposed 3 types of quality-

of-service metrics (resource oriented, individual, or overall

performance oriented) and statically/dynamically allocated

cache/memory resources to meet these QoS goals. Hsu et

al. [Hsu 2006] studied various performance metrics under

communist, utilitarian, and capitalist cache polices and made

the conclusion that thread-aware cache resource allocation

is required to achieve good performance and fairness. All

these studies focus on resource management in the space do-

main. Another piece of work by Fedorova et al. [Fedorova

2007] proposed to compensate/penalize threads that went

under/over their fair cache share by modifying their CPU

time quanta.

7. Conclusion

We present an efficient approach to tracking application page

hotness on-the-fly. Driven by the page hotness information,

we propose new approaches to mitigate practical obstacles

faced by current page coloring-based cache partitioning on

multi-core platforms. The results of our work make page

coloring-based cache management a more viable option for

general-purpose systems, although with cost amortization

time-frames that are still higher than typical operating sys-

tem time slices. We envision that our approach will show

even greater potential on many-core platforms, where re-

source contention/constraints are likely more severe. In par-

allel, computer architecture researchers are also investigat-

ing new address translation hardware to make page coloring

extremely lightweight. We expect features provided by new

hardware in the near future to allow more efficient operat-

ing system control. In the meanwhile, we hope our proposed

approach could aid performance isolation in existing multi-

core processors on today’s market.

Experiments in this paper target multiple sequential ap-

plications running in multi-programmed environments. A

further place to employ our approach is virtual machine-

driven shared service hosting platforms. In particular, cloud

computing platform providers (e.g., Amazon [Amazon] and

GoGRID [GoGrid]) charge customers by the amount of time

certain hardware resources are used (e.g., memory, proces-

sor, and network bandwidth). Without carefully managing

various resource conflicts (especially those at the chip level),

the service platform cannot guarantee full performance de-

livery as desired by customers.

Acknowledgments

We thank the anonymous EuroSys referees and our shepherd

Timothy Roscoe for their helpful comments on a preliminary

version of this paper. Additional thanks to Tongxin Bai who

pointed us toward the locality-based page table scan in the

page hotness identification.

References

[Amazon] Amazon. Amazon elastic compute cloud. http://aws

.amazon.com/ec2/.

[AMD64-manual] AMD64-manual. AMD-64 architecture pro-

grammer’s manual, 2008.

[Bugnion 1996] E. Bugnion, J. M. Anderson, and M. S. Lam.

Compiler-directed page coloring for multiprocessors. In 7th Int’l

Conf. on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 244–255, Cambridge, MA,

October 1996.

[Chiou 2000] D. Chiou, P. Jain, L. Rudolph, and S. Devadas.

Application-specific memory management for embedded sys-

tems using software-controlled caches. In 37th Conf. on Design

Automation, pages 416–419, Los Angeles, CA, 2000.

[Cho 2006] S. Cho and L. Jin. Managing distributed, shared L2

caches through OS-level page allocation. In 39th Int’l Symp.

on Microarchitecture (Micro), pages 455–468, Orlando, FL, De-

cember 2006.

[Fedorova 2007] A. Fedorova, M. Seltzer, and M.D. Smith. Im-

proving performance isolation on chip multiprocessors via an

operating system scheduler. In 16th Int’l Conf. on Parallel Ar-

chitecture and Compilation Techniques (PACT), pages 25–36,

Brasov, Romania, September 2007.

[GoGrid] GoGrid. http://www.gogrid.com.

[Hsu 2006] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni.

Communist, utilitarian, and capitalist cache policies on CMPs:

Caches as a shared resource. In Int’l Conf. on Parallel Architec-

tures and Compilation Techniques (PACT), pages 13–22, 2006.

[IA32-manual] IA32-manual. IA-32 Intel architecture soft-

ware developer’s manual, 2008. http://www.intel.com/products

/processor/manuals/.

[Intel] Intel. TLBs, paging-structure caches, and their invali-

dation, 2008. http://www.intel.com/design/processor/applnots

/317080.pdf.

[Iyer 2007] R. Iyer, L. Zhao, F. Guo, R. Illikkal, Don Newell,

Y. Solihin, L. Hsu, and S. Reinhardt. QoS policies and archi-

tecture for cache/memroy in CMP platforms. In ACM SIGMET-

RICS, pages 25–36, San Diego, June 2007.

[Kessler 1992] R. E. Kessler and M. D. Hill. Page placement algo-

rithms for large real-indexed caches. ACM Trans. on Computer

Systems, 10(4):338–359, November 1992.

[Kim 2004] S. Kim, D. Chandra, and Y. Solihin. Fair cache

sharing and partitioning in a chip multiprocessor architecture.

In Int’l Conf. on Parallel Architectures and Compilation Tech-

niques (PACT), pages 111–122, 2004.

[Lee 2001] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho,

and C. S. Kim. LRFU: A spectrum of policies that subsumes

the least recently used and least frequently used policies. IEEE

Trans. on Computers, 50(12):1352–1361, December 2001.

[Lin 2008] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sa-

dayappan. Gaining insights into multicore cache partitioning:

Bridging the gap between simulation and real systems. In Int’l

Symp. on High-Performance Computer Architecture (HPCA),

pages 367–378, Salt Lake, UT, February 2008.

[Lu 2007] P. Lu and K. Shen. Virtual machine memory access

tracing with hypervisor exclusive cache. In USENIX Annual

Technical Conf. (USENIX), pages 29–43, Santa Clara, CA, June

2007.

[Patterson 2004] D. A. Patterson. Latency lags bandwith. Commu-

nications of the ACM, 47(10):71–75, October 2004.

[Qureshi 2006] M. Qureshi and Y. Patt. Utility-based cache par-

titioning: A low-overhead, hight-performance, runtime mecha-

nism to partition shared caches. In 39th Int’l Symp. on Mi-

croarchitecture (Micro), pages 423–432, Orlando, FL, Decem-

ber 2006.

[Rafique 2006] N. Rafique, W.-T. Lim, and M. Thottethodi. Archi-

tectural support for operating system-driven CMP cache man-

agement. In Int’l Conf. on Parallel Architectures and Compila-

tion Techniques (PACT), pages 2–12, 2006.

[Raghuraman 2003] A. Raghuraman. Miss-ratio curve directed

memory management for high performance and low energy.

Master’s thesis, Dept. of Computer Science, UIUC, 2003.

[Romer 1994] T. H. Romer, D. Lee, B. N. Bershad, and J. B. Chen.

Dynamic page mapping policies for cache conflict resolution

on standard hardware. In First USENIX Symp. on Operating

Systems Design and Implementation (OSDI), pages 255–266,

Monterey, CA, November 1994.

[Sherwood 1999] T. Sherwood, B. Calder, and J. Emer. Reducing

cache misses using hardware and software page replacement.

In 13th Int’l Conf. on Supercomputing (ICS), pages 155–164,

Rhodes, Greece, June 1999.

[Soares 2008] L. Soares, D. Tam, and M. Stumm. Reducing the

harmful effects of last-level cache polluters with an OS-level,

software-only pollute buffer. In 41th Int’l Symp. on Microarchi-

tecture (Micro), pages 258–269, Lake Como, ITALY, November

2008.

[Sokolinsky 2004] L. B. Sokolinsky. LFU-K: An effective buffer

management replacement algorithm. In 9th International Con-

ference on Database Systems for Advanced Applications, pages

670–681, 2004.

[Stone 1992] H. S. Stone, J. Turek, and J. L. Wolf. Optimal

partitioning of cache memory. IEEE Trans. on Computers, 41

(9):1054–1068, September 1992.

[Suh 2001] G. E. Suh, L. Rudolph, and Srini Devadas. Dynamic

cache partitioning for simultaneous multithreading systems. In

Int’l Conf. on Parallel and Distributed Computing and Systems,

pages 116–127, Anaheim, CA, August 2001.

[Tam 2007] D. Tam, R. Azimi, L. Soares, and M. Stumm. Man-

aging shared L2 caches on multicore systems in software. In

Workshop on the Interaction between Operating Systems and

Computer Architecture, San Diego, CA, June 2007.

[Taylor 1990] G. Taylor, P. Davies, and M. Farmwald. The TLB

slice – a low-cost high-speed address translation mechanism. In

17th Int’l Symp. on Computer Architecture (ISCA), pages 355–

363, Seattle, WA, June 1990.

[Waldspurger 2002] C. A. Waldspurger. Memory resource man-

agement in vmware ESX server. In 5th USENIX Symp. on Oper-

ating Systems Design and Implementation (OSDI), pages 181–

194, Boston, MA, December 2002.

[Zhang 2007] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen.

Processor hardware counter statistics as a first-class system re-

source. In 11th Workshop on Hot Topics in Operating Systems

(HotOS), San Diego, CA, May 2007.

[Zhao 2007] L. Zhao, R. Iyer, R. Illikkal, J. Moses, D. Newell,

and S. Makineni. CacheScouts: Fine-grain monitoring of shared

caches in CMP platforms. In 16th Int’l Conf. on Parallel Ar-

chitecture and Compilation Techniques (PACT), pages 339–352,

Brasov, Romania, September 2007.

[Zhou 2004] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,

Y. Zhou, and S. Kumar. Dynamic tracking of page miss ratio

curve for memory management. In 11th Int’l Conf. on Architec-

tural Support for Programming Languages and Operating Sys-

tems (ASPLOS), pages 177–188, Boston, MA, October 2004.

