
Appeared in Proc. of the 4th USENIX Conference on File and Storage
Technologies (FAST’05).

I/O System Performance Debugging
Using Model-driven Anomaly Characterization∗

Kai Shen Ming Zhong Chuanpeng Li
Department of Computer Science, University of Rochester

{kshen, zhong, cli}@cs.rochester.edu

Abstract

It is challenging to identify performance problems and
pinpoint their root causes in complex systems, especially
when the system supports wide ranges of workloads
and when performance problems only materialize un-
der particular workload conditions. This paper proposes
a model-driven anomaly characterization approach and
uses it to discover operating system performance bugs
when supporting disk I/O-intensive online servers. We
construct a whole-system I/O throughput model as the
reference of expected performance and we use statistical
clustering and characterization of performance anoma-
lies to guide debugging. Unlike previous performance
debugging methods offering detailed statistics at specific
execution settings, our approach focuses on comprehen-
sive anomaly characterization over wide ranges of work-
load conditions and system configurations.

Our approach helps us quickly identify four perfor-
mance bugs in the I/O system of the recent Linux 2.6.10
kernel (one in the file system prefetching, two in the
anticipatory I/O scheduler, and one in the elevator I/O
scheduler). Our experiments with two Web server bench-
marks, a trace-driven index searching server, and the
TPC-C database benchmark show that the corrected ker-
nel improves system throughput by up to five-fold com-
pared with the original kernel (averaging 6%, 32%, 39%,
and 16% for the four server workloads).

1 Introduction

It is not uncommon for complex systems to perform
worse than expected. In the context of this paper, we
define performance bugs as problems in system imple-
mentation that degrade the performance (compared with
that intended by the design protocol/algorithm). Exam-
ples of such bugs include overly-simplified implemen-
tations, mis-management of special cases, or plain erro-
neous coding. These bugs, upon discovery, are typically
quite easy to fix in comparison with implementing newer
and better protocol/algorithms. However, it is challeng-

∗This work was supported in part by NSF grants CCR-0306473,
ITR/IIS-0312925, and an NSF CAREER Award CCF-0448413.

ing to identify performance problems and pinpoint their
root causes in large software systems.

Previous techniques such as program instrumenta-
tion [13, 20], complete system simulation [24], perfor-
mance assertion checking [22], and detailed overhead
categorization [9] were proposed to understand perfor-
mance problems in complex computer systems and ap-
plications. Some recent performance debugging work
employs statistical analysis of online system traces [1, 7]
to identify faulty components in large systems. In gen-
eral, these techniques focus on offering fine-grained ex-
amination of the target system/application in specific ex-
ecution settings. However, many systems (such as the
I/O system in OS) are designed to support wide ranges
of workload conditions and they may also be configured
in various different ways. It is desirable to explore per-
formance anomalies over a comprehensive universe of
execution settings for these systems. Such exploration
is particularly useful for performance debugging without
the knowledge of runtime workload conditions and sys-
tem configurations.

We propose a new approach that systematically char-
acterizes performance anomalies in a system to aid per-
formance debugging. The key advantage is that we can
comprehensively consider wide ranges of workload con-
ditions and system configurations. Our approach pro-
ceeds in the following steps (shown in Figure 1).

1. We construct a whole-system performance model
according to the design protocol/algorithms of rele-
vant system components. The model predicts sys-
tem performance under different workload condi-
tions and system configurations.

2. We acquire a representative set of anomalous work-
load and system configuration settings by compar-
ing measured system performance with model pre-
diction under a number of sample settings. For each
system component that is considered for debugging,
we include some sample settings where the compo-
nent is bypassed.

3. We statistically cluster anomalous settings into
groups likely attributed to individual “causes”. We
then characterize each such cause (or bug) with cor-
related system component and workload conditions.

Real system

measurement

Performance

model prediction

Comparison

Statistical

clustering and

characterization

Sample workload

& configuration

settings

Representative

anomalous

settings

Correlated system component

& workload conditions for a

potential performance bug

… … … ...

… … … ...

… … … ...

Performance bug profiles

Figure 1:High-level overview of the proposed model-driven anomaly characterization.

The result of our approach contains profiles for po-
tential performance bugs, each with a system component
where the bug is likely located and the settings (workload
conditions and system configurations) where it would in-
flict significant performance losses. Such result then as-
sists further human debugging. It also helps verifying
or explaining bugs after they are discovered. Even if
some bugs could not be immediately fixed, our anomaly
characterization identifies workload conditions and sys-
tem configurations that should be avoided if possible.

Note that discrepancies between measured system per-
formance and model prediction can also be caused by
errors in the performance model. Therefore, we must
examine both the performance model and the system im-
plementation when presented with a bug profile. Since
the performance model is much less complex in nature,
we focus on debugging the system implementation in this
paper.

It is possible for our approach to have false positives
(producing characterizations that do not correspond to
any real bugs) and false negatives (missing some bugs in
the output). As a debugging aid where human screening
is available, false positives are less of a concern. In order
to achieve low false negatives, we sample wide ranges of
workload parameters and various system configurations
in a systematic fashion.

The rest of this paper presents our approach in de-
tails and describes our experience of discovering oper-
ating system performance bugs when supporting disk
I/O-intensive online servers. Although our results in
this paper focus on one target system and one type of
workloads, we believe that the proposed model-driven
anomaly characterization approach is general. It may
assist the performance debugging of other systems and
workloads as long as comprehensive performance mod-
els can be built for them.

2 Background

2.1 Targeted Workloads

The targeted workloads in this work are data-intensive
online servers that access large disk-resident datasets

while serving multiple clients simultaneously. Exam-
ples include Web servers hosting large datasets and key-
word search engines that support interactive search on
terabytes of indexed Web pages. In these servers, each
incoming request is serviced by a request handler which
can be a thread in a multi-threaded server or a series of
event handlers in an event-driven server. The request
handler repeatedly accesses disk data and consumes CPU
before completion. A request handler may block if the
needed resource is unavailable. While request handlers
consume both disk I/O and CPU resources, the overall
server throughput is often dominated by I/O system per-
formance when application data size far exceeds avail-
able server memory. For the ease of model construction
in the next section, we assume that request handlers per-
form mostly read-only I/O when accessing disk-resident
data. Many online services, such as Web server and index
searching, do not involve any updates on hosted datasets.

Characteristics of the application workload may affect
the performance of a disk I/O-intensive online server.
For example, the data access locality and sequentiality
largely determine how much of the disk time is spent on
data transfer or seek and rotation.

2.2 Relevant Operating System Components

We describe operating system features that affect the
I/O performance of data-intensive online servers.

Prefetching. Data accesses belonging to a single re-
quest handler often exhibit strong locality due to se-
mantic proximity. During concurrent execution, how-
ever, data access of one request handler can be fre-
quently interrupted by other active request handlers in
the server. This may severely affect I/O efficiency due
to long disk seek and rotational delays. The employ-
ment of OS prefetching can partially alleviate this prob-
lem. A larger prefetching depth increases the granular-
ity of I/O requests, and consequently yields less frequent
disk seeks and rotations. On the other hand, kernel-level
prefetching may retrieve unneeded data due to the lack
of knowledge on how much data is desired by the appli-
cation. Such a waste tends to be magnified by aggressive
prefetching policies.

I/O scheduling. Traditional elevator-style I/O sched-
ulers such as Cyclic-SCAN sort and merge outstanding
I/O requests to reduce the seek distance on storage de-
vices. In addition, the anticipatory I/O scheduling [14]
can be particularly effective for concurrent I/O work-
loads. At the completion of an I/O request, the antici-
patory disk scheduler may choose to keep the disk idle
for a short period of time even when there are pending
requests. The scheduler does so in anticipation of a new
I/O request from the same process that issued the just
completed request, which often requires little or no seek-
ing from the current disk head location. However, antici-
patory scheduling may not be effective when substantial
think time exists between consecutive I/O requests. The
anticipation may also be rendered ineffective when a re-
quest handler has to perform interleaving synchronous
I/O that does not exhibit strong locality. Such a situation
arises when a request handler simultaneously accesses
multiple data streams.

Others. For data-intensive workloads, memory
caching is effective in improving the application-
perceived performance over the raw storage I/O through-
put. Most operating systems employ LRU-style policies
to manage data cached in memory.

File system implementation issues such as file layout
can also affect the system performance. We assume the
file data is laid out contiguously on the storage. This
is a reasonable assumption since the OS often tries to
allocate file data contiguously on creation and the dataset
is unchanged under our targeted read-only workloads.

3 I/O Throughput Model

Our model-driven performance debugging requires
model-based prediction of the overall system perfor-
mance under wide ranges of workload conditions and
various system configurations. Previous studies have
recognized the importance of constructing I/O system
performance models. Various analytical and simulation
models have been constructed for disk drives [5, 16, 25,
28, 36], disk arrays [8, 33], OS prefetching [6, 29, 31],
and memory caching [15]. However, performance mod-
els for individual system components do not capture
the inter-dependence of different components and con-
sequently they may not accurately predict the overall ap-
plication performance.

When modeling a complex system like ours, we fol-
low the methodology of decomposing it into weakly cou-
pled subcomponents. More specifically, we divide our
whole-system I/O throughput model into four layers —
OS caching, prefetching, OS-level I/O scheduling, and
the storage device. Every layer may transform its input
workload to a new workload imposed on the lower layer.
For example, I/O scheduling may alter inter-request I/O

OS caching

model

I/O prefetching

model

I/O scheduling

model

Storage device

model

throughput’

throughput’’

throughput’’’

System

I/O throughput

Workload

characteristics

workload’

workload’’

workload’’’

Operating

system

OS

configuration

Storage

properties

Figure 2: Layered system model on I/O throughput. We by-
pass the OS caching model in the context of this paper.

seek distances. Each layer may also change the pre-
dicted I/O throughput from the lower layer due to ad-
ditional benefits or costs it may induce. For instance,
prefetching adds the potential overhead of fetching un-
needed data. As indicated in Figure 2, we useworkload,
workload′, workload′′, andworkload′′′ to denote the
original and transformed workloads at each layer. We
similarly usethroughput, throughput′, throughput′′,
andthroughput′′′ to represent the I/O throughput results
seen at each layer.

Figure 2 illustrates our layered system model on I/O
throughput. This paper focuses on the I/O system perfor-
mance debugging and we bypass the OS caching model
in our study. For the purpose of comparing our per-
formance model with real system measurement, we add
additional code in the operating system to disable the
caching. More information on this is provided in Sec-
tion 4.1. The rest of this section illustrates the other
three layers of the I/O throughput model in detail. While
mostly applicable to many general-purpose OSes, our
model more closely follows the target system of our de-
bugging work — the Linux 2.6 kernel.

3.1 OS Prefetching Model

We define asequential access streamas a group of
spatially contiguous data items that are accessed by a sin-
gle request handler. Note that the request handler may
not continuously access the entire stream at once. In
other words, it may perform interleaving I/O that does
not belong to the same stream. We further define ase-
quential access runas a portion of a sequential access
stream that does not have such interleaving I/O. Figure 3
illustrates these two concepts. All read accesses from re-
quest handlers are assumed to be synchronous.

a stream

a stream

a run a run

a runa run

Figure 3: Illustration of the sequential access stream and the
sequential access run. The arrows indicate the data access se-
quence of the request handler.

We consider the workload transformation of I/O
prefetching on a sequential access stream of length
Sstream. I/O prefetching groups data accesses of the
stream into requests of sizeSprefetch — the I/O prefetch-
ing depth. Therefore, the number of I/O requests for
serving this sequential stream is:

Nrequest = ⌈ Sstream

Sprefetch

⌉ (1)

Operating system prefetching may retrieve unneeded
data due to the lack of knowledge on how much data is
desired by the application. In the transformed workload,
the total amount of fetched data for the stream is:

S′

stream = ⌈ Sstream

Sprefetch

⌉ · Sprefetch (2)

Within the amount of fetched dataS′

stream, the effective
amount is onlySstream while the rest is not needed by
the application. Therefore:

throughput′ = throughput′′ ·
∑

Sstream
∑

S′

stream

(3)

However, wasted prefetching does not exist when each
sequential access stream references a whole file since the
OS would not prefetch beyond the end of a file. In this
case, I/O prefetching does not fetch unneeded data and it
does not change the I/O throughput. Therefore:

S′

stream = Sstream (4)

throughput′ = throughput′′ (5)

3.2 OS-level I/O Scheduling Model

The I/O scheduling layer passes the retrieved data to
the upper layer without any change. Therefore it does
not change the I/O throughput:

throughput′′ = throughput′′′ (6)

I/O scheduling transforms the workload primarily by
sorting and merging I/O requests to reduce the seek
distance on storage devices. We discuss such work-
load transformation by the traditional elevator-style I/O
scheduling and by the anticipatory I/O scheduling.

3.2.1 Elevator-style I/O Scheduling

I/O scheduling algorithms such as Cyclic-SCAN reorder
outstanding I/O requests based on data location and
schedule the I/O request close to the current disk head lo-
cation. The effectiveness of such scheduling is affected
by the concurrency of the online server. Specifically, a
smaller average seek distance can be attained at higher
server concurrency when the disk scheduler can choose
from more concurrent requests for seek reduction. We
estimate that the number of simultaneous disk seek re-
quests in the SCAN queue is equal to the server con-
currency levelγ. When the disk scheduler can choose
from γ requests at uniformly random disk locations, a
previous study [27] indicates that the inter-request seek
distanceDseek follows the following distribution:

Pr[Dseek ≥ x] = (1− x

δ ·Ddisk

)γ (7)

Here δ is the proportion of the disk where the dataset
resides andDdisk is the total disk size. In other words,
δ ·Ddisk represents the span of the dataset on the disk.

During concurrent execution (concurrency greater
than one), the I/O scheduler switches to a different
stream when a prefetching request from one stream is
completed. Therefore it does not change the granularity
of I/O requests passed from the prefetching layer. Con-
sequently the average size of an I/O request is:

E(Srequest) =

∑

S′

stream
∑

Nrequest

=
E(S′

stream)

E(Nrequest)
(8)

At the concurrency of one, all I/O requests belonging
to one sequential access run is merged:

E(Srequest) = max{ E(S′

stream)

E(Nrequest)
, E(Srun)} (9)

whereE(Srun) is the average length of a sequential ac-
cess run.

3.2.2 Anticipatory I/O Scheduling

During concurrent execution, the anticipatory I/O
scheduling [14] may temporarily idle the disk so that
consecutive I/O requests that belong to the same request
handler are serviced without interruption. This effec-
tively merges all prefetching requests of each sequen-
tial access run (defined in Section 3.1) into a single I/O
request. Thus the average size of an I/O request in the
transformed workload is:

E(Srequest) = max{ E(S′

stream)

E(Nrequest)
, E(Srun)} (10)

The anticipatory I/O scheduling likely reduces the fre-
quency of disk seeks, but it does not affect the the inter-
request seek distance modeled in Equation (7).

The other effect of the anticipatory I/O scheduling is
that it induces disk idle time during anticipatory waiting
when useful work could be otherwise performed. The
disk idle time for each I/O requestTidle is the total inter-
request thinktime for the correspondingsequential access
run.

3.3 Storage Device Model

Let the disk transfer rate beRtr. Also let the seek time
and rotational delay beTseek andTrotation respectively.
The disk resource consumption (in time) for processing
a request of lengthSrequest includes a single seek, rota-
tion, and the data transfer as well as the idle time:

Tdisk =
Srequest

Rtr

+ Tseek + Trotation + Tidle (11)

SinceSrequest is independent ofRtr, we have:

E(Tdisk) =
E(Srequest)

E(Rtr)
+E(Tseek)+E(Trotation)+E(Tidle)

(12)

Therefore:

throughput′′′

=
E(Srequest)

E(Tdisk)

=
E(Srequest)

E(Srequest)

E(Rtr)
+ E(Tseek) + E(Trotation) + E(Tidle)

(13)

Below we determine the average data transfer rate
E(Rtr), the average rotation delayE(Trotation), and the
average seek timeE(Tseek). The sequential transfer rate
depends on the data location (due to zoning on modern
disks). With the knowledge of the data span on the disk
and the histogram of data transfer rate at each disk loca-
tion, we can then determine the average data transfer rate.
We consider the average rotational delay as the mean ro-
tational time between two random track locations (i.e.,
the time it takes the disk to spin half a revolution).

Earlier studies [25, 28] have discovered that the seek
time depends on the seek distanceDseek (distance to be
traveled by the disk head) in the following way:

Tseek =

8

>

>

<

>

>

:

0, if Dseek = 0;

a + b
q

Dseek

Ddisk
, if 0 <

Dseek

Ddisk
≤ e;

c + d · Dseek

Ddisk
, if e <

Dseek

Ddisk
≤ 1.

(14)

whereDdisk is the total disk size.a, b, c, d, e are disk-
specific parameters anda + b

√
e ≈ c + d · e.

Combining the seek distance distribution in Equa-
tion (7) and the above Equation (14), we have the fol-
lowing cumulative probability distribution for the seek
time:

Pr[Tseek ≥ x] =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1, if x ≤ a;
„

1 − (x−a
b

)2

δ

«γ

, if a < x ≤ a + b
√

e;
„

1 − (x−c
d

)

δ

«γ

, if c + d · e < x ≤ c + d · δ;

0, if c + d · δ < x.

(15)

Therefore, the expected average seek time is:

E(Tseek)

=

Z a

0
Pr[Tseek ≥ x]dx +

Z a+b·
√

e

a

Pr[Tseek ≥ x]dx

+

Z c+d·δ

c+d·e
Pr[Tseek ≥ x]dx

= a +

Z a+b
√

e

a

1 −
(x−a

b
)2

δ

!γ

dx +

Z c+d·δ

c+d·e

1 −
(x−c

d
)

δ

!γ

dx

= a + b ·
Z

√
e

0

„

1 − x2

δ

«γ

dx + d ·
Z δ

e

“

1 − x

δ

”γ
dx

= a + b
√

e ·

γ
X

i=0

`γ
i

´

2i + 1
· (− e

δ
)i

!

+
d · δ
γ + 1

· (1 − e

δ
)γ+1

where
“γ

i

”

indicates the binomial coefficient.

(16)

Disk drives are usually equipped with limited amount
of cache. Due to its small size, its main usage is disk
track prefetching while its caching effects are negligi-
ble for data-intensive applications with large working-
set sizes. We do not consider such caching effects in our
model.

3.4 Symbol Definitions

For clarity, we list the definitions for all symbols used
in the previous subsections (Table 1).

3.5 Model Interfaces

We summarize the interfaces to our performance
model, which include the workload characteristics, op-
erating system configuration, and storage device proper-
ties.

• Table 2 lists the attributes of workload character-
istics passed into our model. The table also lists
the OS component in our performance model that is
most concerned with each workload attribute.
• The OS configuration consists of the I/O prefetch-

ing depth and whether to employ the anticipatory
I/O scheduler or the classic elevator scheduler.
• The storage device properties include the disk size,

rotational speed, seek time model parameters of
Equation (14), and the histogram of data transfer
rate at each disk location.

Symbol Definition

Sstream, S′
stream original and transformed sequential access stream lengths

Srun the sequential access run length
Sprefetch I/O prefetching depth
Nprefetch the number of I/O prefetching requests for accessing a stream
Srequest the I/O request size

γ the number of concurrent request executions in the server
Dseek, Ddisk the seek distance and the total disk size

δ the proportion of the dataset span to the total disk size
Tseek, Trotation, Tidle, Tdisk the disk seek, rotation, idle, and total usage time

Rtr the disk data transfer rate
a, b, c, d, e disk-specific parameters concerning the disk seek time

Table 1:Definition of symbols used in Section 3.

Workload attribute Unit Concerned OS component

server concurrency a number I/O scheduling (Section 3.2)
data span on storage medium ratio to the disk size I/O scheduling (Section 3.2)

lengths of sequential access streams a histogram I/O prefetching (Section 3.1)
whether each stream access whole file true or false I/O prefetching (Section 3.1)
average sequential access run length unit of data size anticipatory I/O scheduling (Section 3.2.2)

average application thinktime unit of time anticipatory I/O scheduling (Section 3.2.2)

Table 2:Attributes of workload characteristics. We also list the OScomponent in our performance model that is most concerned
with each workload attribute.

4 Model-driven Performance Debugging

Based on the whole-system performance model for
I/O-intensive online servers, this section describes our
approach to acquire a representative set of anomalous
workload and configuration settings. We also present
techniques to cluster anomalous settings into groups
likely attributed to individual bugs. We then charac-
terize each of them with correlated system component
and workload conditions. Although certain low-level
techniques in our approach are specifically designed for
our target system and workloads, we believe the general
framework of our approach can also be used for perfor-
mance debugging of other large software systems.

4.1 Anomaly Sampling

Performance anomalies (manifested by deviations of
measurement results from the model-predicted perfor-
mance) occur for several reasons. In addition to per-
formance bugs in the implementation, measurement er-
rors and model inaccuracies can also cause performance
anomalies. Aside from significant modeling errors,
anomalies caused by these other factors are usually small
in magnitude. We screen out these factors by only
counting the relatively large performance anomalies. Al-
though this screening may also overlook some perfor-
mance bugs, those that cause significant performance
degradations would not be affected.

Performance anomalies may occur at many different
workload conditions and system configurations. We con-

sider each occurrence under one setting as a single point
in the multi-dimensional space where each workload
condition and system configuration parameter is repre-
sented by a dimension. For the rest of this paper, we
call this multi-dimensional space simply as theparame-
ter space. Our anomaly sampling proceeds in the follow-
ing two steps. First, we choose a number of (n) sample
settings from the parameter space in a uniformly random
fashion. We then compare measured system performance
with model prediction under these settings. Anomalous
settings are those at which measured performance trails
model prediction by at least a certain threshold.

We define theinfliction zoneof each performance bug
as the union of settings in the parameter space at which
the bug would inflict significant performance losses. By
examining a uniformly random set of sample settings,
our anomaly sampling approach can achieve the fol-
lowing property associated with false negatives (missing
some bugs). For a bug whose infliction zone isp pro-
portion (0 < p ≤ 1) of the total parameter space, the
probability for at least one of ourn random samples falls
into the bug’s infliction zone is1 − (1 − p)n. With a
reasonably largen, it is unlikely for our anomaly sam-
pling to miss a performance bug that takes effects under
a non-trivial set of workload conditions and system con-
figurations.

We now describe the parameter space for our target
workload and system. We first explore the dimensions
representing workload properties and we will examine
the system configuration dimensions next.

Workload properties The inclusion of each workload
property in the parameter space allows the characteriza-
tion of its relationship with performance bugs in subse-
quent analysis. However, considering too many work-
load properties may render the subsequent analysis in-
tractable. According to our performance model in Sec-
tion 3, we select workload properties from those that
have large effects on system performance. For each
workload property, we determine several representative
parameter settings for possible sampling.

• Server concurrency: 1, 2, 4, 8, 16, 32, 64, 128, 256.
• Average length of sequential access streams:

64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 2 MB,
4 MB.
• Whether each stream access whole file: true or false.
• Average length of sequential access runs: 16 KB,

32 KB, 64 KB, · · · , up to the average length of se-
quential access streams.
• Average application thinktime per megabyte of data

access: 1 ms, 2 ms, 4 ms, 8 ms.

For the purpose of real system measurement, we design
an adjustable micro-benchmark that can exhibit any com-
bination of workload parameter settings.

System configurations The inclusion of system con-
figurations in the parameter space allows the character-
ization of their relationships with performance bugs in
subsequent analysis. In particular, the strong correlation
between a performance bug and the activation of a sys-
tem component indicates the likelihood that the bug is
within the implementation of the said component. As
indicated in our performance model, the system perfor-
mance is mainly affected by three I/O system compo-
nents: prefetching, the elevator I/O scheduler and the an-
ticipatory I/O scheduler.

For each system component that is considered for de-
bugging, we must include system configurations where
the component is not activated. The two I/O schedulers
are natural alternatives to each other. We augment the
operating system to add an option to bypass the prefetch-
ing code. We do so by ignoring the readahead heuris-
tics and issuing I/O requests only when data is syn-
chronously demanded by the application. Since our per-
formance model does not consider OS caching, we also
add additional code in the operating system to disable
the caching. We do so by simply overlooking the cached
pages during I/O. Our changes are only a few hundred
lines in the Linux 2.6.10 kernel.

Below are the specific dimensions in our parameter
space that represent system configurations:

• Prefetching: enabled or disabled.
• I/O scheduling: elevator or anticipatory.

Our performance model in Section 3 can predict sys-
tem performance at different prefetching sizes. However,
varying the prefetching size is not useful for our purpose
of performance debugging. We use the default maximum
prefetching size (128 KB for Linux 2.6.10) in our study.

4.2 Anomaly Clustering and Characterization

Given a set of anomalous workload condition and sys-
tem configuration settings, it is still hard to derive useful
debugging information without a succinct characteriza-
tion on the anomalous settings. Further, the system may
contain multiple independent performance bugs and the
aggregate characteristics of several bugs may be too con-
fusing to be useful. This section presents an algorithm to
cluster anomalous settings into groups likely attributed
to individual bugs and characterize each cluster to guide
performance debugging. At a high level, the anomaly
sampling described in Section 4.1 precedes the clustering
and characterization, which are then followed by the fi-
nal human debugging. Ideally, each such action sequence
can discover one performance bug and multiple bugs can
be identified by iterating this action sequence multiple
times.

It is quite common for infliction zones of multiple bugs
to cross-intersect with each other. In other words, several
bugs might inflict performance losses simultaneously at
a single workload condition and system configuration.
Classical clustering algorithms such as Expectation Max-
imization (EM) [10] and K-means [19] typically assume
disjoint (or slightly overlapped) clusters and spherical
Gaussian distribution for points in each cluster. There-
fore they cannot be directly used to solve our problem.

To make our clustering problem more tractable, we
assume that the infliction zone of each performance
bug takes a hyper-rectangle-like shape in the param-
eter space. This means that if parameter settings
(a1, a2, ..., ak) and (b1, b2, ..., bk) in the k-dimensional
parameter space are inflicted by a bug, then any parame-
ter setting(x1, x2, ..., xk) with



















a1 ≤ x1 ≤ b1

a2 ≤ x2 ≤ b2

· · · · · ·
ak ≤ xk ≤ bk

(17)

also likely falls into the bug’s infliction zone. For each
dimensioni that has no ordering among its value set-
tings (e.g., a boolean or categorical parameter), the cor-
responding element in Condition (17) should be instead
“xi = ai or xi = bi”.

A bug’s infliction zone takes a hyper-rectangle-like
shape if it has a range of triggering settings on each
parameter (workload property or system configuration)

and the bug’s performance effect is strongly correlated
with the condition that all parameters fall into respec-
tive triggering ranges. When this assumption does not
hold for a bug (i.e., its infliction zone does not follow a
hyper-rectangle-like shape), our algorithm described be-
low would identify a maximum hyper-rectangle encap-
sulated within the bug’s infliction zone. This might still
provide some useful bug characterization for subsequent
human debugging.

To the best of our knowledge, the only known cluster-
ing algorithm that handles intersected hyper-rectangles
is due to Pelleg and Moore [21]. However, their algo-
rithm requires hyper-rectangles to havesoft boundaries
with Gaussian distributions and hence is not directly ap-
plicable to our case, where hyper-rectangles could have
infinitely steeply diminishing borders.

We describe our algorithm that identifies and charac-
terizes one dominant cluster from a set of anomalous
settings. More specifically, our algorithm attempts to
identify a hyper-rectangle in the parameter space that ex-
plores trade-off between two properties: 1) Most of the
sample settings within the hyper-rectangle are anoma-
lous settings; 2) The hyper-rectangle contains as many
anomalous settings as possible. In our algorithm, prop-
erty 1 is ensured by keeping the ratio of# of anomalies

of samples

in the hyper-rectangle above a certain pre-defined thresh-
old. Property 2 is addressed by greedily expanding the
current hyper-rectangle in a way to maximize the num-
ber of anomalous settings contained in the expanded new
hyper-rectangle. Algorithm 4.1 illustrates our method to
discover a hyper-rectangle that tightly bounds the cluster
of anomalous settings related to a dominant bug.

After the hyper-rectangle clustering, we characterize
each cluster by simply projecting the hyper-rectangle
onto each dimension of the parameter space. For each
dimension (a workload property or a system configura-
tion), we include the projected parameter value range
into the characterization. For those dimensions at which
the projections cover all possible parameter values, we
consider them uncorrelated to the cluster and we do not
include them in the cluster characterization.

The computation complexity of our algorithm is
O(m3n) since the algorithm has three nested loops with
at mostm iterations for each. In the innermost loop,
the numbers of samples and anomalies within a hyper-
rectangle are computed by brute-force checking of all
n sample settings (anO(n) complexity). Using pre-
constructed orthogonal range trees [18], the complexity
of the innermost loop can be improved toO((log n)d +
A), whered is the dimensionality of the parameter space
andA is the answer size. We use brute-force counting in
our current implementation due to its simplicity and sat-
isfactory performance on our dataset (no more than 1000
sample settings and less than 200 anomalies).

Algorithm 4.1: CLUSTER(n samples, m anomalies, ǫ)

Input: n sample settings.
Input: m anomalous settings among the samples.
Input: 0 < ǫ ≤ 1, the threshold forr(H).
Returns: Hmax, a hyper-rectangle in the parameter
space.

Hmax ← nil

for eachx out ofm anomalous settings

do























































































































H ← the min-bounding hyper-rectangle forx

while H was just expanded

do







































































ytmp ← nil

ctmp ← 0

for eachanomalous settingy outsideH

do















if [r(M(H, y)) ≥ ǫ

and c(M(H, y)) > ctmp]

then
{

ytmp ← y

ctmp ← c(M(H, y))

if [ytmp 6= nil]
then H ←M(H, ytmp)

if [c(H) > c(Hmax)]
then Hmax ← H

return (Hmax)

/* r(H) denotes the ratio of# of anomalies
of samples

in the
hyper-rectangleH .
c(H) denotes the number of anomalies inH .
M(H, y) denotes the minimum-bounding hyper-
rectangle that contains the hyper-rectangleH and the
pointy. */

5 Debugging Results

We describe our performance debugging of the
Linux 2.6.10 kernel (released in December 2004) when
supporting I/O-intensive online servers. We repeatedly
perform anomaly sampling, clustering, characterization,
and human debugging. After each round, we acquire an
anomaly cluster characterization that corresponds to one
likely bug. The characterization typically contains corre-
lated system component and workload conditions, which
hints at where and how to look for the bug. The human
debugger has knowledge on the general structure of the
OS source code and is familiar with a kernel tracing tool
(LTT [37]). After each bug fix, we use the corrected ker-
nel for the next round of anomaly sampling, clustering,
characterization, and human debugging.

0 0.2 0.4 0.6 0.8 1
0

14

28

42

56

70

Starting transfer location or seek distance (in proportion to disk size)

T
ra

ns
fe

r
ra

te
 (

in
 M

B
/s

ec
)

0

2

4

6

8

10

S
ee

k
tim

e
(in

 m
ill

is
ec

on
d)

sequential transfer rate
seek time
seek time fitting in our model

Figure 4: Data transfer rate and seek time curve for the disk
drive. We also show the seek time fitting used in Equation (14)
of our performance model.

Our measurement uses a server equipped with dual
2.0 GHz Xeon processors, 2 GB memory, and an IBM
10 KRPM SCSI drive (model ”DTN036C1UCDY10”).
We measure the disk drive properties as input to our per-
formance model (shown in Figure 4). The Equation (14)
parameters for this disk isa=1.0546ms, b=6.9555ms,
c=2.7539ms, d=6.8867ms, ande=0.1171. We choose
400 random workload and system configuration settings
in the anomaly sampling. The anomaly threshold is set at
10% (i.e., those settings at which measured performance
trails model prediction by at least 10% are considered as
anomalous settings). The clustering threshold (ǫ) in Al-
gorithm 4.1 is set at 90%.

We describe our results below and we also report the
debugging time at the end of this section. The first
anomaly cluster characterization is:

Workload property
Concurrency: 128 and above
Stream length: 256KB and above

System configuration
Prefetching: enabled

This characterization shows that the corresponding bug
concerns the prefetching implementation and it inflicts
performance losses for high concurrency workloads with
moderately long sequential access streams. Based on
this information, our subsequent tracing and analysis dis-
cover the following performance bug. The kernel checks
for disk congestion when each I/O prefetching is initi-
ated. If the number of pending requests in the disk driver
queue exceeds a certain threshold (slightly below 128 in
Linux 2.6.10), the prefetching is canceled. The intuition
for this treatment is that asynchronous read-aheadshould
be disabled when the I/O system is busy. However, the
prefetching operations may include some data that is syn-
chronously demanded by the application. By canceling
these operations, it causes confusion at upper-level I/O
code and results in inefficient single-page makeup I/Os

for the needed data. In order to fix this problem, the cor-
rected kernel only cancels prefetching requests that do
not contain any synchronously demanded data when disk
congestion occurs. We call thisbug fix #1.

The second anomaly cluster characterization is:

Workload property
Concurrency: 8 and above
Stream length: 256KB and above
Run length: 256KB and above

System configuration
I/O scheduling: anticipatory

This characterization concerns the anticipatory I/O
scheduler. It involves workloads at moderately high con-
currency with stream and run lengths larger than the
maximum prefetching size (128 KB). Our subsequent
investigation discovers the following performance bug.
The current implementation of the anticipatory scheduler
stops an ongoing anticipation if there exists a pending I/O
request with shorter seek distance (compared with the av-
erage seek distance of the anticipating process). Due to a
significant seek initiation cost on modern disks (as shown
in Figure 4), the seek distance is not an accurate indi-
cation of the seek time cost. For example, the average
cost of a 0-distance seek and a2x-distance seek is much
less than anx-distance seek. As the result, the current
implementation tends to stop the anticipation when the
benefit of continued anticipation actually exceeds that of
breaking it. We solve this problem by using estimated
seek time (instead of the seek distance) in the anticipa-
tion cost/benefit analysis. We call thisbug fix #2.

The third anomaly cluster characterization is:

Workload property
Concurrency: 2

System configuration
I/O scheduling: elevator

This characterization concerns the elevator scheduler
(also called the deadline scheduler in Linux 2.6.10) and
the corresponding bug inflicts performance losses at the
concurrency of 2. Our tracing and analysis show that a
reset function is called frequently at very low concur-
rency. Possibly due to an overly-simplified implemen-
tation, the kernel always searches from block address 0
for the next scheduled request after the reset. We fix it
by searching from the last I/O location according to the
elevator scheduling algorithm. We call thisbug fix #3.

The fourth anomaly cluster characterization is:

Workload property
Concurrency: 2 and above
Stream length: 256KB and above
Run length: 256KB

System configuration
I/O scheduling: anticipatory

This characterization concerns the anticipatory I/O
scheduler for non-serial concurrent workloads. Our sub-
sequent investigation uncovers the following problem.
Large I/O requests (including maximum-sized prefetch-
ing requests) from the file system are often split into
smaller pieces before being forwarded to the disk drive.
The completion of each one of these pieces will trig-
ger an I/O interrupt. The original anticipatory scheduler
would start the anticipation timer right after the first such
interrupt, which often causes premature timeout. We cor-
rect the problem by starting the anticipation timer only
after all pieces of a file system I/O request have com-
pleted. We call thisbug fix #4.

We show results on the effects of our bug fixes. Fig-
ure 5 shows the top 10% model/measurement errors of
our anomaly sampling for the original Linux 2.6.10 ker-
nel and after the accumulative bug fixes. The error is

defined as “1 − measured throughput
model-predicted throughput”. Results

show that performance anomalies steadily decrease af-
ter each bug fix and no anomaly with 14% or larger er-
ror exists after all four bugs are fixed. Figure 6 illus-
trates all-sample comparison between model prediction
and measured performance. Figure 6(A) shows results
for the original Linux 2.6.10 where the system performs
significantly worse than model prediction at many pa-
rameter settings. Figure 6(B) shows the results when all
four bugs are fixed where the system performs close to
model prediction at all parameter settings.

Debugging time We provide statistics on the debug-
ging time. For each bug fix, time is spent on anomaly
sampling, clustering and characterization, and final hu-
man debugging.

• The primary time cost for anomaly sampling is on
the system measurement for all sample workload
condition and system configuration settings. The
measurement of each sample setting took around
6 minutes and the total 400 sample measurements
took around two days using one test server. More
test servers would speed up this process proportion-
ally.
• Due to the relative small sample size, our cluster-

ing and characterization algorithm took less than a
minute to complete.
• The final human debugging took about one or two

days for each bug fix.

6 Evaluation with Real Workloads

We experiment with real server workloads to demon-
strate the performance benefits of our bug fixes. All mea-
surements are conducted on servers each equipped with

0%

20%

40%

60%

80%

100%

Sample parameter settings ranked on errors

P
er

fo
rm

an
ce

 e
rr

or

Original Linux 2.6.10
#1 bug fix
#1, #2 fixes
#1, #2, #3 fixes
#1, #2, #3, #4 fixes

Figure 5: Top 10% model/measurement errors. Each unit
on the X-axis represents a sampled parameter setting in our
anomaly sampling.

dual 2.0 GHz Xeon processors, 2 GB memory, and an
IBM 10 KRPM SCSI drive (as characterized in Figure 4).
Each experiment involves a server and a load generation
client. The client can adjust the number of simultaneous
requests to control the server concurrency level.

6.1 Workload Descriptions

We evaluate four server workloads in our study:

• SPECweb99:We include the SPECweb99 bench-
mark [30] running on the Apache 2.0.44 Web server.
This workload contains 4 classes of files with sizes
at 1 KB, 10 KB, 100 KB, and 1,000 KB respectively.
During each run, the four classes of files are ac-
cessed according to a distribution that favors small
files. Within each class, a Zipf distribution with pa-
rameterα = 1.0 is used to access individual files.

• Media clips: Web workloads such as SPECweb99
contain mostly small file accesses. In order to ex-
amine the effects of relatively large sequential ac-
cess streams, we use a Web workload containing a
set of media clips, following the file size and access
distribution of the video/audio clips portion of the
1998 World Cup workload [3]. About 67% (in total
size) of files in the workload are large video clips,
while the rest are small audio clips. The file sizes of
both small and large clips follow Lognormal distri-
butions, with average sizes of 20 KB and 1,464 KB
respectively. During the tests, individual media files
are chosen as client requests in a uniformly random
fashion.

• Index searching:We acquired a prototype of the
index searching server and a dataset from the Web
search engine Ask Jeeves [4]. The dataset contains
the search index for 12.6 million Web pages. It in-
cludes a mapping file that maps MD5-encoded key-
words to proper locations in the search index. For

0

5

10

15

20

25

30

35

S
er

ve
r

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

Sample parameter settings ranked on model−predicted performance

(A) Original Linux 2.6.10

Model prediction
Measured performance

0

5

10

15

20

25

30

35

S
er

ve
r

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

yt
es

/s
ec

)

Sample parameter settings ranked on model−predicted performance

(B) After four bug fixes

Model prediction
Measured performance

Figure 6: All-sample comparison between model prediction and measured performance. Each unit on the X-axis represents a
sampled parameter setting in our anomaly sampling.

Workload Data size Data popularity Whole file access Mean stream len. Runs/stream Thinktime/MB

SPECweb99 22.4 GB Zipf yes 67.2 KB 1.00 1.11 ms
Media clips 27.2 GB Uniformly random yes 1213.3 KB 1.01 1.78 ms
Index searching 18.5 GB Trace-driven no 267.2 KB 1.75 0.22 ms
TPC-C 8.8 GB Uniformly random no 43.8 KB 1.00 11.69 ms

Table 3:Characteristics of four server workloads used in our evaluation.

each keyword in an input query, a binary search
is first performed on the mapping file and then the
search index is accessed following a sequential ac-
cess pattern. Multiple prefetching streams on the
search index are accessed for each multi-keyword
query. The search query words in our test workload
are based on a one-week trace recorded at the Ask
Jeeves site in early 2002.

• TPC-C database benchmark:We include a lo-
cal implementation of the TPC-C online transac-
tion processing benchmark [32] in our evaluation.
TPC-C simulates a population of terminal opera-
tors executing Order-Entry transactions against a
database. Some of the TPC-C transactions do not
consume much I/O resource. We use a workload
that contains only the “new order” transactions,
which are the most I/O-intensive among five types
of TPC-C transactions. In our experiments, the
TPC-C benchmark runs on the MySQL 5.0.2-alpha
database with a dataset of 8.8 GB.

To better understand these workloads, we extract their
characteristics through profiling. During profiling runs,
we intercept relevant I/O system calls in the OS kernel,
including open, close, read, write, andseek. We
extract desired application characteristics after analyz-
ing the system call traces collected during profiling runs.
However, system call interception does not work well for
memory mapped I/O used by the TPC-C database. In
this case, we intercept device driver-level I/O traces and
use them to infer the data access pattern of the work-
load. Table 3 lists some characteristics of the four server

workloads. The stream statistics for TPC-C are for read
streams only. Among the four workloads, we observe
that media clips has long sequential access streams while
SPECweb99 and TPC-C have relatively short streams.
We also observe that the three workloads except the in-
dex searching have about one run per stream, which in-
dicates that each request handler does not perform inter-
leaving I/O when accessing a sequential stream.

6.2 Performance Results

Figure 7 illustrates the throughput of the four server
workloads. For each workload, we show measured per-
formance at different concurrency levels under the origi-
nal Linux kernel and after various performance bug fixes.
The elevator I/O scheduler is employed for SPECweb99
and media clips while the anticipatory I/O scheduler is
used for index searching and TPC-C. Therefore bug fix
#3 is only meaningful for SPECweb99 and media clips
while fixes #2 and #4 are only useful for index search-
ing and TPC-C. The I/O throughput results are those
observed at the application level. They are acquired
by instrumenting the server applications with statistics-
collection code. We were not able to make such instru-
mentation for the MySQL database used by TPC-C so
we only show the request throughput for this workload.

Suggested by the characterization of bug #1, Fig-
ure 7(B) and (C) confirm substantial performance im-
provement (around five-fold) of the bug fix at high ex-
ecution concurrencies. We notice that its effect is not as
obvious for SPECweb99 and TPC-C. This can also be
explained by our characterization of bug #1 since these

1 2 4 8 16 32 64 128 256
0

2

4

6

8

10

12

14

Number of concurrent request handlers

S
er

ve
r

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(A) SPECweb99

1 2 4 8 16 32 64 128 256
0

5

10

15

20

25

30

Number of concurrent request handlers

S
er

ve
r

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(B) Media clips

1 2 4 8 16 32 64 128 256
0

2

4

6

8

10

12

14

16

Number of concurrent request handlers

S
er

ve
r

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(C) Index searching

1 2 4 8 16 32 64 128 256
0

2

4

6

8

10

12

14

16

Number of concurrent request handlers

S
er

ve
r

re
qu

es
t t

hr
ou

gh
pu

t (
in

 r
eq

s/
se

c)

(D) TPC−C

#1, #3 bug fixes
#1 bug fix
Original Linux 2.6.10

#1, #3 bug fixes
#1 bug fix
Original Linux 2.6.10

#1, #2, #4 bug fixes
#1, #2 bug fixes
#1 bug fix
Original Linux 2.6.10

#1, #2, #4 bug fixes
#1, #2 bug fixes
#1 bug fix
Original Linux 2.6.10

Figure 7: Throughput of four server workloads under various kernels.The elevator I/O scheduler is employed for SPECweb99
and media clips while the anticipatory I/O scheduler is usedfor index searching and TPC-C.

workloads do not have long enough sequential access
streams. The other bug fixes provide moderate perfor-
mance enhancement for workloads that they affect. The
average improvement (over all affected workload condi-
tions) is 6%, 13%, and 4% for bug fix #2, #3, and #4
respectively.

Aggregating the effects of all bug fixes, the average
improvement (over all tested concurrencies) of the cor-
rected kernel over the original kernel is 6%, 32%, 39%,
and 16% for the four server workloads respectively.

7 Related Work

Performance debugging. Earlier studies have pro-
posed techniques such as program instrumentation (e.g.,
MemSpy [20] and Mtool [13]), complete system simu-
lation (e.g., SimOS [24]), performance assertion check-
ing [22], and detailed overhead categorization [9] to un-
derstand performance problems in computer systems and
applications. These techniques focus on offering fine-
grained examination of the target system/application in
specific workload settings. Many of them are too ex-
pensive to be used for exploring wide ranges of work-
load conditions and system configurations. In compari-

son, our approach trades off detailed execution statistics
at specific settings for comprehensive characterization of
performance anomalies over wide ranges of workloads.

Recent performance debugging work employs statis-
tical analysis of online system traces [1, 7] to iden-
tify faulty components in complex systems. Such tech-
niques are limited to reacting to anomalies under past
and present operational environments and they cannot be
used to debug a system before such operational condi-
tions are known. Further, our approach can provide the
additional information of correlated workload conditions
with each potential performance bug, which is helpful to
the debugging process.

Identifying non-performance bugs in complex sys-
tems. Several recent works investigated techniques to
discover non-performance bugs in large software sys-
tems. Engleret al. detect potential bugs by identify-
ing anomalous code that deviates from the common pat-
tern [11]. Wanget al.discover erroneous system config-
uration settings by matching with a set of known correct
configurations [34]. Liet al. employ data mining tech-
niques to identify copy-paste and related bugs in oper-
ating system code [17]. However, performance-oriented
debugging can be more challenging because many per-
formance bugs are strongly connected with the code se-

mantics and they often do not follow certain patterns.
Further, performance bugs may not cause obvious mis-
behaviors such as incorrect states or system crashes.
Without an understanding on the expected performance
(e.g., through the performance model that we built), it
may not even be easy to tell the existence of performance
anomalies in complex systems.

I/O system performance modeling. Our perfor-
mance debugging approach requires the construction of
a whole-system performance model for targeted I/O-
intensive server workloads. A large body of previous
studies have constructed various analytical and simula-
tion models to examine the performance of storage and
I/O systems, including those for disk drives [5, 16, 25,
28, 36], disk arrays [2, 8, 33], I/O scheduling algo-
rithms [23, 26, 35], and I/O prefetching [6, 29, 31]. How-
ever, performance models for individual system compo-
nents do not capture the interplay between different com-
ponents. This paper presents a whole-system throughput
model that considers the combined impact of the applica-
tion characteristics and several relevant operating system
components on the overall server performance.

Using system-level models to predict the performance
of I/O-intensive workloads is not new. Ganger and Patt
argued that the I/O subsystem model must consider the
criticality of I/O requests, which is determined by ap-
plication and OS behaviors [12]. Shriveret al. studied
I/O system performance using a combined disk and OS
prefetching model [29]. However, these models do not
consider recently proposed I/O system features. In par-
ticular, we are not aware of any prior I/O system model-
ing work that considers the anticipatory I/O scheduling,
which can significantly affect the performance of our tar-
geted workloads.

8 Conclusion

This paper presents a new performance debugging
approach for complex software systems using model-
driven anomaly characterization. In our approach, we
first construct a whole-system performance model ac-
cording to the design protocol/algorithms of the target
system. We then acquire a representative set of anoma-
lous workload settings by comparing measured system
performance with model prediction under a number of
sample settings. We statistically cluster the anomalous
settings into groups likely attributed to individual bugs
and characterize them with specific system components
and workload conditions. Compared with previous per-
formance debugging techniques, the key advantage of
our approach is that we can comprehensively character-
ize performance anomalies of a complex system under
wide ranges of workload conditions and system configu-
rations.

We employ our approach to quickly identify four
performance bugs in the I/O system of the recent
Linux 2.6.10 kernel. Our anomaly characterization pro-
vides hints on the likely system component each perfor-
mance bug may be located at and workload conditions
for the bug to inflict significant performance losses. Ex-
perimental results demonstrate substantial performance
benefits of our bug fixes on four real server workloads.

Acknowledgments We benefited greatly from Athana-
sios Papathanasiou’s expertise in Linux kernel develop-
ment and particularly his help in identifying the cause for
the first bug described in Section 5. We would also like
to thank Christopher Stewart, Yuan Sun, and the anony-
mous referees for helpful discussions and valuable com-
ments during the course of this work.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynoll
ds, and A. Muthitacharoen. Performance Debugging for
Distributed Systems of Black Boxes. InProc. of the 19th
ACM SOSP, pages 74–89, Bolton Landing, NY, October
2003.

[2] E. Anderson, R. Swaminathan, A. Veitch, G. A. Alvarez,
and J. Wilkes. Selecting RAID Levels for Disk Arrays. In
Proc. of the 1st USENIX Conf. on File and Storage Tech-
nologies, pages 189–201, Monterey, CA, January 2002.

[3] M. Arlitt and T. Jin. Workload Characterization of the
1998 World Cup Web Site. Technical Report HPL-1999-
35, HP Laboratories Palo Alto, 1999.

[4] Ask Jeeves Search. http://www.ask.com.

[5] R. Barve, E. Shriver, P. B. Gibbons, B. K. Hillyer, Y. Ma-
tias, and J. S. Vitter. Modeling and Optimizing I/O
Throughput of Multiple Disks on A Bus. InProc. of
the ACM SIGMETRICS, pages 83–92, Atlanta, GA, June
1999.

[6] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A Study of
Integrated Prefetching and Caching Strategies. InProc. of
the ACM SIGMETRICS, pages 188–197, Ottawa, Canada,
June 1995.

[7] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem Determination in Large, Dynamic Sys-
tems. InProc. of Int’l Conf. on Dependable Systems and
Networks, pages 595–604, Washington, DC, June 2002.

[8] P. M. Chen, G. A. Gibson, R. H. Katz, and D. A. Patter-
son. An Evaluation of Redundant Arrays of Disks using
an Amdahl 5890. InProc. of the ACM SIGMETRICS,
pages 74–85, Boulder, CO, May 1990.

[9] M. E. Crovella and T. J. LeBlanc. Parallel Performance
Prediction Using Lost Cycles Analysis. InProc. of Super-
Computing, pages 600–610, Washington, DC, November
1994.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
Likelihood from Incomplete Data Via the EM Algorithm.
Journal of the Royal Statistical Society, Series B, (1):1–
38, 1977.

[11] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as Deviant Behavior: A General Approach to Infer-
ring Errors in Systems Code. InProc. of the 18th ACM
SOSP, pages 57–72, Banff, Canada, October 2001.

[12] G. R. Ganger and Y. N. Patt. Using System-Level Mod-
els to Evaluate I/O Subsystem Designs.IEEE Trans. on
Computers, 47(6):667–678, June 1998.

[13] A. J. Goldberg and J. L. Hennessy. Mtool: An Inte-
grated System for Performance Debugging Shared Mem-
ory Multiprocessor Applications.IEEE Trans. on Parallel
and Distributed Systems, 4(1):28–40, January 1993.

[14] S. Iyer and P. Druschel. Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness
in Synchronous I/O. InProc. of the 18th ACM SOSP,
pages 117–130, Banff, Canada, October 2001.

[15] P. Jelenkovic and A. Radovanovic. The Persistent-
Access-Caching Algorithm. Technical Report EE-2004-
03-05, Dept. of Electrical Engineering, Columbia Univer-
sity, 2004.

[16] D. Kotz, S. B. Toh, and S. Radhakrishnan. A Detailed
Simulation Model of the HP 97560 Disk Drive. Techni-
cal Report PCS-TR94-220, Dept. of Computer Science,
Dartmouth College, July 1994.

[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A Tool
for Finding Copy-paste and Related Bugs in Operating
System Code. InProc. of the 6th USENIX OSDI, pages
289–302, San Francisco, CA, December 2004.

[18] G. S. Lueker. A Data Structure for Orthogonal Range
Queries. InProc. of the 19th IEEE Symp. on Foundations
of Computer Science, pages 28–34, 1978.

[19] J. B. MacQueen. Some Methods for Classification and
Analysis of Multivariate Observations. InProc. of the 5th
Berkeley Symp. on Mathematical Statistics and Probabil-
ity, pages 281–297, 1967.

[20] M. Martonosi, A. Gupta, and T. Anderson. MemSpy:
Analyzing Memory System Bottlenecks in Programs. In
Proc. of the ACM SIGMETRICS, pages 1–12, Newport,
RI, June 1992.

[21] D. Pelleg and A. Moore. Mixtures of Rectangles: Inter-
pretable Soft Clustering. InProc. of the 18th Int’l Conf.
on Machine Learning, pages 401–408, Berkshires, MA,
June 2001.

[22] S. E. Perl and W. E. Weihl. Performance Assertion
Checking. InProc. of the 14th ACM SOSP, pages 134–
145, Asheville, NC, December 1993.

[23] F. I. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Robust, Portable I/O Scheduling with the Disk
Mimic. In Proc. of the USENIX Annual Technical Conf.,
pages 297–310, San Antonio, TX, June 2003.

[24] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod.
Using the SimOS Machine Simulator to Study Complex
Computer Systems.ACM Trans. on Modeling and Com-
puter Simulation, 7(1):78–103, January 1997.

[25] C. Ruemmler and J. Wilkes. An Introduction to Disk
Drive Modeling. IEEE Computer, 27(3):17–28, March
1994.

[26] P. J. Shenoy and H. M. Vin. Cello: A Disk Scheduling
Framework for Next Generation Operating Systems. In
Proc. of the ACM SIGMETRICS, pages 44–55, Madison,
WI, June 1998.

[27] E. Shriver. Performance Modeling for Realistic Storage
Devices. PhD thesis, Dept of Computer Science, New
York University, 1997.

[28] E. Shriver, A. Merchant, and J. Wilkes. An Analytical
Behavior Model for Disk Drives with Readahead Caches
and Request Reordering. InProc. of the ACM SIGMET-
RICS, pages 182–192, Madison, WI, June 1998.

[29] E. Shriver, C. Small, and K. A. Smith. Why Does File
System Prefetching Work? InProc. of the USENIX An-
nual Technical Conf., pages 71–84, Monterey, CA, June
1999.

[30] SPECweb99 Benchmark. http://www.specbench.org
/osg/web99.

[31] A. Tomkins, R. H. Patterson, and G. A. Gibson. Informed
Multi-Process Prefetching and Caching. InProc. of the
ACM SIGMETRICS, pages 100–114, Seattle, WA, June
1997.

[32] Transaction Processing Performance Council.
TPC Benchmark C, Revision 5.4, April 2005.
http://www.tpc.org/tpcc/.

[33] M. Uysal, G. A. Alvarez, and A. Merchant. A Modular,
Analytical Throughput Model for Modern Disk Arrays.
In Proc. of the 9th MASCOTS, pages 183–192, Cincinnati,
OH, August 2001.

[34] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M.
Wang. Automatic Misconfiguration Troubleshooting with
PeerPressure. InProc. of the 6th USENIX OSDI, pages
245–258, San Francisco, CA, December 2004.

[35] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Schedul-
ing Algorithms for Modern Disk Drives. InProc. of the
ACM SIGMETRICS, pages 241–251, Santa Clara, CA,
May 1994.

[36] B. L. Worthington, G. R. Ganger, Y. N. Patt, and
J. Wilkes. On-Line Extraction of SCSI Disk Drive Param-
eters. InProc. of the ACM SIGMETRICS, pages 146–156,
Ottawa, Canada, June 1995.

[37] K. Yaghmour and M. R. Dagenais. Measuring and Char-
acterizing System Behavior Using Kernel-Level Event
Logging. InProc. of the USENIX Annual Technical Conf.,
San Diego, CA, June 2000.

