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Abstract— Existing random membership management algo-
rithms provide each node with a small, uniformly random
subset of global participants. However, many applications would
benefit more from non-uniform random member subsets. For
instance, non-uniform gossip algorithms can provide distance-
based propagation bounds and thus information can reach
nearby nodes sooner. In another example, Kleinberg shows that
networks with random long-links following distance-based non-
uniform distributions exhibit better routing performance than
those with uniformly randomized topologies.

In this paper, we propose a scalable non-uniform random
membership management algorithm, which provides each node
with a random membership subset with application-specified
probability distributions—e.g., with probability inversely pro-
portional to distances. Our algorithm is the first non-uniform
random membership management algorithm with proved conver-
gence and bounded convergence time. Moreover, our algorithm
does not put specific restrictions on the network topologies and
thus have wide applicability.

I. INTRODUCTION

A membership management algorithm, which provides each
node with run-time peer sampling service, is essential for many
peer-to-peer (p2p) network applications, such as gossip-based
broadcast algorithms [1], [2], distributed hash tables [3], [4],
dynamic load balancing [5], random sampling [6], and net-
work topology construction [7]. Full membership management
maintains the complete list of all network members at each
node. The storage and communication requirements of such
full membership management algorithms grow linearly with
the network size, which is prohibitive for large-scale appli-
cations. Motivated by this, a number of membership subset
management algorithms [6], [7], [8], [9] have been proposed
recently. The key common feature of these algorithms is that
each node maintains a small, dynamically changing, random
membership subset with uniform representation of network
members. The scalability is achieved in that per-node random
membership subsets grow much more slowly than the full
network. For many applications, making decisions based on
random membership subsets has comparable performance with
knowing the complete membership list.

These earlier studies focused on the maintenance of uniform
random membership subsets. However, non-uniform random
membership subsets are more desirable for some applications.
Examples include the following:
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• Gossips with distance-based propagation time bounds.
Gossip-based broadcast algorithms [1], [2] provide a
robust and scalable mechanism for distributed informa-
tion dissemination. In many network environments, new
information is more “interesting” to nodes that are nearby.
Kempe et al. [10] show that with a carefully chosen prob-
ability distribution, their non-uniform gossip algorithms
can provide distance-based propagation time bounds and
thus information can reach nearby nodes sooner. Their
algorithms assume the existence of a scalable mechanism
to identify random nodes with a given distance-based
probability distribution.

• Randomized distributed hash table topologies. Recently,
several randomized distributed hash table topologies [3],
[4] have been proposed to achieve good trade-offs be-
tween the space overhead and the lookup latency. These
algorithms have been motivated by Kleinberg’s result [11]
that by having O(1) non-uniform random links per node,
it is possible to route lookups with an average latency
of O(log2 n) hops by greedy algorithms. Non-uniform
random membership subsets are instrumental for easy
creation and maintenance of non-uniform random links
at each node.

• Dynamic load balancing. One of the key issues for
dynamic load balancing in p2p networks is to find
hotspots (highly overloaded nodes) and reassign their
loads to others. Random membership subsets with load-
based probability distributions (e.g., choose a node with
probability proportional to its load) are more likely to find
hotspots than uniform sampling used in current p2p load
balancing algorithms [5], especially when there is a small
number of very highly loaded nodes in the network—e.g.,
when the load distribution is power-law.

• Non-uniform random data sampling and collection. In
many applications such as resource discovery, network
failure detection, environmental data measurement and
military sensor networks, the importance of the collected
data is related to the distance between a data producer
and a data collector [12]. For instance, a nearby copy of a
requested resource item may be more favored in resource
discovery. As another example, an application may care
more about node or link failures in the neighborhood
than failures occurring far away. Non-uniform random
membership subsets can serve as the base set for sampling



nodes with non-uniform distributions.

A naive approach for constructing non-uniform random
membership subsets is to probabilistically select nodes from
uniform random subsets. However, the uniform random sub-
sets may not contain sufficient candidates for further proba-
bilistic selection. Part of the reason is that in order to achieve
scalability, uniform random subsets [6], [7], [8], [9] are usually
small, of a constant size or of size O(log n), where n is the
network size. For example, if a node’s desired non-uniform
membership subset specifies that it should only contain nodes
among its n

log n
closest neighbors and it attempts to choose

this subset from its uniform random membership subset with
size O(log n), then with probability (1 − 1

log n
)log n ≈ 1

e
for

large n’s, it will have none of the n
log n

closest neighbors in its
uniform random membership subset. This problem becomes
more severe for more skewed target distributions and for
smaller per-node uniform subsets.

Thus we view direct non-uniform random membership
management as necessary. We list a number of desired prop-
erties for a non-uniform random membership management
algorithm:

1) Scalability. The per-node storage and communication
overhead of non-uniform random membership manage-
ment algorithms should grow slowly with the network
size.

2) Customization. Non-uniform random membership man-
agement algorithms should be able to generate per-node
random subsets with application-specified non-uniform
probability distributions.

3) Correctness. It is desirable to have proved consistency
between the application-specified non-uniform probabil-
ity distribution and the probability distribution of the
random subsets generated by an algorithm.

4) Bounded convergence time. After network structure
changes, the random membership subsets should con-
verge quickly to adapt to the new network structure.
This property also indicates an algorithm’s resilience to
network failures.

5) Topology independence. Non-uniform random member-
ship management algorithms should not put specific
restrictions on applicable network topologies.

A. Overview of Our Results

In this paper, we propose a non-uniform random mem-
bership management algorithm with the desirable properties
described above. Our algorithm provides each node with a
random membership subset satisfying application specified
probability distributions (e.g., choose a node with probability
inversely proportional to its distance to the current node). In
our algorithm, global knowledge of network size or node ID
distribution is not necessary. The sizes of per-node random
membership subsets are independently decided by each node
and can be adjusted at runtime. The communication overhead
of our algorithm is moderate compared with the current
uniform random membership management algorithms [6], [7],

[8], [9]. The message complexity of our algorithm is Θ(n) for
each time step, where n is the network size.

In our algorithm, random membership subsets are gen-
erated by biased random walks. Guided by the Metropolis
algorithm [13], [14], our biased random walks can generate
random membership subsets with arbitrary probability dis-
tributions. Our algorithm does not put specific restrictions
on network topologies and it can be applied to all peer-to-
peer networks, such as rings, tori, random regular graphs and
power law graphs. For these topologies, we provide provable
upper bounds for the convergence time of our algorithm for
distance-based probability distributions. Our proof techniques
can be applied to other probability distributions and network
topologies. Along with asymptotic bounds, we also provide
simulation results to quantitatively assess the algorithm con-
vergence time at typical settings.

B. Related Work

To the best of our knowledge, the only direct approach for
choosing non-uniform random peers in p2p networks is due
to Manku et al. [3], [4]. Their approach is specifically de-
signed for supporting Chord [15]-like distributed hash tables,
and therefore it has limited applicability. In particular, this
approach only works with ring topologies and it relies on the
assumption that node IDs are evenly distributed in the network
address space.

A number of previous studies proposed scalable random
membership management algorithms with uniform represen-
tation of network members, such as Saxons [7], lpbcast [8],
and SCAMP [9]. They have low communication overhead for
large networks and they work for arbitrary network topologies.
Some [8], [9] also have analytical results on the membership
information propagation speed. However, it is not clear how
these algorithms can be adapted for supporting non-uniform
random membership management.

Kostić et al. proposed a random membership subset service
for tree-shaped network topologies [6]. It employs an epoch-
based gather-scatter algorithm to distribute membership infor-
mation with uniform randomness. However, this algorithm can
not be applied to more general mesh-like network structures.

King and Saia proposed a distributed algorithm which, with
high probability, always chooses a node uniformly at random
from the set of nodes in distributed hash tables [16]. However,
their algorithm only works for ring topologies.

C. Organization of the Paper

The remainder of this paper is organized as follows. In
Section II, we introduce the theoretical background of our
algorithm. Section III proposes our algorithm for generating
random membership subsets with distance-based probability
distributions. We prove the correctness of our algorithm, and
analyze the asymptotic bound for its convergence time over
several common peer-to-peer topologies. In section IV, we
present the simulation results for our random membership
subset algorithm. We conclude and identify open problems
in Section V.



II. BACKGROUND: RANDOM WALKS AND THE

METROPOLIS ALGORITHM

This section introduces the theoretical background of our
algorithm. Let G = (V,E) be an undirected connected graph.
A random walk on G starts at node v0, which is either fixed or
drawn from some initial distribution π0. If the random walk is
at node vt at time step t, then it moves to a neighbor vt+1 of
node vt at step t+1, chosen randomly with certain probability
distribution.

Let πt denote the distribution of node vt so that πt(i) =
Prob(vt = i), i ∈ V . Let P = (Pi,j), i, j ∈ V , denote the
transition matrix of the random walk—Pi,j is the probability
that the random walk moves from node i to node j in one
step. Pi,j = 0 if nodes i, j are not adjacent. The dynamics of
the random walk follows πt+1 = πtP = π0P

t+1.
The following theorem by Doeblin [17] gives sufficient

conditions for the convergence of random walks.
Theorem 1: If P is irreducible and aperiodic, then πt

converges to a unique stationary distribution π such that
πP = π independent of the initial distribution π0.

Here P is irreducible if and only if for any i, j, there exists
a t such that (P t)i,j > 0. P is aperiodic if and only if for any
i, j the greatest common divisor of the set {t : (P t)i,j > 0}
is 1. Intuitively irreducibility means that any two nodes are
mutually reachable by random walks. Aperiodicity means that
the graph G is non-bipartite. Aperiodicity can be achieved by
introducing self-loop transitions of some positive probability
on each node of the graph.

A. The Metropolis Algorithm

Given the guarantee on the convergence of self-loop en-
abled random walks on undirected connected graphs, the next
question is this: How to define the transition matrix P such
that the random walk will converge to the desired probability
distribution? The Metropolis algorithm was designed as a
standard approach to assign transition probabilities to Markov
chains so that they converge to any specified probability
distributions.

Theorem 2: [13], [14] Let G = (V,E) be an undirected
connected graph, and let π be the desired probability distribu-
tion. Let di denote the degree of node i. For each neighbor j

of node i, let

Pi,j =

{

1
2 · 1

di
if π(i)

di
≤ π(j)

dj
;

1
2 · 1

dj
· π(j)

π(i) if π(i)
di

>
π(j)
dj

.

and Pi,i = 1 −
∑

j∈ neighbors(i) Pi,j . Then π is the unique
converged stationary probability distribution of the random
walk with transition matrix P .

Theorem 2 can be proved by verifying πP = π. The
Metropolis algorithm only requires knowing the ratio π(j)

π(i) .
The normalization factor

∑

i π(i) is unnecessary. The laziness
factor 1

2 ensures that each node has a self-loop and thus P

is aperiodic. A random walk configured by the Metropolis
algorithm is time-reversible in the sense that ∀i, j, π(i)Pi,j =
π(j)Pj,i.

B. The Convergence Time of the Metropolis Algorithm

The Metropolis algorithm guarantees that an appropriately
configured random walk converges to the desired probability
distribution. The next question to ask is how quickly πt

converges to π.
Definition 1: The total variation difference between πt and

π is ‖πt, π‖ = 1
2 maxv0

∑

i |πt(i) − π(i)|.
The total variation difference measures the difference be-

tween two probability distributions. It is maximized over all
possible starting nodes v0 ∈ V . The total variation difference
is at most 1.

Definition 2: For ε > 0, the mixing time is defined as
τ(ε) = min{t : ∀t′ ≥ t, ‖πt′ , π‖ ≤ ε}.

The mixing time measures the time for πt to converge to π.
Diaconis and Stroock [18] proved the following mixing time
bound:

Theorem 3: Let πmin = mini π(i), then τ(ε) ≤
∆−1

P log((πminε)−1). Here ∆P is the eigengap of the tran-
sition matrix P .

It is known that P has |V | eigenvalues λ1, λ2, ..., λ|V | such
that 1 = λ1 > |λ2| ≥ ... ≥ |λ|V ||. The eigengap of P is
defined as ∆P = 1 − |λ2|, which provides a bound for the
mixing time. A larger eigengap means shorter convergence
time. However, for large-scale p2p network applications, the
sizes of transition matrices are so large that it is very dif-
ficult to compute exact eigenvalues and eigengaps. Several
approaches [18], [19], [20] have been proposed for establishing
bounds for eigengaps of transition matrices. In this paper, we
compute the eigengap bounds by using the canonical path
approach [19].

The main idea of the canonical path approach is this: slow
(exponential time) mixing is characterized by a bad (exponen-
tially small) cut in the graph, since it takes exponential time
for the probability flow to move from one side of the cut to the
other, to reach the equilibrium. Thus the minimum cut (max-
flow) in the probability transition graph provides a bound for
the mixing time.

Let π be the unique converged distribution. P is the transi-
tion matrix of the random walk. Let the edge capacity Q(e) =
π(x)Px,y = π(y)Py,x. For distinct nodes x, y in the graph
G = (V,E), a canonical path γxy refers to a path between x,
y. Γ, a family of canonical paths, includes exactly one path for
each pair of distinct nodes x, y: Γ = {γxy : x, y ∈ V, x 6= y}.
The congestion of Γ is defined as:

ρ(Γ) = max
e

1

Q(e)

∑

γxy3e

π(x)π(y).

Intuitively, the path γxy carries flow π(x)π(y). Q(e) rep-
resents the capacity of the edge e. A canonical path family
Γ represents a flow scheme for the pairs of distinct nodes
in the network. ρ(Γ) is the maximum flow/capacity ratio of
the canonical path family Γ. A canonical path family with
low congestion means that the graph lacks small cuts and the
random walks mix quickly.

Let ρ̄ = minΓ ρ(Γ)l(Γ), where l(Γ) is the maximum length
of a path in Γ. ρ̄ chooses the canonical path family with the



minimum congestion, which provides a lower bound for the
eigengap of the transition matrix P :

Theorem 4: [19] ∆P ≥ ρ̄−1.
The bound for the mixing time can be achieved by combin-

ing Theorem 3 and Theorem 4:
Theorem 5: [19] τ(ε) ≤ ρ̄ log((πminε)−1).
In summary, this approach aims to find a canonical path

family Γ with low congestion, which provides bounds for the
mixing time of the random walks.

III. NON-UNIFORM RANDOM MEMBERSHIP

MANAGEMENT

Our non-uniform random membership management algo-
rithm aims to provide each node in p2p networks with a
random membership subset satisfying application-specified
probability distributions. Let πi denote the desired probability
distribution for node i where πi(j) is the probability that a
uniformly chosen member from i’s membership subset is node
j. The basic framework of our algorithm is as follows:

Suppose each node i of the p2p network maintains a
membership subset with size ki, determined independently by
i based on the available network bandwidth and space. Node
i initiates ki independent random walks Ri,1, Ri,2, ..., Ri,ki

configured by the Metropolis algorithm such that the random
walks converge to πi. Whenever visited by a random walk
Ri,l, node j will contact node i such that node i updates
the lth member of i’s membership subset with j. After the
random walks converge, the probability that a uniformly
chosen member from node i’s membership subset is node j is
πi(j), which satisfies the desired distribution.

Intuitively speaking, a node constructs its membership sub-
set by sampling nodes with the desired distribution. If node i

has not been contacted for a long time with regard to a random
walk Ri,l, then it decides that Ri,l is lost and re-initiates
Ri,l. At any time, there are

∑

i∈V ki = Θ(|V |) in transit
random walk messages in the network, which is moderate
compared with the current uniform membership management
algorithms [6], [7], [8], [9].

The key point for the above framework is to ensure that
the random walks are configured correctly and have traveled
for large enough number of steps for convergence. We use the
Metropolis algorithm to configure our random walks such that
they converge to the desired distributions. The mixing time
(i.e., convergence time) of the configured random walks varies
with different network topologies and membership subset
distributions. Due to the hardness of eigenvalue computation,
few results have been achieved on bounding the mixing time
of non-uniform random walks. Thus it is non-trivial work to
analyze the mixing time of non-uniform random walks for spe-
cific network topologies and membership subset distributions.

In the remainder of this section, we present the imple-
mentation of the above algorithm framework for distance-
based probability distributions such as those in the contexts
of gossip-based broadcast algorithms [10] and randomized
distributed hash tables [4], [11]. We also give the analytical

results on the mixing time of our random walks in some
common p2p network topologies.

A. Random Membership Subsets with Distance-based Distri-
butions

The distance-based probability distributions as specified
in [4], [10], [11] require that node i chooses node j 6= i

with probability proportional to d(i, j)−α. In other words,
πi(j) ∝ d(i, j)−α or πi(j) = d(i,j)−α

∑

x6=i
d(i,x)−α

, where d(i, j)

can be defined as either the hop distance from i to j or the
Euclidean distance between them. Note that πi(i) = 0. The
constant α usually refers to the dimensionality of the network
topology [11], which is a small natural number.

Based on the Metropolis algorithm, a random walk initiated
from a node i ∈ V is defined as follows:

For each neighbor vu of the initiating node i, we have
Pi,vu

= 1
Deg(i) .

If the random walk is at node vt at time step t, then for
each neighbor vu of vt, moves to vu with probability Pvt,vu

,
where

Pvt,vu
=











0 if vu = i;
1
2 · 1

dt
if d(i,vt)

−α

dt
≤ d(i,vu)−α

du
;

1
2 · 1

du
· d(i,vu)−α

d(i,vt)−α if d(i,vt)
−α

dt
>

d(i,vu)−α

du
.

and Pvt,vt
= 1 −

∑

vu∈ neighbor(vt)
Pvt,vu

.
Here dx denotes the number of neighbors of node vx,

where the neighbors are counted by viewing each link as
bidirectional. The random walk views the graph as undirected
and is able to make backward steps across directed links. The
random walk is self-avoiding, i.e., never returns to i, since
πi(i) = 0.

Based on the above random walk, we present our basic
membership management protocol with the following compo-
nents:

• Node Joining. In most p2p network applications, a node i

joins the network by connecting to some initial network
neighbors. After the neighbors are determined, node i

initiates ki independent random walks Ri,1, Ri,2, ..., Ri,ki

as defined above, where ki is the size limit of node i’s
membership subset. Each random walk also has a TTL
threshold after which the random walk message expires.

• Membership Subset Maintenance. Whenever node j re-
ceives a random walk Ri,l initiated from node i, node
j sends its own identity to node i. Upon receiving j’s
identity referred by Ri,l, node i updates the lth member
of its membership subset with j.

• Node Departure. In our protocol, a departing node simply
leaves the network without doing anything. Its member-
ship in the subsets of other nodes will be purged out
eventually following our failure processing mechanism
described below.

• Failure Processing. A random walk may be lost due
to TTL expiration, link failure, node failure, or node
departure described above. If node i has not received any
membership information referred by Ri,l (a random walk



initiated from node i) for a long time, then node i decides
that Ri,l is lost and re-initiates Ri,l.

Theorem 6: [Correctness] For each node i ∈ V , after the
random walks initiated from i converge, the probability that a
uniformly chosen member from node i’s membership subset
is j is proportional to d(i, j)−α.

Theorem 6 directly follows the correctness of the Metropolis
algorithm, which ensures that each random walk initiated from
node i selects node j for i’s membership subset with desired
probability after convergence.

Given the assurance that the generated membership subsets
converge to the desired distribution, the next question is how
fast do they converge? In subsequent subsections, we provide
analytical results on the bounds of mixing time for major peer-
to-peer network topologies.

B. The Mixing Time in Structured P2P Topologies

We present the analytical results on the mixing time of our
random walks in unidirectional rings (used in Chord [15])
and unidirectional d-dimensional tori (used in CAN [21]). For
structured p2p topologies like rings and tori, the node distance
d(i, j) is often measured by hop distance, i.e., the minimum
number of hops to go from node i to node j.

Our algorithm on a unidirectional ring of n + 1 nodes can
be viewed as a random walk, starting from the initiating node
0, on a path with n + 1 nodes labeled 0, 1, ..., n, where node
i is the predecessor of node i + 1 in the original ring. Thus
the hop distance from node 0 to node i in the original ring is
d(0, i) = i. Fig. 1 shows the transition probabilities between
nodes i and its neighbors, which are determined based on the
random walk definitions in Section III-A.

i-1 i i+1

(1/4)[(i-1)/i] (1/4)[i/(i+1)]

1/4 1/4

(3/4) - (1/4)[i/(i+1)]

α α

α

Fig. 1. The transition probabilities in the neighborhood of node i. The hop
distance from node 0 to node i is i. Note that i is decided by the random
walk at runtime since i is the number of the forward steps (from a node to
its successor) taken by the random walk. Thus the transition probabilities can
be decided at runtime without the global knowledge of n.

We use the canonical path approach [19] (explained in
Section II-B) to analyze the mixing time of the random walk.
We first define a canonical path family Γ such that γxy is the
path between x, y without passing by the initiating node 0.

Let π be the converged distribution of the random walk,
then π(i) is proportional to d(0, i)−α = i−α. Hence for large

n’s:

π(i) =
i−α

∑n
j=1 j−α

≈

{

1
(i ln n) if α = 1;

1
c(α)iα if α ≥ 2.

c(α) is the power summation
∑∞

j=1 j−α, e.g., c(2) ≈
1.6449, c(3) ≈ 1.2021.

To compute Γ’s congestion, ρ(Γ), we consider an arbitrary
edge e = (i, i + 1), i ∈ {1, 2, ..., n − 1}. We need to know
the node pairs x, y that can be routed through the edge e =
(i, i+1). These include all x ∈ {1, 2, ..., i} and y ∈ {i+1, i+
2, ..., n}.

Hence,

∑

γxy3e

π(x)π(y) =

{

1
ln2 n

∑i
x=1

∑n
y=i+1

1
xy

if α = 1;
1

c(α)2

∑i
x=1

∑n
y=i+1

1
(xy)α if α ≥ 2.

=

{

1
ln2 n

∑i
x=1

1
x

∑n
y=i+1

1
y

if α = 1;
1

c(α)2

∑i
x=1

1
xα

∑n
y=i+1

1
yα if α ≥ 2.

≤

{

1
ln2 n

∑i
x=1

1
x
· (n − i) · 1

i+1 if α = 1;
1

c(α)2

∑i
x=1

1
xα · (n − i) · 1

(i+1)α if α ≥ 2.

≤

{

n−i
(i+1) ln2 n

∑n
x=1

1
x
≈ n−i

(i+1) ln n
if α = 1;

n−i
(i+1)αc(α)2

∑n
x=1

1
xα ≈ n−i

(i+1)αc(α) if α ≥ 2.

The edge capacity Q(e) = π(i + 1)Pi+1,i

=
1

4
π(i + 1) ≈

{

1
4 · 1

(i+1) ln n
if α = 1;

1
4 · 1

(i+1)αc(α) if α ≥ 2.

Hence,
ρ(Γ) = maxe

1
Q(e)

∑

γxy3e π(x)π(y)

≤

{

maxi 4(i + 1) ln n · n−i
(i+1) ln n

if α = 1;

maxi 4(i + 1)αc(α) · n−i
(i+1)αc(α) if α ≥ 2.

= 4(n − 1) for both cases.
Since each path in Γ has length at most n, by the definition

of ρ̄ we have ρ̄ ≤ ρ(Γ) · n ≤ 4n2. We also have

πmin =

{ 1
n ln n

if α = 1;
1

c(α)nα if α ≥ 2.

According to Theorem 5, we have the mixing time τ(ε) ≤
ρ̄ log((πminε)−1) = O(n2(log n + log ε−1)).

By choosing the desired variation difference ε as a small
constant or asymptotically smaller than πmin, e.g., Θ( 1

nα+1 ),
we have the final mixing time result:

Theorem 7: [Mixing in unidirectional rings] The mixing
time of our random walk for distance-based distributions in a
unidirectional ring with n nodes is O(n2 log n).

Our algorithm on a unidirectional 2-dimensional torus with
n2 nodes can be viewed as a random walk, starting from node
(0, 0), on a grid with n2 nodes labeled from (0, 0) through
(n − 1, n − 1), where node (i, j) has (i − 1, j), (i, j − 1) as
its predecessors and (i + 1, j), and (i, j + 1) as its successors



i,j

i,j+1

i,j-1

i,j i+1,ji,ji-1,j i,j

(3/4) - (1/4)[(i+j)/(i+j+1)]α

1/8

1/8

1/8

1/8

(1/8)[(i+j)/(i+j+1)]α

(1/8)[(i+j)/(i+j+1)]α

(1/8)[(i+j-1)/(i+j)]α

(1/8)[(i+j-1)/(i+j)]α

Fig. 2. The transition probabilities in the neighborhood of (i, j), 1 ≤ i, j ≤
n − 2. The hop distance from node (0, 0) to node (i, j) is i + j, which
is decided by the random walk at runtime since i, j are the numbers of the
horizontal forward steps and vertical forward steps taken by the random walk,
respectively. The transition probabilities are decided at runtime without the
global knowledge of n.

in the original torus. The hop distance from (0, 0) to (i, j) is
d((0, 0), (i, j)) = i + j. The transition probabilities between
node (i, j) and its neighbors are illustrated in Fig. 2.

Let π be the converged distribution of the random walk,
then for x = (x1, x2) we know that π(x) is proportionally to
d((0, 0), (x1, x2))

−α = (x1 + x2)
−α. Hence for large n’s,

π(x) =
(x1 + x2)

−α

∑

k,l 6=(0,0)(k + l)−α
≈











1
(x1+x2)n ln 4 if α = 1;

1
(x1+x2)2 ln n

if α = 2;
1

(x1+x2)αc(α−1) if α ≥ 3.

Here c(α) is the power summation constant as described
earlier.

We define Γ, a family of canonical paths γxy , in a way
such that γxy is the path between x, y decided by the routing
mechanism of CAN [21]. In other words, the next hop at
each step would get closer to the target. To compute ρ(Γ), we
consider an arbitrary edge e =< (i, j), (i + 1, j) >. We first
need to consider

∑

γxy3e π(x)π(y). We need to know the node
pairs x, y that can be routed through edge e. These include all
x ∈ {(0, 0), (0, 1), ..., (i, j)} and y ∈ {(i + 1, j), (i + 1, j +
1), ..., (n, n)}.

Let x = (x1, x2), y = (y1, y2). Then:
∑

γxy3e π(x)π(y)

=















1
n2 ln2 4

∑(i,j)
x=(1,0)

∑(n,n)
y=(i+1,j)

1
(x1+x2)(y1+y2)

;
1

ln2 n

∑(i,j)
x=(1,0)

∑(n,n)
y=(i+1,j)

1
(x1+x2)2(y1+y2)2

;
1

c(α−1)2

∑(i,j)
x=(1,0)

∑(n,n)
y=(i+1,j)

1
(x1+x2)α(y1+y2)α .

=















1
n2 ln2 4

∑(i,j)
x=(1,0)

1
(x1+x2)

∑(n,n)
y=(i+1,j)

1
(y1+y2)

;
1

ln2 n

∑(i,j)
x=(1,0)

1
(x1+x2)2

∑(n,n)
y=(i+1,j)

1
(y1+y2)2

;
1

c(α−1)2

∑(i,j)
x=(1,0)

1
(x1+x2)α

∑(n,n)
y=(i+1,j)

1
(y1+y2)α .

≤















1
n2 ln2 4

∑(i,j)
x=(1,0)

1
(x1+x2)

(n − i)(n − j) 1
i+j

;
1

ln2 n

∑(i,j)
x=(1,0)

1
(x1+x2)2

(n − i)(n − j) 1
(i+j)2 ;

1
c(α−1)2

∑(i,j)
x=(1,0)

1
(x1+x2)α (n − i)(n − j) 1

(i+j)α .

≤















(n−i)(n−j)
(i+j)n2 ln2 4

∑(n,n)
x=(1,0)

1
(x1+x2)

if α = 1;
(n−i)(n−j)
(i+j)2 ln2 n

∑(n,n)
x=(1,0)

1
(x1+x2)2

if α = 2;
(n−i)(n−j)

(i+j)αc(α−1)2

∑(n,n)
x=(1,0)

1
(x1+x2)α if α ≥ 3.

≈











(n−i)(n−j)
(i+j)n ln 4 if α = 1;
(n−i)(n−j)
(i+j)2 ln n

if α = 2;
(n−i)(n−j)

(i+j)αc(α−1) if α ≥ 3.

The edge capacity
Q(e) = P(i+1,j),(i,j)π((i + 1, j))

≈











1
8 · 1

(i+j)n ln 4 if α = 1;
1
8 · 1

(i+j)2 ln n
if α = 2;

1
8 · 1

(i+j)αc(α−1) if α ≥ 3.

Hence,
ρ(Γ) = maxe

1
Q(e)

∑

γxy3e π(x)π(y)

≤











maxi,j 8 · (i + j)n ln 4 · (n−i)(n−j)
(i+j)n ln 4 if α = 1;

maxi,j 8 · (i + j)2 ln n · (n−i)(n−j)
(i+j)2 ln n

if α = 2;

maxi,j 8 · (i + j)αc(α − 1) · (n−i)(n−j)
(i+j)αc(α−1) if α ≥ 3.

= 8n2 for all three cases.
Since each path in Γ has length at most 2n, by the definition

of ρ̄ we have ρ̄ ≤ ρ(Γ) · 2n ≤ 16n3. We also have

πmin ≈







1
2n2 ln 4 if α = 1;

1
4n2 ln n

if α = 2;
1

c(α−1)(2n)α if α ≥ 3.

According to Theorem 5, we have the mixing time τ(ε) ≤
ρ̄ log((πminε)−1) = O(n3(log n + log ε−1)).

Since the above bound is for a unidirectional 2-dimensional
torus with size n2. We have τ(ε) = O(n1.5(log n + log ε−1))
for a unidirectional 2-dimensional torus with size n. By
choosing the desired variation difference ε as a small constant
or asymptotically smaller than πmin, e.g., Θ( 1

nα+2 ), we have
the final mixing time result:

Theorem 8: [Mixing in unidirectional 2-dimensional
tori] The mixing time of our random walks for distance-based
distributions in a unidirectional 2-dimensional torus with n

nodes is O(n1.5 log n).
We can see that our random walks are mixing faster in tori

than in rings. This is because tori have better connectivity than
rings.

By extending the above analytical process to unidirectional
d-dimensional tori, we achieve the following analytical results:



Theorem 9: [Mixing in unidirectional d-dimensional
tori] The mixing time of our random walks for distance-
based distributions in a d-dimensional torus with n nodes is
O(n1+ 1

d log n).
Note that the above results for unidirectional tori can be

unified with the results for unidirectional rings since unidirec-
tional rings can be viewed as unidirectional one-dimensional
tori.

C. The Mixing Time in Unstructured P2P Topologies

The underlying topologies of unstructured peer-to-peer net-
works (e.g., Gnutella [22] and Freenet [23]) are usually charac-
terized by random regular graphs [24] or small-world power-
law graphs [25], which can help to maintain unstructured
p2p topologies with desirable graph properties such as low
diameters and good expansions.

In unstructured p2p topologies, hop distance is a much less
accurate distance measure compared with the Internet distance,
or the actual round trip transmission time. Thus we choose
to use Internet distance-based target probability distribution
in this study on unstructured p2p topologies. Unfortunately,
it is too costly to measure the accurate Internet distance
on-demand. Ng and Zhang proposed the global network
positioning technique [26] to predict the Internet distance
with moderate cost. Global network positioning maps network
nodes to points in a Euclidean space, where the Internet
distance between node i, j is approximated by d(i, j), the
Euclidean distance between the points corresponding to node
i, j.

Our analysis is based on the above-mentioned Euclidean
space model for unstructured peer-to-peer topologies. We
present the analytical results on the mixing time of our
distance-based random walks (initiated from an arbitrary node
i) on random regular graphs and power-law graphs in Eu-
clidean space. In our analysis, we define L as the longest
Euclidean distance between nodes in the studied graph and l

as the shortest Euclidean distance between nodes in the graph.
Let us consider a random d-regular graph (d ≥ 3) with

n nodes distributed in a multidimensional Euclidean space,
where d is the degree of nodes. It is known that the graph
diameter is O(log n) with high probability [27] and there exists
a family of canonical paths, Γ, such that the number of paths
containing an arbitrary edge e =< j, k > is O(n log n) [28].
Hence

∑

γxy3e

π(x)π(y) ≤
1

lα
·

1

C
·

1

lα
·

1

C
· O(n log n)

where the constant C =
∑

x6=i d(i, x)−α is the normalization
factor since for each node x 6= i, π(x) is proportionally to
d(i, x)−α.

Without loss of generality, we assume that d(i, j) ≥ d(i, k).
Then the edge capacity

Q(e) = Pj,kπ(j) =
1

2d
·

1

d(i, j)α
·

1

C

Then
ρ(Γ) = max

e

1

Q(e)

∑

γxy3e

π(x)π(y)

≤ max
j

2d · d(i, j)α · C ·
1

l2α
·

1

C2
· O(n log n)

= 2d · Lα ·
1

l2α
·

1

C
· O(n log n)

≤ 2d ·Lα ·
1

l2α
·

1

n · L−α
·O(n log n) = 2d · (

L

l
)2α ·O(log n)

Each canonical path has length at most O(log n), the graph
diameter. By the definition of ρ̄ we have

ρ̄ = 2d · (
L

l
)2α · O(log n) · O(log n) = O(log2 n),

where we consider L, l, d as constant parameters independent
of the network size. We know that πmin ≥ 1

LαC
≥ 1

n
· ( l

L
)α.

Thus according to Theorem 5, we have the mixing time

τ(ε) ≤ ρ̄ log((πminε)−1) = O(log2 n(log n + log ε−1)).

By choosing the desired variation difference ε as a small
constant or asymptotically smaller than πmin, e.g., O( 1

n2 ), we
have the final mixing time result:

Theorem 10: [Mixing in random d-regular graphs] For
d ≥ 3, the mixing time of our random walks for distance-
based distributions in a random d-regular graph with n nodes
is O(log3 n) with high probability.

Compared with rings and tori, random regular graphs have
lower mixing time bounds due to their better expansion
properties.

Unstructured p2p topologies are observed to possess small-
world properties and power-law degree distributions [25]. For
power-law graphs with the degree distribution P (k) ∝ k−β ,
the maximum node degree is O(n

1
β ) with high probability

for large n’s. It is also known that the graph diameter is
O(log n) [29] and there exists a family of canonical paths,
Γ, such that the number of paths containing an arbitrary edge
e =< j, k > is O(n log2 n) [28]. Based on these results, we
can derive the convergence time bounds for power-law graphs
as follows.

The edge congestion for an arbitrary edge e is
∑

γxy3e

π(x)π(y) ≤
1

lα
·

1

C
·

1

lα
·

1

C
· O(n log2 n)

Assuming d(i, j) ≥ d(i, k), the edge capacity

Q(e) = Pj,kπ(j) =
1

2 · Deg(j)
·

1

d(i, j)α
·

1

C
,

where Deg(j) is the degree of node j and the constant C =
∑

x6=i d(i, x)−α is the normalization factor. Hence,

ρ(Γ) = max
e

1

Q(e)

∑

γxy3e

π(x)π(y)

≤ max
j

2 · Deg(j) · d(i, j)α · C ·
1

l2α
·

1

C2
· O(n log2 n)



Network topologies Asymptotic bounds

Rings O(n2 log n)

d-dimensional tori O(n1+ 1
d log n)

Random regular graphs O(log3 n) w.h.p.

Power-law graphs O(n
1
β log4 n) w.h.p.

TABLE I

ASYMPTOTIC BOUNDS ON THE CONVERGENCE TIME.

= 2 · n
1
β · Lα ·

1

l2α
·

1

C
· O(n log2 n)

≤ 2·n
1
β ·Lα·

1

l2α
·

1

n · L−α
·O(n log2 n) = 2·n

1
β ·(

L

l
)2α·O(log2 n)

Each canonical path has length at most O(log n), the graph
diameter. By the definition of ρ̄ we have

ρ̄ = 2 · n
1
β · (

L

l
)2α · O(log2 n) · O(log n) = O(n

1
β · log3 n),

where we consider L, l as constant parameters independent of
the network size. We know that πmin ≥ 1

LαC
≥ 1

n
· ( l

L
)α.

Thus according to Theorem 5, we have the mixing time

τ(ε) ≤ ρ̄ log((πminε)−1) = O(n
1
β · log3 n(log n + log ε−1)).

By choosing the desired variation difference ε as a small
constant or asymptotically smaller than πmin, e.g., O( 1

n2 ), we
have the final mixing time result:

Theorem 11: [Mixing in power-law graphs] With high
probability, the mixing time of our random walks for distance-
based distributions in a power-law graph the degree distribu-
tion P (k) ∝ k−β is O(n

1
β · log4 n), where n is the network

size.
Table I summarizes the asymptotic bounds on the mixing (or

convergence) time of our random walks for the four topologies
we studied.

IV. SIMULATION RESULTS

The mixing time bound results in Section III are achieved
by using the canonical path approach. Though the canonical
path approach is a popular technique for bounding the mixing
time, for many applications it only provides weak bounds.
Considering this, our mixing time bounds derived by this
approach may not be tight. It remains as our future work to
explore new techniques to give improved mixing time bounds
for our random walks. As a complement to the asymptotic
mixing time bounds, we present the simulation results of our
random walks in terms of the convergence time for major p2p
topologies.

In this section, we study the mixing time of our distance-
based random walks on four kinds of networks with size rang-
ing from 26 to 213 nodes: unidirectional rings, unidirectional 2-
dimensional tori, random regular graphs, and Barabási-Albert
power-law graphs [30]1. For each kind of networks, we not
only study the mixing time of our random walks in static

1The node degree distribution of Barabási-Albert power-law graphs can be
approximated by P (k) ∝ k−3 [31].

networks but also consider dynamic networks with uniformly
random node arrivals and departures. Here the mixing time
is measured by the number of steps for a random walk
(initiated from an arbitrary node i) to satisfy the total variation
difference ||πt, π|| ≤ 0.001 (Definition 1, Section II-B) or
satisfy the maximum relative error M(πt, π) ≤ 1%. Here π is
the ideal distance-based distribution as defined in Section III-
A (∀j 6= i, π(j) ∝ d(i, j)−α). πt is the distribution achieved
by our distance-based random walks at step t. M(πt, π) =

maxi
|πt(i)−π(i)|

π(i) .

A. Unidirectional Rings
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Fig. 3. Convergence for rings. The number of steps for a random walk
initiated from an arbitrary node to reach small total variation difference or
small maximum relative error, i.e., ||πt, π|| ≤ 0.001 or M(πt, π) ≤ 1%, in
static unidirectional rings.
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Fig. 4. Convergence for rings after network changes. The average number
of steps for previously converged random walks (with ||πt, π|| ≤ 0.001 or
M(πt, π) ≤ 1%) to converge again (||πt, π|| ≤ 0.001 or M(πt, π) ≤ 1%)
after network changes in unidirectional rings. A network change is either a
uniformly random node arrival or the departure of an existing node chosen
uniformly at random.

Fig. 3 illustrates the number of steps for our random walks
(α = 1 for rings) to reach ||πt, π|| ≤ 0.001 or M(πt, π) ≤ 1%
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Fig. 5. Convergence for tori. The number of steps for a random walk
initiated from an arbitrary node to reach ||πt, π|| ≤ 0.001 or M(πt, π) ≤ 1%
in static unidirectional 2-dimensional tori.
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Fig. 6. Convergence for tori after network changes. The average number
of steps for previously converged random walks (with ||πt, π|| ≤ 0.001 or
M(πt, π) ≤ 1%) to converge again (||πt, π|| ≤ 0.001 or M(πt, π) ≤ 1%)
after network changes in unidirectional 2-dimensional tori. A network change
is either a uniformly random node arrival or the departure of an existing node
chosen uniformly at random.

in unidirectional rings of different sizes. The relationship
between the number of steps, t, and the ring size n is very
close to t = 1.4n2, which suggests a tighter mixing time
bound, O(n2), than the bound in Theorem 7, O(n2 log n).
Fig. 3 shows that it takes a large number of steps for a random
walk initiated from an arbitrary node to converge in a static
network. However, once a random walk converges, it will
converge relatively faster to future dynamic network changes
as shown in Fig. 4.

Specifically, if we assign a 40 ms average latency to all links,
then our random walks in a 1024-node unidirectional ring
take about 17 hours for initial convergence and thereafter take
averagely about 4 minutes to converge again after a uniformly
random node arrival or departure. The slow convergence is
due to the low connectivity of rings, which could be compen-
sated by introducing more per-node links or long links as in
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Fig. 7. Convergence for random regular graphs. The number of steps for
a random walk initiated from an arbitrary node to reach ||πt, π|| ≤ 0.001 or
M(πt, π) ≤ 1% in static random regular graphs.
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Fig. 8. Convergence for random regular graphs after network changes.
The average number of steps for previously converged random walks (with
||πt, π|| ≤ 0.001 or M(πt, π) ≤ 1%) to converge again (||πt, π|| ≤ 0.001
or M(πt, π) ≤ 1%) after network changes in random regular graphs. A
network change is either a uniformly random node arrival or the departure of
an existing node chosen uniformly at random.

Chord [15]. Due to their better expansion properties, other p2p
topologies (results shown in later subsections) exhibit much
faster convergence speed than rings.

B. Unidirectional 2-dimensional Tori

Fig. 5 illustrates the number of steps for our random walks
(α = 2 for 2-dimensional tori) to reach ||πt, π|| ≤ 0.001
or M(πt, π) ≤ 1% in unidirectional 2-dimensional tori of
different sizes. The relationship between the number of steps,
t, and the torus size n is close to t = 3.5n, which suggests
a tighter mixing time bound, O(n), than the bound in Theo-
rem 8, O(n1.5 log n). Fig. 6 gives the average number of steps
for previously converged random walks to converge again after
network changes.

Based on the 40 ms link latency estimate, our random
walks in a 1024-node unidirectional 2-dimensional torus take
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Fig. 9. Convergence for power law graphs. The number of steps for a
random walk initiated from an arbitrary node to reach ||πt, π|| ≤ 0.001 or
M(πt, π) ≤ 1% in static Barabási-Albert power-law graphs.
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Fig. 10. Convergence for power law graphs after network changes.
The average number of steps for previously converged random walks (with
||πt, π|| ≤ 0.001 or M(πt, π) ≤ 1%) to converge again (||πt, π|| ≤ 0.001
or M(πt, π) ≤ 1%) after network changes in Barabási-Albert power-law
graphs. A network change is either a uniformly random node arrival or the
departure of an existing node chosen uniformly at random.

about 2.5 minutes for initial convergence and thereafter take
averagely about 17 seconds to converge again after a uniformly
random node arrival or departure.

C. Random regular graphs

Here we consider random regular graphs with nodes gener-
ated uniformly at random in a unit cube, (0, 1)3. The node de-
gree is 6. Fig. 7 illustrates the number of steps for our random
walks (α = 3) to reach ||πt, π|| ≤ 0.001 or M(πt, π) ≤ 1%
in random regular graphs of different sizes. Fig. 8 gives the
average number of steps for previously converged random
walks to converge again after network changes.

Based on the 40 ms link latency estimate, our random walks
in a 1024-node random 6-regular graph take about 9 minutes
for initial convergence and thereafter take averagely about 16
seconds to converge again after a uniformly random node

Network topologies Initial Convergence after
convergence a network change

Rings 17 hours 4 minutes
2-dimensional tori 2.5 minutes 17 seconds

Random regular graphs 9 minutes 16 seconds
Power-law graphs 19 minutes 25 seconds

TABLE II

CONVERGENCE TIME FOR 1024-NODE NETWORKS WITH 40 MS LATENCY

FOR ALL LINKS.

arrival or departure.

D. Barabási-Albert Power-law Graphs

We consider power-law graphs generated based on the
Barabási-Albert model [30]. The nodes are generated uni-
formly at random in a unit cube, (0, 1)3. During the growth
of the graph, a node joins the graph by linking to 6 existing
nodes chosen randomly with probability proportional to their
degrees. Fig. 9 illustrates the number of steps for our random
walks (α = 3) to reach ||πt, π|| ≤ 0.001 or M(πt, π) ≤ 1%
in Barabási-Albert graphs of different sizes. Fig. 10 gives the
average number of steps for previously converged random
walks to converge again after network changes.

Based on the 40 ms link latency estimate, our random walks
in a 1024-node Barabási-Albert graph take about 19 minutes
for initial convergence and thereafter take averagely about 25
seconds to converge again after a uniformly random node
arrival or departure.

Table II summarizes the simulation results on the conver-
gence time of our random walks. The results are for 1024-
node networks with 40 ms latency for all links. Note that the
results for rings and tori are not directly comparable to those
of random regular graphs and power-law graphs because they
use different distance metrics.

V. CONCLUSIONS

In this paper, we present a non-uniform random membership
management algorithm satisfying distance-based distributions
for peer-to-peer networks. To the best of our knowledge,
our algorithm is the first to support non-uniform random
membership management with proved convergence and analyt-
ical bounds on the convergence time. Along with asymptotic
bounds, we also provide simulation results to quantitatively
assess the algorithm convergence time at typical settings.

Our algorithm does not put restrictions on network topolo-
gies and can be applied to many p2p topologies, such as rings,
tori, random regular graphs, and power law graphs. The frame-
work of our algorithm can also be used to generate random
membership subsets with other non-uniform distributions.

It remains to explore new techniques to achieve tighter
mixing time bounds for our distance-based random walks. We
will also extend our algorithm to other peer-to-peer topologies,
such as de Bruijn graphs, butterflies, and skip nets.
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