
Structure Management for Scalable Overlay Service Construction

Kai Shen
kshen@cs.rochester.edu

Department of Computer Science, University of Rochester

Abstract

This paper explores the model of providing a common
overlay structure management layer to assist the construc-
tion of large-scale wide-area Internet services. To this end,
we propose Saxons, a distributed software layer that dynam-
ically maintains a selected set of overlay links for a group
of nodes. Saxons maintains high-quality overlay structures
with three performance objectives: low path latency, low
hop-count distance, and high path bandwidth. Additionally,
it provides partition repair support for the overlay structure.
Saxons targets large self-organizing services with high scal-
ability and stability requirements. Services can directly uti-
lize the Saxons structure for overlay communication. Sax-
ons can also benefit unicast or multicast overlay path selec-
tion services by providing them a small link selection base
without hurting their performance potential.

Our simulations and experiments on 55 PlanetLab sites
demonstrate Saxons’s structure quality and the performance
of Saxons-based service construction. In particular, a sim-
ple overlay multicast service built on Saxons provides near-
loss-free data delivery to 4 times more multicast receivers
compared with the same multicast service running on ran-
dom overlay structures. Our experiments also show that this
performance is close to that of direct Internet unicast with-
out simultaneous traffic.

1 Introduction

Internet overlays are successfully bringing large-scale
wide-area distributed services to the masses. A key factor
to this success is that an overlay service can be quickly con-
structed and easily upgraded because it only requires en-
gineering at Internet end hosts. However, overlay services
may suffer poor performance when their designs ignore the
topology and link properties of the substrate network. Vari-
ous service-specific techniques have been proposed to adapt
to Internet properties by selecting overlay routes with low
latency or high bandwidth. Notable examples include the
unicast overlay path selection [1, 29], measurement-based
end-system multicast protocols [2, 7, 17], and recent efforts
to add substrate-awareness into the scalable distributed hash
table (DHT) protocols [6, 27, 35].

In this paper, we present the design and implementation
of a distributed software layer providing Substrate-Aware
Connectivity Support for Overlay Network Services, or Sax-
ons. Saxons constructs and maintains overlay connectivity

structures with qualities such as low overlay latency, low
hop-count distance, and high overlay bandwidth. Through
a very simple API, service instances at overlay nodes can
query the locally attached overlay links in the structure.
Overlay services can directly use Saxons structure links for
communication. They may also further select overlay links
from the given structure based on application-specific qual-
ity requirements or service semantics.

Many popular overlay services, such as Gnutella, are un-
structured in that they are designed to operate on any over-
lay network structures. Saxons works naturally with these
services by providing them a high quality connectivity struc-
ture for overlay communication. Saxons can also benefit
unicast [1] or multicast overlay path selection services [7]
by providing them a small link selection base. These ser-
vices would normally incur much higher overhead if they
directly run on the completely connected overlay, which of-
ten limits their scalability [1, 7]. The Saxons overlay struc-
ture can be configured with different link density to offer
tradeoff between overlay complexity and path redundancy
or quality. A more connected Saxons structure would pro-
vide better achievable overlay quality in terms of path la-
tency, hop-count distance, or bandwidth. However, it typi-
cally consumes more resources to find the optimal path in a
structure with higher link density.

It should be noted that a general-purpose overlay struc-
ture layer cannot be easily integrated with strongly struc-
tured protocols where the protocol semantics dictates how
overlay nodes should be connected. Prominent examples
are the recently proposed scalable DHT protocols [26, 31].
However, we believe that the “strongly structured” nature
of these protocols are not inherent to the DHT service it-
self. For instance, we have demonstrated that a scalable
DHT service can be constructed on pre-structured overlay
networks [30].

We should also emphasize that the primary goal of this
work is to provide a general easy-to-use software layer with
wide applicability. Achieving optimal performance for in-
dividual services is not our focus. The rest of this paper is
organized as follows. Section 2 describes our design objec-
tives and theirs rationale. Section 3 presents the design and
analysis of the Saxons overlay structure management layer.
Section 4 illustrates our simulation-based evaluation results.
Section 5 and 6 describe a prototype Saxons implementation
and service constructions on the PlanetLab testbed. Sec-
tion 7 discusses related work and Section 8 concludes the
paper.

2 Design Objectives

Saxons is designed to provide efficient overlay connec-
tivity support that can assist the construction of large-scale
Internet overlay services. In order to assemble a compre-
hensive set of performance goals for the Saxons structure
management layer, we first examine existing overlay ser-
vices and categorize them based on similar communication
patterns. Then we describe our objectives on overlay struc-
ture qualities and how they support our targeted services.
We will also describe other Saxons design objectives.

2.1 Targeted Services

Below we list five categories of overlay communication
patterns and some example services in each category. We
do not make claims on the completeness of this list but we
believe it should cover the communication patterns of a large
number of overlay services.

Short unicast: Services of this type involve single-source
singe-destination short messages delivered along the overlay
structure. An example of such services is the index-assisted
object lookup [8], where the object lookup query messages
are routed in the overlay network based on heuristics main-
tained at each node.

Short multicast/broadcast: Services of this type involve
single-source multiple-destination short messages delivered
along the overlay structure. An example of such services is
the query flooding-style object lookup, such as Gnutella.

Long unicast: Services of this type involve a large
amount of data delivered between two nodes in the over-
lay network. The large data volume makes it important
to find efficient data delivery paths. Since the underlying
substrate network (i.e., the Internet) provides native unicast
transport service, an overlay unicast delivery optimized for
short latency only makes sense when the triangular inequal-
ity on Internet latencies does not hold, e.g., due to the policy-
influenced BGP routing or transient outages [1, 29].

Long multicast/broadcast: Due to the slow adoption of
native multicast support in the Internet, there have been a
large number of recently proposed overlay multicast proto-
cols. In these protocols, large amount of streaming data is
delivered between a single source and multiple destinations
in the overlay network. These protocols focus on construct-
ing multicast data distribution trees optimized for low la-
tency [7], high bandwidth [17], or both.

Periodic pairwise neighbor communication: This com-
munication pattern is frequently used for soft state mainte-
nance in the overlay network, such as membership manage-
ment [7], routing table maintenance, and Web proxy cache
index maintenance. In the case of Web proxy caching, a
large number of cooperative caches can form an overlay
network connected by an efficient structure. Proxy caches
maintain the information about each other’s content through
periodic pairwise neighbor communication. Such a scheme
may consume less network bandwidth than broadcast-based
cache sharing protocols [11] do.

2.2 Objectives on Overlay Structure Qualities

Saxons assists the construction of large-scale Internet
overlay services by providing a high quality connectivity
structure. The Saxons structure can be configured with dif-
ferent link density to offer tradeoff between overlay com-
plexity and path redundancy. The link density also affects
the achievable overlay quality. Such a density is determined
through a configurable node degree range 1 in Saxons. Be-
low we discuss performance objectives for the Saxons struc-
ture along three lines: the overlay latency, hop-count dis-
tance, and the overlay bandwidth.

The first performance objective for the Saxons structure
construction is to achieve low overlay path latency, defined
as the end-to-end latency along the shortest overlay path for
each pair of nodes. The relative delay penalty (or RDP)
is another common metric for overlay latency, which is de-
fined as the ratio of the overlay path latency to the direct
Internet latency. Consider a physical network illustrated
in Figure 1(a). A, B, C, and D are edge nodes while R1,
R2, R3, and R4 are internal routers. The latency and band-
width for each physical link are indicated. Figures 1(b) and
1(c) illustrate two overlay connectivity structures both of
which have a per-node degree of two. The latency and band-
width of each virtual overlay link are also indicated with the
assumption that the underlying substrate network employs
shortest-path routing. Both connectivity structures provide
the same overlay latency for A-B and C-D. Structure II al-
lows slightly less latency for A-C and B-D while structure
I provides much shorter paths for A-D and B-C. In aver-
age, Structure I is superior to Structure II in terms of the
overlay path latency (15.33ms vs. 21.33ms) and RDP (1.03
vs. 1.58). The overlay latency is very important for the first
four categories of services described in Section 2.1. For ser-
vices with the periodic pairwise neighbor communication
pattern, the data propagation delay between two nodes de-
pends mostly on the overlay hop-count distance since the
neighbor communication frequency is often independent of
the link latency.

Our second performance objective is to achieve low over-
lay hop-count distance, defined as the hop-count distance
along the overlay structure for each pair of nodes. The two
structures illustrated in Figure 1 have the same average over-
lay hop-count distance of 1.33. As mentioned earlier, the
hop-count distance in an overlay structure is important for
services with the periodic pairwise neighbor communication
pattern. We further argue that this metric also affects the per-
formance of other services utilizing overlay structures. This
is because an overlay route with larger hop-count may suf-
fer more performance penalty in the presence of transient
congestion or faults at intermediate nodes.

In terms of the overlay bandwidth, we are interested in
two specific metrics: bandwidth along the shortest overlay
path and bandwidth along the widest path. Bandwidth along
the shortest overlay path is important when the path selec-
tion desires both low latency and high bandwidth. Band-

1The node degree is defined as the number of links attached to the node
in question.

A D

CB

12ms

1.5Mbps

8ms

45Mbps

R1 R4

R3R2

A D

CB

14ms

1.5Mbps
A D

CB

(a) Physical network (c) Overlay structure II(b) Overlay structure I

Figure 1: An example to illustrate overlay structure qualities.

Service types Overlay Hop-count Overlay
latency distance bandwidth

Short unicast X X
�

�

Short multi/broadcast X X
�

X
�

Long unicast X X
�

X

Long multi/broadcast X X
�

X

Neighbor comm. � X X

Table 1: Importance of structure qualities for overlay services.
A check mark “X” means the metric is important to this type of
services while a “�” represents the opposite. A mark “X�” means
the metric may be important under certain circumstances.

width along the widest path is the essential metric when
the upper-level service is predominantly interested in find-
ing high-bandwidth overlay routes. For the two overlay
structures illustrated in Figure 1, structure II provides high
bandwidth (45Mbps) routes for all pairs of nodes while
structure I has low bandwidth (1.5Mbps) along the short-
est path for A-D. High overlay bandwidth is desired for
long unicast/multicast/broadcast communications as well
as periodic pairwise neighbor communications. Services
with short-message communications generally do not place
much demand on overlay bandwidth. However, short multi-
cast/broadcast services like query flooding may incur high
bandwidth consumption when a large number of queries
flood the system simultaneously.

In summary, Table 1 shows these performance metrics
and their importance to each of the five types of services we
listed in Section 2.1. We can see that services with different
communication patterns place different quality demand on
the overlay structure construction. We also believe that the
above three lines of performance objectives cover the qual-
ity demand of a wide range of overlay services.

2.3 Other Design Objectives

In addition to constructing high quality overlay struc-
tures, we describe below several additional design objec-
tives for Saxons. 1) Scalability: Recent measurements
show that the main Gnutella network contains more than
100,000 nodes [19]. In order to support large-scale services,
it may be infeasible to maintain the complete system view
at any single node. 2) Connectivity: The fault or departure
of a few bridging nodes may cause the partition of remain-
ing overlay nodes, which could degrade or even paralyze the

overlay service. Saxons provides partition detection and re-
pair support such that upper-level services do not need to
worry about the overlay partitioning. 3) Stability: Frequent
node joins and leaves in a self-organizing system may cause
instability in the overlay structure. Saxons is designed to
hide such instability from upper-level services by maintain-
ing the overlay structure quality with infrequent link adjust-
ments. Structure stability is especially important for the per-
formance of services that maintain link-related state, such as
many routing services.

3 System Design

The Saxons overlay structure management layer contains
six components. The bootstrap process determines how new
nodes join the overlay structure. The structure quality main-
tenance component maintains a high quality overlay mesh
while the connectivity support component actively detects
and repairs overlay partitions. They run periodically to ac-
commodate dynamic changes in the system. The above Sax-
ons components are all supported by the membership man-
agement component that tracks a random subset of overlay
members. The structure quality maintenance is further sup-
ported by two other components responsible for acquiring
performance measurement data for overlay links and find-
ing nearby overlay hosts. Figure 2 illustrates the six Saxons
components and their relationship. Note that the connectiv-
ity support is an optional component in Saxons, which could
be turned off for structures that are unlikely to be partitioned
(e.g., those configured with a high link density).

Node bootstrap
Connectivity

support

Structure

quality

maintenance

Network

measurement

Random

membership

subsets

Finding nearby

hosts

Figure 2: Saxons components.

The scalability of Saxons is achieved by controlling the
system management overhead when the overlay scales up.
The key guideline of our design is that the per-node man-
agement cost should only depend on the number of directly
attached overlay links, not on the overlay size. In order to
maintain a high level of robustness, Saxons employs a non-

hierarchical or functionally symmetric architecture (with
the exception of the optional Saxons connectivity support).
Non-hierarchical designs are inherently free of scaling bot-
tlenecks and they exhibit strong robustness in the face of
random failures or even intentional attacks.

Our design and analysis in this paper assumes a fail-stop
node departure model in which the departing node abruptly
stops all actions at the exit time. We also assume there is no
malicious participant in the overlay.

3.1 Random Membership Subsets

Accurately tracking the complete list of group mem-
bers often requires the dissemination of such complete list
among overlay nodes [7]. Per-node bandwidth consump-
tion and storage requirement for such dissemination grow
linearly with the increase of the overlay size, which can
be problematic for large-scale services. In comparison, the
Saxons structure management layer maintains periodically
changing random membership subsets, which can satisfy
many of the membership service needs with controllable
bandwidth consumption and storage requirement.

In Saxons, each node maintains a dynamically changing
random-subset data structure containing a number of other
overlay members. The size limit of the random-subset (de-
noted by s) is determined according to the allowed per-
node storage consumption. Membership subset queries are
fulfilled through random selection from the local random-
subset. Each node periodically disseminates a certain num-
ber of overlay members to each of its neighbors for updat-
ing the recipient’s random-subset. The membership update
size (denoted by k) and frequency are determined such that
the bandwidth consumption is properly controlled. When
random-subsets have reached their size limit s, randomly
chosen old members are replaced by new members from
membership updates.

The key for providing a random membership subset ser-
vice with uniform representation over all overlay partici-
pants is to ensure such uniform representation in member-
ship update sets. In our scheme, the update set from a node
(called A) contains a selected portion of A’s random-subset
with uniform selection probability. A itself may also be in-
cluded in each update set at probability k=n (n is the over-
lay size) to ensure its own equal representation. Since the
overlay size n is often unknown at runtime, we use an ap-
proximate value ~nA = s=p, where p is the proportion of all
disseminated members received at A that are already in A’s
local random-subset at the time of receipt. Such an approx-
imation is accurate when disseminated members received at
A uniformly represent all overlay participants.

We provide simulation results to demonstrate the level of
uniform randomness achieved by the Saxons random mem-
bership subset component. Simulations were run on a 6400-
node randomly connected overlay structure with an average
node degree of 8 and a degree upper-bound of 16. In the
simulations, all the random-subsets are empty at the begin-
ning of round 0. The length of a round is the average up-
date interval between each pair of overlay neighbors. Each
membership update contains 20 members in the simulations.

Figure 3 illustrates the growth of the accumulated number of
overlay members learned through membership updates (av-
eraged over all 6400 nodes) since the overlay startup. Note
that this metric is not equivalent to the number of mem-
bers in each node’s random-subset. It is a hypothetic metric
whose growth over time illustrates the uniform randomness
of membership updates. Results for several random-subset
sizes are compared with the result for the uniformly random
updates, which is produced when all membership updates
contain uniformly random overlay nodes. The intuition for
this comparison is that a membership update scheme that
contains larger positive correlation among its update sets
would generate slower growth in the number of learned
overlay members.

0 50 100 150 200

1600

3200

4800

6400

Time since the startup (in number of rounds)

A
cc

um
ul

at
ed

 n
um

be
r

of
 n

od
es

 le
ar

ne
d

ov
er

 ti
m

e

Saxons (random−subset size 200)
Saxons (random−subset size 400)
Saxons (random−subset size 800)
Saxons (random−subset size 1600)
uniformly random updates

Figure 3: Growth of the accumulated number of overlay members
learned from membership updates (averaged over all nodes) in a
6400-node overlay.

Results in Figure 3 show that the Saxons random mem-
bership subset component performs very close to the ideal
uniform randomness. We also observe that the result is
not very sensitive to the random-subset size, though larger
random-subsets exhibit slightly higher uniform randomness.
This is because each random-subset serves as a buffer to
screen out non-uniformity in incoming membership updates
and larger random-subsets are more effective on this.

Kosti�c et al. recently proposed a random membership
subset protocol for tree-shaped overlay structures [18]. In
comparison, the Saxons membership component supports
more general mesh-like overlay structures. Our member-
ship management also differs from gossip-based dissemi-
nation protocols (e.g., lpbcast [10]) in that disseminations
in Saxons follow the overlay structure links. This restric-
tion allows dissemination messages to flow through pre-
established TCP connections along Saxons structure links.

3.2 Network Measurement

A fundamental problem for substrate-aware overlay ser-
vice construction is how to acquire network latency and
bandwidth data to support efficient overlay service construc-
tion. For latency measurement between two nodes, we sim-
ply let one node ping the other N l times and measure the
round-trip times. We remove the top 20% and bottom 20%
of the measurement results and take the average of the re-
maining values. Pings could be conducted using ICMP

ECHO messages or by employing a user-level measurement
daemon responding to ping requests at each host.

Bandwidth measurement requires more consideration be-
cause it is harder to get stable results and it consumes much
more network resources. Since the measurements would be
conducted repeatedly in the runtime due to system dynam-
ics, our goal is to acquire sufficiently accurate measurement
data at a moderate overhead. The bandwidth measurement
scheme we use is derived from the packet bunch technique
proposed by Carter and Crovella [5] as well as Paxson [24].
Specifically, when node A wants to measure the bandwidth
from node B, it sends out a UDP request to the measure-
ment daemon at B, which replies back Nb UDP messages
at the size of Sb each. A then records the receipt times of
the first and the last messages (denoted by tfirst and tlast).
Note that A may not receive all messages due to conges-
tion and drops at buffer queues. Assume A actually re-
ceived ~Nb messages, we determine the link bandwidth as
(~Nb � 1) � Sb=(tlast � tfirst). In order to avoid transient
network congestions, we repeat the tests three times with a
random interval between 2 and 6 seconds and take the me-
dian value from the three rounds as the final result.

10
0

10
1

10
2

R
ou

nd
−

tr
ip

 la
te

nc
y

(in
 m

ill
is

ec
on

d)

(A) Latency measurements

100−ping results
10−ping results

10
0

10
1

10
2

B
an

dw
id

th
 (

in
 M

bp
s)

(B) Bandwidth measurements

200−message results
20−message results

Figure 4: Network measurement results for all-to-all site pairs on
61 PlanetLab sites. Y-axises are in the log scale.

In practice, we use 10 pings for latency measurements
(i.e., Nl=10) and we use 20 UDP messages of 8KB for
each of the three bandwidth measurement rounds (i.e.,
Nb=20 and Sb=8KB). Each bandwidth test costs 480KB at
this setting. We conducted experiments on the PlanetLab
testbed [25] to assess the effectiveness of our network mea-
surement schemes. In the experiments, we compare our
measurement results at the above mentioned setting with
results using 10 times more messages. Figure 4 illustrates
the measurement results for all-to-all node pairs between 61

PlanetLab nodes, all from unique wide-area sites. For both
latency and bandwidth measurements, the results are ranked
in ascending order for the more accurate measurements that
use 10 times more messages. Figure 4(A) shows that the
latency measurement with 10 pings are already very accu-
rate. From Figure 4(B), we notice that a large number of
site pairs have 10Mbps bandwidth between them. It turns
out that many PlanetLab nodes are equipped with the Hier-
archical Token Bucket filter [9] that limits the per-user out-
going bandwidth at 10Mbps [4]. Our measurements give
slightly higher bandwidth estimates for these links. It ap-
pears the reason is that these filters let go about 64KB data
before the rate control kicks in.

We should point out that almost any network measure-
ment techniques can be used in Saxons. And different
schemes may be better suited for different network environ-
ments. For instance, the behavior of the Hierarchical To-
ken Bucket filter requires the bandwidth measurement to use
much larger than 64KB data for being effective.

3.3 Finding Nearby Hosts

In addition to network performance measurement, find-
ing nearby hosts is also needed by the Saxons overlay struc-
ture management. Accuracy, scalability, and ease of deploy-
ment are some important issues for this component. Previ-
ous studies have proposed various techniques for locating
nearby hosts [14, 15, 21, 27], most of which require infras-
tructure support or established landmark hosts. Saxons can
utilize any of the existing techniques in principle. For ease
of deployment, we introduce a random sampling approach
that does not require any infrastructure support or landmark
hosts.

The basic idea of random sampling, or Rsampling, is to
randomly test the network latency to frs (or the random
sampling factor) nodes from the overlay group and picks the
one with shortest latency. The overhead of this approach can
be controlled by choosing a small frs. The performance of
Rsampling is not directly competitive to more sophisticated
landmark-based schemes. However, in addition to its advan-
tage of ease of deployment, it has the property of converging
to the closest host when running repeatedly. We compare
Rsampling with the landmark-based Cartesian distance ap-
proach for locating nearby hosts. This approach requires a
set of l well-known landmark hosts spread across the net-
work and each landmark defines an axis in an l-dimensional
Cartesian space. Each group member measures its latencies
to these landmarks and the l-element latency vector repre-
sents its coordinates in the Cartesian space. For nearby host
selection, a node chooses the one to which its Cartesian dis-
tance is minimum. This approach has been shown to be
competitive to other landmark-based schemes [27].

Figure 5 illustrates the simulation performance of latency
estimation schemes. The backbone substrate network used
in this experiment is based on a 3104-node Internet Au-
tonomous Systems map available at NLANR [22]. More
details for this network map and the simulation setup will
be described in Section 4.1. The metric latency stretch in
Figure 5 is defined as the ratio of the latency to the selected

100 200 400 800 1600 3200 6400 12800
1

1.5

2

2.5

3

3.5

4

4.5

Overlay size (in number of nodes)

A
ve

ra
ge

 la
te

nc
y

st
re

tc
h

Landmark 4
Landmark 8
Landmark 16
Rsampling (1 run)
Rsampling (4 runs)
Rsampling (16 runs)
Random

Figure 5: Performance of schemes for finding nearby hosts.

host to the latency to the optimal (i.e., the closest) host. The
Rsampling approach tests the network latency to four ran-
domly selected nodes at each run and the old selection is re-
placed if a newly tested node is closer. The performance for
Rsampling after 1, 4, and 16 runs are shown, compared with
the performance of the landmark approach with 4, 8, and
16 landmark nodes. We observe that the Rsampling perfor-
mance after 4 runs is competitive to the landmark approach
even for 12800-node overlays. This performance is achieved
with only a total of 4� 4 = 16 latency tests.

Note that the random sampling technique could also be
used for finding hosts with high bandwidth connections.
The main difference is that bandwidth measurements can-
not be conducted frequently because they are much more
expensive than latency tests.

3.4 Node Bootstrap

When a node joins the Saxons connectivity structure, it
must first know at least one active bootstrap node through
out-of-band means. In principle, every active overlay mem-
ber can serve as a bootstrap node. However, employing a
small number of bootstrap nodes for each overlay group al-
lows the use of a DNS-like naming system to locate them.
Since joining nodes do not establish direct links to bootstrap
nodes in our scheme (described later), it is feasible to em-
ploy a small number of bootstrap nodes as long as they are
not overloaded with processing bootstrap requests and a de-
sired level of availability can be provided.

During bootstrap, the joining node first contacts an boot-
strap node to acquire a list of nodes randomly selected from
the bootstrap node’s local random-subset. The joining node
then attempts to establish links with da nodes in the list.
Link establishment attempts may fail because a target node
may have departed from the system or have reached its de-
gree bound. Further attempts may be needed to complete
link establishments. As soon as the initial links are es-
tablished, the joining node starts the random membership
subset component to learn the existence of other nodes and
also makes itself known to others. Periodic structure quality
maintenance and connectivity management routines are also
scheduled after the bootstrap.

3.5 Structure Quality Maintenance

A main goal of the Saxons structure management is to
continuously maintain a high-quality overlay structure con-
necting member nodes. The structure quality is determined
along three lines: low overlay latency, low hop-count dis-
tance, and high overlay bandwidth. The structure manage-
ment component runs at a certain link density, specified by a
node degree range <da�dt>. Each node can initiate the es-
tablishment of da overlay links (called active links) and each
node also passively accepts a number of link establishments
(called passive links) as long as the total degree does not
exceeds dt. The degree upper-bound is maintained to con-
trol the stress on each node’s physical access link and limit
the impact of a node failure on the Saxons structure. Note
that the average node degree is 2da under such a scheme.
Below we consider several different approaches to maintain
the structure quality. In all cases, a routine is run period-
ically to adjust active links for potentially better structure
quality.

The overlay structure quality maintenance has been stud-
ied in the context of end-system multicast. The Narada
protocol maintains a low-latency structure through greed-
ily maximizing a latency-oriented utility value [7]. This ap-
proach requires a complete membership view at each node
and a full-scale shortest-path routing protocol running on
the overlay network, which may not be feasible for large-
scale services. We include a more scalable latency-only ap-
proach in our study. This approach, called AllShort, continu-
ously adjusts active links to connect to closest hosts it could
find. More specifically, it utilizes the random sampling pol-
icy to measure the latency to a few randomly selected hosts
and replace the longest existing active links if new hosts
are closer. Note that such link adjustments must not vio-
late rules in the Saxons connectivity support described in
the next section.

Latency-only protocols like AllShort tend to create mesh
structures with large hop-count distances. Consider a two-
dimensional space with uniform node density and assume
the network latency is proportional to the Cartesian distance.
Let n be the total number of nodes and assume the node
degree is bounded by a constant. Latency-only protocols
would create grid-like structures with the hop-count diame-
ter of O(

p
n), much larger than the O(ln(n)) diameter for

randomly connected structures [3]. A straightforward idea
is to add some random links into the structure to reduce
the overlay hop-count distance. The second approach we
consider, called ShortLong, was proposed by Ratnasamy et
al [27]. In this approach, each node picks da=2 neighbors
closest to itself and chooses the other da=2 neighbors at ran-
dom (called long links).

However, neither of the above schemes considers the
overlay bandwidth. To this end, we propose the third ap-
proach, called ShortWide, that also optimizes the overlay
structure for high bandwidth. In this approach, half of the
active links are still maintained for connecting to closest
hosts each node could find. The other half are connected
to randomly chosen hosts with high bandwidth (we call

these wide links). The wide links are also maintained us-
ing random sampling, although at a much lower adjustment
frequency and higher adjustment threshold than latency-
oriented link adjustments. These are made necessary by
the high overhead and inaccuracy of bandwidth measure-
ments. Additionally, the high adjustment threshold pre-
serves a large amount of randomness in the overlay struc-
ture, which is important for achieving low overlay hop-
count distance.

It should be noted that latency and bandwidth measure-
ments may not be always accurate. In order to avoid link
oscillations, we require that a link adjustment occurs only
when the new link is shorter or wider than the existing over-
lay link for more than a specified threshold.

3.6 Connectivity Support

In large-scale self-organizing overlay services, the fault or
departure of a few bridging nodes may cause the partition of
remaining nodes. Without careful consideration, the struc-
ture quality maintenance may also create overlay partition
by cutting some bridging links. Saxons provides overlay
connectivity support that actively checks the overlay con-
nectivity and repairs partitions when they occur.

The Saxons connectivity support is based on periodic
broadcasts of sequenced connectivity messages from a core
node C. Let tint be the interval between consecutive broad-
casts. The connectivity messages flood the network along
the overlay links. Node A detects a possible partition
when the connectivity message is not heard for t int + tA;C ,
where tA;C is A’s estimate of the message propagation de-
lay upper-bound from C. When a partition is detected, A
schedules a repair procedure at a random delay chosen uni-
formly from [Dltint, Dutint]. In the repair procedure, the
node randomly picks another node from its local random-
subset and attempts to establish a partition repair link. This
procedure may fail because the contacted node may have
reached its degree bound, be disconnected too, or have de-
parted from the system. The partition repair procedure is
continuously rescheduled at random delays until the connec-
tivity messages are heard again. While it is always possible
to reconnect to the network by directly establishing a link to
the core node, this should be avoided since the core could
be inundated with such requests. Nondeterministic delays
in scheduling repair procedures are important to avoid all
nodes in the partitioned network initiate such repair simul-
taneously. In many cases, successful repair at a single node
can bring the network completely connected again. This is
similar to the prevention of response implosion in the SRM
reliable multicast protocol [13].

In addition to partition repairs, Saxons also tries to avoid
partitioning caused by link adjustments of the structure
quality maintenance. This is achieved by having each node
remember its upstream link to the core, defined as the link
through which the connectivity message bearing the highest
sequence number first arrived. The structure quality mainte-
nance can avoid causing overlay partition by preserving the
upstream link to the core.

The availability of the core node is critical to the Saxons

Overhead per interval
Saxons component Active overhead Passive overhead

Membership � dt msgs � dt msgs
Connectivity � dt msgs � dt msgs

Latency meas. frs �Nl pings � frs �Nl pings
Bandwidth meas. 3 �Nb � Sb � 3 �Nb � Sb

Table 2: Saxons overhead. dt is the node degree bound and frs is
the random sampling factor. Nl and Nb are message counts for the
latency and bandwidth measurements respectively. Sb denotes the
message size for bandwidth measurements.

connectivity support. In the case of the core node failure or
physical disconnection from the network, no overlay nodes
would succeed in its regular repair procedure. At several re-
peated failures, a node will ping the core node to determine
whether a physical disconnection occurs. If so, the node
then waits for a random delay before trying to broadcast
connectivity messages as the new core node. Simultaneous
broadcasts are arbitrated based on a deterministic total order
among all nodes, e.g., ordering by IP addresses. The same
arbitration applies when multiple disconnected partitions re-
join with a core in each partition.

3.7 System Overhead

Table 2 illustrates the per-interval overhead of the Sax-
ons components under stable conditions. Note that different
Saxons components can run at different intervals. An over-
head is counted as active when the node in question initiates
the network transmission. Both the latency and bandwidth
measurements are part of the ShortWide structure quality
maintenance policy. Below we attempt to quantify the sys-
tem overhead in a typical setting. We separate the over-
head of bandwidth measurements from other overhead to
highlight its dominance in resource consumption. The con-
nectivity messages and the latency measurement messages
are small (8 bytes each) in our implementation. A member-
ship message with 20 member records at 8 bytes each2 has
a size of 160 bytes. Assume all these components run at 30-
second intervals, the node degree bound d t=16, the random
sampling factor frs=4, and the latency measurement mes-
sage count Nl=10. Accounting for the 28-byte IP and UDP
headers, the Saxons runtime overhead excluding bandwidth
measurements is about 1.3Kbps.

Bandwidth measurements are typically run at a low fre-
quency, e.g., 120-second intervals. Assume the message
count Nb=20 and message size Sb=8KB, the bandwidth
measurement overhead is about 32Kbps. The total Saxons
management cost under this protocol setting is similar to the
RON probing overhead for a 50-node overlay [1]. Note that
the Saxons overhead does not directly depend on the over-
lay size, and thus it is able to achieve high scalability. Since
most of the network overhead is caused by the bandwidth
measurement, nodes that cannot afford such overhead can
reduce the frequency of bandwidth measurements or even
disable it. This would simply result in lower performance
in overlay bandwidth. Bandwidth-oriented structure main-

2Each membership record contains a 4-byte IPv4 address and a 4-byte
timestamp.

Backbone Node count Link latency

ASmap 3,104 1�40ms
Inet 3,050 1�40ms

TransitStub 3,040 1�20ms for stub links
1�40ms for other links

AMP-all 118 measurement
AMP-domestic 108 measurement

Table 3: Backbone networks. A random bandwidth between
1.5�45Mbps and 45�155Mbps (with 50% probability for each
range) is assigned for each backbone link.

tenance can also be made more efficient by adjusting the
interval between consecutive runs depending on the system
stability. For instance, it can run less often when prior runs
result in no link adjustments, an indication that the overlay
structure has stabilized.

During service growth or frequent membership changes,
additional overhead of link adjustments is incurred for struc-
ture quality maintenance and partition repairs. We will eval-
uate such link adjustment overhead in Section 4.3.

4 Simulation Results

Our performance evaluation consists of simulations and
Internet experiments. The goal of simulation studies is to
assess the effectiveness of proposed techniques for large-
scale overlays while Internet experiments illustrate the sys-
tem performance under particular real-world environments.
We describe simulation results in this section. Section 5
presents the Saxons performance on 55 PlanetLab sites.

4.1 Simulation Methodology and Setup

We use a locally-developed discrete-event simulator in
our evaluations. We simulate all packet-level events at over-
lay nodes. We do not simulate the packet routing at the
substrate network routers. Instead, we assume shortest-path
routing in the substrate network and use that to determine
the overlay link latency and bandwidth. We acknowledge
that this model does not capture packet queuing delays or
packet losses at routers and physical links. However, such a
tradeoff is important to allow us achieve reasonable simula-
tion speed for large networks.

The substrate networks we use in the simulations are
based on four sets of backbone networks including a
measurement-based one. First, we use Internet Au-
tonomous Systems maps extracted from BGP routing table
dumps, available at NLANR [22] and at the Route Views
Archive [28]. Second, we include some transit-stub topolo-
gies generated using the GT-ITM toolkit [34]. We also
use topologies generated by the Michigan Inet-3.0 Internet
Topology Generator [33]. For ASmap and Inet topologies,
we assign a random link latency of 1�40ms. For Transit-
Stub topologies, we assign a random link latency of 1�20ms
for stub links and 1�40ms for other links. Our final set
of backbone network is based on end-to-end latency mea-
surement data among 118 Internet nodes, reported by the
NLANR Active Measurement Project [23]. Table 3 lists
some specific backbone networks we used in our evalu-

ations. The AMP-domestic network excludes 10 foreign
hosts from the full AMP dataset. These 10 hosts have
substantially larger latencies to other hosts than the aver-
age host-to-host latency. With a given backbone network,
each overlay node in our simulations is randomly attached
to a backbone node through an edge link. We assign a
random latency of 1�4ms for all edge links. In terms of
link bandwidth, a random bandwidth between 1.5�45Mbps
and 45�155Mbps (with 50% probability for each range) is
assigned for each backbone link. Edge links are assigned
100Mbps. These reflect commonly used T1, T3, OC-3, and
Ethernet links.

The evaluation results are affected by many factors, in-
cluding the substrate network topologies, protocol parame-
ters, and the combination of different schemes for various
Saxons components. Our strategy is to first demonstrate
the effectiveness of proposed techniques at a typical setting
and then explicitly evaluate the impact of various factors.
Unless stated otherwise, results in Sections 4.2 and 4.3 are
all based on the ASmap backbone topology, the Rsampling
scheme for finding nearby hosts, and a node degree range
of <4�16> (i.e., da=4 and dt=16). All periodic Saxons
routines run at 30-second intervals except for bandwidth-
oriented structure adjustments, which run at 120-second in-
tervals. The link adjustment threshold for the structure qual-
ity maintenance is maxf4ms, 10%g for short links (i.e., a
new link replaces an old link when it is at least 4ms and 10%
shorter in latency) and maxf1.0Mbps, 20%g for wide links.
All other protocol parameters default to those described in
Section 3.7.

4.2 Structure Quality

We compare different quality maintenance approaches in
constructing high-quality overlay structure. AllShort rep-
resents protocols optimized solely for low overlay latency.
ShortLong introduces a certain degree of randomness to the
overlay structure. ShortWide is designed for achieving low
overlay latency, low hop-count distance, and high overlay
bandwidth at the same time. We also include a Random ap-
proach in our comparison. This approach makes no quality-
oriented link adjustment after randomly establishing links
during bootstrap.

Overlay latency. Figure 6 illustrates the structure qual-
ity on overlay latency at different overlay sizes. For each
overlay size, nodes join the network at the average rate of
10 joins/second with exponentially distributed inter-arrival
time. Node joins stop when the desired overlay size is
reached and the measurement results are taken after the sys-
tem stabilizes, i.e., when the average link adjustment rate
falls below one per hour per node. Figure 6(A) and 6(B)
show the results in overlay path latency and the relative de-
lay penalty respectively. We show both the average values
and the 95 percentile values for the overlay path latency re-
sults. 95 percentile values do not exhibit different patterns
from the average values and we do not show them in other
figures for clarity. Overall, we observe all three schemes
perform significantly better than the random overlay con-
struction, especially for large networks.

100 200 400 800 1600 3200 6400 12800
0

50

100

150

200

250

Overlay size (in number of nodes)

La
te

nc
y

(in
 m

ill
is

ec
on

d)
(A) Overlay path latency (average and 95 percentile)

Random
AllShort
ShortLong
ShortWide (Saxons)

100 200 400 800 1600 3200 6400 12800
0

0.5

1

1.5

2

2.5

3

3.5

4

Overlay size (in number of nodes)

R
el

at
iv

e
de

la
y

pe
na

lty

(B) Average overlay RDP

Random
AllShort
ShortLong
ShortWide (Saxons)

Figure 6: Overlay latency.

100 200 400 800 1600 3200 6400 12800
0

1

2

3

4

5

6

7

Overlay size (in number of nodes)

A
ve

ra
ge

 h
op

−
co

un
t d

is
ta

nc
e

(A) Average hop−count distance

Random
AllShort
ShortLong
ShortWide (Saxons)

0 2 4 6 8
0%

20%

40%

60%

80%

100%

Hop−count distance

C
um

ul
at

iv
e

pe
rc

en
til

e

(B) Cumulative probability of hop−count distances

Random
AllShort
ShortLong
ShortWide (Saxons)

Figure 7: Hop-count distance.

100 200 400 800 1600 3200 6400 12800
0

2

4

6

8

10

12

14

Overlay size (in number of nodes)

B
an

dw
id

th
 (

in
 M

bp
s)

(A) Average bandwidth along shortest paths

Random
AllShort
ShortLong
ShortWide (Saxons)

100 200 400 800 1600 3200 6400 12800
0

5

10

15

20

25

30

Overlay size (in number of nodes)

B
an

dw
id

th
 (

in
 M

bp
s)

(B) Average bandwidth along widest paths

Random
AllShort
ShortLong
ShortWide (Saxons)

Figure 8: Overlay bandwidth.

Hop-count distance. Figure 7(A) shows the results on
structure hop-count distance averaged over all node pairs at
different overlay sizes. Figure 7(B) illustrates the cumu-
lative probability of all-pair hop-count distances for 3200-
node overlays. We observe that AllShort performs much
worse than other schemes, with around 47% larger average
overlay hop-count distance for 12800-node overlays. All
other three approaches perform very close in the hop-count
distance due to the employment of randomness in the over-
lay structure construction [3].

Overlay bandwidth. Figure 8 shows the average overlay
bandwidth along shortest paths and widest paths. We ob-
serve that ShortWide outperforms other approaches in terms
of overlay bandwidth. For 12800-node overlays, the im-
provement over its nearest competitor is 15% for the band-
width along shortest paths and 12% for the bandwidth along
widest paths. We also observe that both AllShort and Short-
Long significantly outperform Random in overlay band-
width. This is because short overlay paths often have high
bandwidth. Such an inverse correlation between latency and
bandwidth is even stronger for TCP-based data transfer due
to its various control mechanisms.

In summary, the ShortWide structure management policy
outperforms other policies in terms of overlay path band-
width while achieving competitive performance in terms of
overlay path latency and hop-count distance. The results
also confirm our conjecture that the AllShort policy could
produce overlay structures with high hop-count distances.

4.3 Stability and Connectivity

In this section, we first study the system stabilization at
the startup, i.e., right after a large number of nodes have

joined the overlay. We then examine Saxons’s stability and
connectivity support under frequent node joins and depar-
tures.

0 20 40 60 80 100 120
1.8

2

2.2

2.4

2.6

Time after growth (in minutes)

R
el

at
iv

e
de

la
y

pe
na

lty

(A) Stabilization of the average overlay RDP

0 20 40 60 80 100 120
22

24

26

28

30

Time after growth (in minutes)

B
an

dw
id

th
 (

in
 M

bp
s)

(B) Stabilization of the average overlay bandwidth along widest paths

0 20 40 60 80 100 120
0

10

20

30

Time after growth (in minutes)A
dj

us
tm

en
ts

 p
er

 h
ou

r
pe

r
no

de

(C) Stabilization of the average overlay link adjustments

Figure 9: Stabilization after growth (3200-node overlay).

Figure 9 shows the system stabilization at the overlay
startup. In this simulation, nodes join the network at the av-
erage rate of 10 joins/second with exponentially distributed
inter-arrival time. Node joins stop when the desired overlay
size is reached and we measure network samples after this
point to assess the system stabilization. Figures 9(A) and
9(B) illustrate the stabilization of average overlay RDP and

Average node Connectivity Relative delay Hop-count Bandwidth along Average per-node link adjustments
lifetime penalty distance widest paths Partition repair Quality maintenance

7.5 minutes 96.0% 4.13 6.13 18.08 Mbps 0.24 links/hour 17.04 links/hour
15 minutes 99.1% 3.93 6.03 19.57 Mbps 0.07 links/hour 11.13 links/hour
30 minutes 100.0% 3.76 6.02 21.50 Mbps 0.02 links/hour 6.85 links/hour

1 hour 100.0% 3.55 5.99 22.60 Mbps 0.01 links/hour 4.08 links/hour
2 hours 100.0% 3.49 5.99 24.09 Mbps 0.00 links/hour 2.34 links/hour
Infinity 100.0% 3.41 5.97 26.73 Mbps 0.00 links/hour 0.00 links/hour

Table 4: Stability and connectivity under frequent node joins and departures (3200-node overlay).

average overlay bandwidth respectively. We also show the
average link adjustment rate in Figures 9(C). The RDP and
overlay bandwidth values are sampled at 30-second inter-
vals and the link adjustment counts are accumulated at the
same frequency. We observe that most of the link adjust-
ments occur in the first 20 minutes. Further adjustments
occur at very low rate (less than 2 links/hour per node),
but they are very important in continuously optimizing the
structure quality in terms of overlay latency and bandwidth.
We do not show the hop-count distance stabilization which
stays mostly the same over the whole period. This is because
the random structure generated by node bootstraps already
has a low overlay hop-count distance.

Table 4 illustrates the Saxons stability and connectivity
support under frequent node joins and departures at various
membership change rates for 3200-node overlays. The par-
tition repair scheduling delay parameters are set as D l=0.5
and Du=4.0 (defined in Section 3.6). Individual node life
times are picked following the exponential distribution with
the proper mean. We include results at some unrealistically
high rates of membership changes (e.g., average node life-
time of 7.5 minuets) to assess the worst case performance.
For the same reason, we use a relatively sparse overlay struc-
ture with the node degree range <2�8>. Therefore, perfor-
mance values here is not directly comparable with results
shown earlier. The connectivity values in Table 4 are the per-
centage of fully connected network snapshots out of 5,000
samples. Other values are the average of samples taken at
30-second intervals. We observe that the Saxons connec-
tivity support keeps the overlay structure mostly connected
even under highly frequent overlay membership changes.
Furthermore, this connectivity support is provided at a very
low rate of link adjustments (up to 0.24 links/hour per node).
We also observe that the structure quality degrades grace-
fully as the overlay membership changes become more fre-
quent. Such structure quality maintenance incurs a moder-
ate link adjustment rate of up to 6.85 links/hour for average
node lifetime of 30 minutes or longer.

4.4 Impact of Factors

We study the performance impact of backbone topolo-
gies, node degree ranges, and the scheme for finding nearby
hosts. All results shown in this section are for 3200-node
overlays. Figure 10 illustrates the impact of different back-
bone topologies on the average and 95 percentile overlay
RDP. We observe that the performance results are largely
stable with different backbone topologies. Overlay RDPs

are lower for AMP topologies due to their small size. Very
similar results are found for overlay bandwidth and hop-
count distance. We do not show them here due to the space
limitation.

Figure 11 shows the impact of node degree ranges on
the overlay RDP. We observe that overlays with higher link
densities tend to make the existence of high-quality paths
more likely. However, the relative performance difference
among various overlay structure construction approaches re-
main mostly unchanged. Again, this conclusion is also true
for overlay bandwidth and hop-count distance.

Figure 12 shows the overlay RDP for different structure
construction schemes under Rsampling and the landmark-
based Cartesian distance approach. The Landmark approach
uses 8 landmarks in this experiment. We also show the re-
sults for an Ideal case where the actually closest host is al-
ways chosen. The result for Random is only shown for the
Landmark approach since its performance is not affected by
the policy for finding nearby hosts. We observe that Rsam-
pling constructs structures with less overlay latency com-
pared with the Landmark approach. In particular, it achieves
24% less overlay RDP for AllShort. This is because Rsam-
pling can gradually converge to the optimal selection when
running repeatedly. Though such performance is achieved at
the cost of substantially more link adjustments during stabi-
lization, we believe the benefit of higher-quality connectiv-
ity structure would offset such cost in the long run. Rsam-
pling still generates around 10% higher RDP than Ideal
since link adjustments stop when new links are no better
than existing links over the specified threshold.

5 Implementation and Experimentation on
PlanetLab

We have made a prototype implementation of the Saxons
overlay structure management layer. Our prototype assumes
the availability of a DNS-like naming system that maps each
overlay group name to a small number of bootstrap nodes in
a round-robin fashion. Most of the Saxons components are
implemented in a single event-driven daemon while the net-
work measurement daemon runs separately due to its time-
sensitive nature. Our Saxons prototype can run as a stan-
dalone process communicating through UNIX domain sock-
ets with hosted overlay applications linked with a Saxons
stub library. Alternatively, the whole Saxons runtime can
be dynamically linked and run inside the application pro-
cess space. A standalone Saxons process allows possible

ASmap Inet TransitStub AMP−allAMP−domestic
0

1

2

3

4

5

6

7

8
R

D
P

 (
av

er
ag

e
an

d
95

 p
er

ce
nt

ile
)

Random
AllShort
ShortLong
ShortWide (Saxons)

Figure 10: Backbone topologies.

<2−8> <4−16> <8−32> <16−64>
0

2

4

6

8

10

R
D

P
 (

av
er

ag
e

an
d

95
 p

er
ce

nt
ile

)

Random
AllShort
ShortLong
ShortWide (Saxons)

Figure 11: Node degree ranges.

Landmark Rsampling Ideal
0

1

2

3

4

5

6

R
D

P
 (

av
er

ag
e

an
d

95
 p

er
ce

nt
ile

)

Random
AllShort
ShortLong
ShortWide (Saxons)

Figure 12: Finding nearby hosts.

runtime overhead sharing when overlay nodes host multiple
services.

/* type def. of link adjustment callback functions */
typedef int (*SX_CALLBACK)(int linkcnt, link_t *links);

/* join an overlay group */
int sx_join(char *olgroup, int activedegree,

int maxdegree, SX_CALLBACK cb_adjustment);

/* leave an overlay group */
int sx_leave(char *olgroup);

/* get directly attached overlay links */
int sx_getlinks(int *ptr_linkcnt, link_t *links);

Figure 13: The core C/C++ API for Saxons.

Figure 13 shows the core C/C++ interface for developing
overlay applications on Saxons. In particular, we provide
two ways for overlay applications to access the structure
information in Saxons. First, they can directly query the
Saxons layer to acquire information about attached overlay
links (sx getlinks). They can also provide a nonblocking
callback function3 (cb adjustment) at the startup. If so,
Saxons will invoke the application-supplied callback func-
tion each time an overlay link adjustment occurs. Link ad-
justment callbacks are useful for applications that maintain
link-related state, such as various overlay routing services.
Without the callback mechanism, they would have to poll
the Saxons layer continuously to keep their link-related state
up-to-date.

We conducted experiments on the PlanetLab testbed [25]
to evaluate the Saxons performance in a real-world environ-
ment. We compare the overlay structure quality achieved
by various quality maintenance policies: Random, AllShort,
ShortLong, and ShortWide. In the experiments, nodes join
the overlay network at the average rate of one per 3 seconds.
Measurement results are taken when the average link adjust-
ment rate falls below one per hour per node. Overlay struc-
tures are configured with the node degree range of <4�16>.
Figure 14 illustrates the Saxons overlay latency and band-
width CDFs for all node pairs among 55 PlanetLab nodes,
all from unique wide-area sites. We provide round-trip la-
tency results because they are easier to measure than one-
way latencies. Note that the simulation results shown earlier

3Callback functions are not allowed to block on I/Os and they must
return in a bounded amount of time.

0 50 100 150 200 250 300
0%

20%

40%

60%

80%

100%

Latency (in millisecond)

(A) Cumulative probability of overlay path round−trip latency

Random
AllShort
ShortLong
ShortWide (Saxons)

1.25 2.5 5 10 20 40 80
0%

20%

40%

60%

80%

100%

Bandwidth (in Mbps)

(B) Cumulative probability of widest path bandwidth

Random
AllShort
ShortLong
ShortWide (Saxons)

Figure 14: Saxons overlay latency and bandwidth CDFs for all
site pairs among 55 PlanetLab sites. The X-axis for Figure (B) is
in the log scale.

are for one-way latencies. We do not show the performance
on the overlay hop-count distance because the overlay size
is too small to make this metric meaningful.

In terms of overlay latency, all three quality maintenance
policies outperform the random overlay structure with over
18% less overlay path latency in average. This performance
difference is close to the simulation result for small overlays
in Figure 6(A). As for the bandwidth, we observe that most
of the node pairs have 10Mbps overlay bandwidth between
them. As discussed in Section 3.2, this is because most of
the PlanetLab nodes are equipped with a packet filter [9] that
limits the per-user outgoing bandwidth at 10Mbps [4]. With
only 8 out of 55 nodes that are not subject to the bandwidth
limit, ShortWide is able to provide high-speed overlay path

(>10Mbps) for three times as many node pairs as its nearest
competitor. This quantitative result is not typical due to the
particular bandwidth control mechanism equipped on many
of the PlanetLab nodes. Nonetheless, it provides an example
of Saxons’s ability to discover high bandwidth paths when
they exist.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

←All sites complete bootstrap

←5 sites fail
←Site #1 rejoins

←Site #2 rejoins
←Site #3 rejoins

←Site #4 rejoins
←Site #5 rejoins

Time after all sites have joined (in minutes)

A
dj

us
te

m
en

ts
 p

er
 h

ou
r

pe
r

no
de

Figure 15: Saxons link adjustments on 55 PlanetLab sites.

Figure 15 shows the Saxons structure stability during
membership changes. Again, nodes join the overlay net-
work at the average rate of one per 3 seconds. We start
tracking the link adjustment counts right after the last node
has joined. Results are accumulated at 30-second intervals.
We observe that the link adjustment rate mostly fall below
5 per hour per node after the 30th minute. We then inject
a simultaneous 5-node failure at the 60th minute and we
let them rejoin the overlay one by one at 3-minute inter-
vals. We observe that the link adjustment activity is mod-
erate (mostly under 10 per hour per node) during the mem-
bership changes. After the 100th minute, the average link
adjustment count falls around 2 per hour per node, which
indicates around one link adjustment at a single node during
each 30-second interval.

6 Service Construction

Saxons actively maintains a stable and high quality over-
lay structure with partition repair support. Services can di-
rectly utilize the Saxons structure for overlay communica-
tion. Saxons can also benefit unicast or multicast overlay
path selection services [1, 7, 17] by providing them a small
link selection base, thus making them scalable without hurt-
ing their performance potential. In this section, we describe
the construction of two services (query flooding and overlay
multicast) that utilize the Saxons overlay structure in differ-
ent ways. We have also implemented a Saxons-based dis-
tributed hash table and compared its performance against
a well-known DHT protocol. Results of that work are re-
ported in [30].

Saxons-based query flooding. We implemented the
Gnutella query flooding protocol on top of the Saxons struc-
ture management layer. The default Gnutella protocol uses
a bounded-degree random structure, which is similar to the
Random structure we used in our evaluations. Our service
directly uses the Saxons structure for query flooding with-
out any further link selection. It uses the Saxons direct link
query interface instead of the callback interface because no
link-related state is actively maintained at the service-level.
The low overlay hop-count distance in the Saxons structure

allows query flooding to reach more nodes at a particular
TTL. The low overlay latency allows fast query response
while the high overlay bandwidth alleviates the high net-
work load of query flooding. We do not provide perfor-
mance results in this paper because they closely match the
raw Saxons performance shown earlier.

Saxons-based overlay multicast. We also implemented
an overlay multicast routing service on Saxons. Similar
to DVMRP [32], our multicast service is based on Re-
verse Path Forwarding over a distance vector unicast rout-
ing protocol. The service actively monitors link latency
and bandwidth between Saxons neighbors while the DV
unicast routing protocol maintains path latency and band-
width by aggregating the link properties. We employ a
simple path cost function in the DV protocol that con-
siders path latency, bandwidth, and hop-count distance:
cost = latency

Lunit
+ hop

Hunit
� bandwidth

Bunit
.

We empirically choose Lunit=20ms, Hunit=1; and
Bunit=1.0Mbps in our implementation. Note that our main
purpose is to demonstrate the effectiveness of Saxons in sup-
porting overlay service construction. Therefore we do not
pursue optimized service implementation in this paper.

We evaluated the performance of the Saxons-based
overlay multicast routing service on the PlanetLab
testbed. We choose a PlanetLab node that does not
have outgoing bandwidth control as the multicast source:
planetlab2.cs.duke.edu. The overlay structure is con-
figured at the node degree range of <4�12>. We compare
the performance of Saxons-based overlay multicast with the
same multicast service running on top of a random overlay
structure. For additional comparison purposes, we approx-
imate the ideal multicast performance using the indepen-
dent direct unicast, which measures the latency and band-
width along the direct Internet path from the source to each
receiver in the absence of simultaneous traffic. Figure 16
illustrates the round-trip latency from the source to all re-
ceivers, ranked increasingly on the latency. We observe that
Saxons-based overlay multicast achieves 24% less latency
in average than multicast over random structure. Compared
with independent direct unicast, overlay multicast produces
longer latency due to its multi-hop forwarding nature.

We also measured the multicast bandwidth on the Plan-
etLab testbed. We conducted two experiments, one with a
1.2Mbps multicast stream and another with a more aggres-
sive 2.4Mbps stream. For unicast transport along overlay
links, we use the default UDP service without lost recovery
or congestion control. Congestion-controlled transport pro-
tocols such that TFRC [12] may improve the performance of
our service implementation. However, it is not crucial to our
purpose of evaluating the Saxons overlay structure manage-
ment. Figure 17 shows observed bandwidth at all receivers,
ranked increasingly on the bandwidth. We observe that the
bandwidth performance of Saxons-based overlay multicast
is quite close to that of the independent direct unicast for
both 1.2Mbps and 2.4Mbps streams. Compared with multi-
cast over random structure, the Saxons-based multicast pro-
vides near-loss-free (< 5% loss) data delivery to more than
4 times as many multicast receivers.

0 10 20 30 40 50
0

50

100

150

200

250

300

350

Rank

R
ou

nd
−

tr
ip

 la
te

nc
y

(in
 m

ill
is

ec
on

d)
Multicast over random structure
Multicast over ShortWide (Saxons)
Independent direct unicast

Figure 16: Multicast latency over 52 Plan-
etLab sites.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

Rank

B
an

dw
id

th
 (

in
 M

bp
s)

(A) Bandwidth for 1.2 Mbps stream

Multicast over random structure
Multicast over ShortWide (Saxons)
Independent direct unicast

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Rank

B
an

dw
id

th
 (

in
 M

bp
s)

(B) Bandwidth for 2.4Mbps stream

Multicast over random structure
Multicast over ShortWide (Saxons)
Independent direct unicast

Figure 17: Multicast bandwidth on 52 PlanetLab sites.

In addition to help the multicast service to achieve high
performance, Saxons is also crucial for the scalability of
this service. While it is conceivable for the multicast rout-
ing to run directly on the completely connected overlay, the
overhead of tracking link properties and maintaining routing
indexes along overlay links would become prohibitively ex-
pensive when the overlay grows to a large size. It should
be noted that choosing an appropriate node degree range
for the Saxons structure often has a significant impact on
service performance. A highly connected Saxons struc-
ture makes the existence of high-performance overlay routes
more likely. However, discovering them would consume
more overhead at the service-level.

7 Related Work

The concept of structure-first overlay construction has
been studied before in the Narada end-system multicast pro-
tocol [7]. Narada maintains a low latency mesh structure
on top of which a DVMRP-style multicast routing protocol
handles the data delivery. However, Narada is not designed
for large-scale systems. For instance, its group management
protocol requires each node to maintain the complete list
of other overlay members, which would require excessive
maintenance overhead for large overlays.

Prior studies have examined substrate-aware techniques
in the construction of many Internet overlay services, in-
cluding unicast overlay path selection (e.g., RON [1]),
end-system multicast protocols (e.g., Overcast [17] and
NICE [2]) and scalable DHT protocols (e.g., Binning [27],
Brocade [35], and Pastry [6]). These studies focused on
specific services and substrate-aware techniques were often
tightly integrated with the service construction. Saxons sup-
ports a comprehensive set of performance objectives in a
separate overlay structure management layer and therefore
it can be used as a building block to benefit the construction
of a wide range of services. Additionally, we are unaware
of any prior work on scalable overlay structure management
that explicitly considers the overlay path latency, hop-count
distance, and the overlay bandwidth at the same time.

Nakao et al. recently proposed a multi-tier overlay rout-
ing scheme [20]. In their approach, several overlay rout-
ing services are constructed on top of a topology probing

kernel, which acquires AS-level Internet topology and rout-
ing information from nearby BGP routers. Saxons differs
from their work by constructing the overlay structure using
end-to-end network measurements. More importantly, their
work does not explicitly address the multiple structure qual-
ity metrics that are investigated in this paper.

Many prior studies provided ideas that are related to the
design of various Saxons components. For instance, a num-
ber of studies have examined scalable estimation schemes
for finding nearby Internet hosts, including Hotz [16],
IDMaps [14], GNP [21], and Binning [27]. While Sax-
ons can utilize any of the existing techniques, we also in-
troduce a light-weight random sampling approach to locate
nearby hosts without the need of infrastructural support or
established landmark hosts. Additionally, Kosti�c et al. re-
cently proposed a random membership subset service for
tree-shaped overlay structures [18]. This approach ensures
that membership in the subset changes periodically and with
uniform representation of all overlay nodes. The key differ-
ence with our random membership subset component is that
Saxons is designed to support mesh-like overlay structures.

8 Concluding Remarks

In this paper, we propose Saxons, a substrate-aware over-
lay structure management layer that assists the construction
of scalable Internet overlay services. Saxons dynamically
maintains a high quality structure with low overlay latency,
low hop-count distance, and high overlay bandwidth. At the
same time, Saxons provides connectivity support to actively
repair overlay partitions in the presence of highly frequent
membership changes. Simulations and experiments on 55
PlanetLab sites demonstrate the performance, stability, and
connectivity support of our proposed design. Additionally,
this paper also describes the construction of two Saxons-
based overlay services.

It is conceivable for a common overlay structure manage-
ment layer to allow runtime overhead sharing when overlay
nodes host multiple services. However, different overlay
services often desire different link density, structure qual-
ities, and stability support. Additionally, although over-
lay groups may overlap, they often contain a substantially
large number of non-overlapping nodes. These factors make

it difficult for multiple services to share the same overlay
structure. As a result, we believe it is more feasible for shar-
ing low-level activities such as link property measurements.
For instance, the discovery of a high bandwidth link to a par-
ticular node may interest multiple hosted services. Further
investigation on this issue is needed in the future.

Acknowledgment: This work was supported in part by
NSF grants CCR-0306473 and ITR/IIS-0312925. We would
like to thank Yuan Sun, the URCS systems group, the anony-
mous referees, and our shepherd David Culler for their valu-
able comments. We are also indebted to Liudvikas Bukys
and the PlanetLab support for making possible the wide-
area experimentation in this study.

References
[1] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Mor-

ris. Resilient Overlay Networks. In Proc. of the ACM SOSP,
pages 131–145, Banff, Canada, October 2001.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able Application Layer Multicast. In Proc. of the ACM SIG-
COMM, pages 205–217, Pittsburgh, PA, August 2002.

[3] B. Bollobas. Random Graphs. Academic Press, London, UK,
1985.

[4] P. Brett. The PlanetLab support team, August 2003. Personal
communication.

[5] R. L. Carter and M. E. Crovella. Measuring Bottleneck Link
Speed in Packet-Switched Networks. Technical Report BU-
CS-96-006, Computer Science Department, Boston Univer-
sity, March 1996.

[6] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploit-
ing Network Proximity in Peer-to-Peer Overlay Networks. In
Proc. of the FuDiCo Workshop, Bertinoro, Italy, June 2002.

[7] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End System
Multicast. In Proc. of the ACM SIGMETRICS, pages 1–12,
Santa Clara, CA, June 2000.

[8] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and B. Wi-
ley. Protecting Free Expression Online with Freenet. IEEE
Internet Computing, 6(1):40–49, 2002.

[9] M. Devera. Hierarchical token bucket.
http://luxik.cdi.cz/�devik/qos/htb/.

[10] P. Th. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec. Lightweight Prob-
abilistic Broadcast. ACM Trans. on Computer Systems,
21(4):341–374, November 2003.

[11] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary Cache:
A Scalable Wide-Area Web Cache Sharing Protocol. In Proc.
of the ACM SIGCOMM, pages 254–265, Vancouver, BC,
September 1998.

[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based Congestion Control for Unicast Applications. In Proc.
of the ACM SIGCOMM, pages 43–56, Stockholm, Sweden,
August 2000.

[13] S. Floyd, V. Jacobson, and S. McCanne. A Reliable Multicast
Framework for Light-weight Sessions and Application Level
Framing. In Proc. of the ACM SIGCOMM, pages 342–356,
Cambridge, MA, August 1995.

[14] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewicz,
and Y. Jin. An Architecture for a Global Internet Host Dis-
tance Estimation Service. In Proc. of the IEEE INFOCOM,
New York, NY, March 1999.

[15] J. Guyton and M. Schwartz. Locating Nearby Copies of
Replicated Internet Servers. In Proc. of the ACM SIGCOMM,
pages 288–298, Boston, MA, September 1995.

[16] S. Hotz. Routing Information Organization to Support Scal-
able Routing with Heterogeneous Path Requirements. PhD
thesis, Dept. of Computer Science, University of Southern
California, 1994.

[17] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole Jr. Overcast: Reliable Multicasting with
an Overlay Network. In Proc. of the USENIX OSDI, San
Diego, CA, October 2000.

[18] D. Kosti�c, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vah-
dat. Using Random Subsets to Build Scalable Network Ser-
vices. In Proc. of the USENIX Symp. on Internet Technolo-
gies and Systems, Seattle, WA, March 2003.

[19] Limeware. http://www.limeware.com.

[20] A. Nakao, L. Peterson, and A. Bavier. A Routing Under-
lay for Overlay Networks. In Proc. of the ACM SIGCOMM,
Karlsruhe, Germany, August 2003.

[21] E. Ng and H. Zhang. Predicting Internet Network Distance
with Coordinates-based Approaches. In Proc. of the IEEE
INFOCOM, New York, NY, June 2002.

[22] National Laboratory for Applied Network Research.
http://moat.nlanr.net/Routing/rawdata.

[23] Active Measurement Project at the National Laboratory for
Applied Network Research. http://amp.nlanr.net.

[24] V. Paxson. End-to-End Internet Packet Dynamics. In Proc.
of the ACM SIGCOMM, pages 139–152, Cannes, France,
September 1997.

[25] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into the In-
ternet. In Proc. of the HotNets Workshop, Princeton, NJ, Oc-
tober 2002.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proc. of the ACM SIGCOMM, pages 161–172, San Diego,
CA, August 2001.

[27] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server Se-
lection. In Proc. of the IEEE INFOCOM, New York, NY,
June 2002.

[28] University of Oregon Route Views Archive Project.
http://archive.routeviews.org.

[29] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson.
The End-to-End Effects of Internet Path Selection. In Proc.
of the ACM SIGCOMM, pages 289–299, Cambridge, MA,
August 1999.

[30] K. Shen. Distributed Hashtable on Pre-structured Over-
lay Networks. Technical Report TR831, Dept. of Com-
puter Science, University of Rochester, January 2004.
http://www.cs.rochester.edu/trs/systems-trs.html.

[31] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proc. of the ACM SIG-
COMM, pages 149–160, San Diego, CA, August 2001.

[32] D. Waitzman, C. Partridge, and S. Deering. Distance Vec-
tor Multicast Routing Protocol. IETF RFC-1075, November
1988.

[33] J. Winick and S. Jamin. Inet-3.0: Internet Topology Gen-
erator. Technical Report CSE-TR-456-02, Dept. of EECS,
University of Michigan, 2002.

[34] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
Model an Internetwork. In Proc. of the IEEE INFOCOM, San
Francisco, CA, March 1996.

[35] B. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. D. Ku-
biatowicz. Brocade: Landmark Routing on Overlay Net-
works. In Proc. of the Workshop on Peer-to-Peer Systems,
Cambridge, MA, March 2002.

