
Competitive Prefetching for Data-Intensive Online Servers�

Chuanpeng Li
cli@cs.rochester.edu

Dept. of Computer Science
University of Rochester

Athanasios E. Papathanasiou
papathan@cs.rochester.edu

Dept. of Computer Science
University of Rochester

Kai Shen
kshen@cs.rochester.edu

Dept. of Computer Science
University of Rochester

Abstract

In a disk I/O-intensive online server, sequential data ac-
cesses of one application instance can be frequently in-
terrupted by other concurrent processes. Although ag-
gressive I/O prefetching can improve the granularity of
sequential data access, it must control the I/O bandwidth
wasted on prefetching unneeded data. In this paper, we
propose a competitive prefetching strategy that balances
the overhead of disk I/O switching and that of unnec-
essary prefetching. Based on a simple model, we show
that the performance of our strategy (in terms of I/O
throughput) is at least half that of the optimal offline pol-
icy. We have implemented competitive prefetching in
the Linux 2.6.3 kernel and conducted experiments based
on microbenchmarks and two real applications (an index
searching server and the Apache Web server). Our eval-
uation results demonstrate that competitive prefetching
can improve the throughput of real applications by 15%–
47%. The improvement is achieved without any applica-
tion assistance or changes.

1 Introduction

Rapidly emerging Internet services allow interactive ac-
cesses from a large number of concurrent users. Earlier
studies have identified a number of issues associated with
server concurrency management, including TLB misses,
scheduling overhead, and lock contention. Techniques,
such as event-driven concurrency management [14, 19]
and user-level threads [18], have been proposed to avoid
kernel-level context switching and to reduce the overhead
of synchronization. However, such techniques mostly
target CPU-intensive workloads with light disk I/O ac-
tivities (e.g., the typical Web server workload). In com-
parison, system support for concurrent online workloads
that access a large amount of disk-resident data has re-

�This work was supported in part by the National Science Founda-
tion grants CCR-0306473 and ITR/IIS-0312925.

ceived limited attention. Examples of such servers in-
clude large-scale Web search engines [3] that support in-
teractive search on terabytes of indexed Web pages and
the bioinformatics database GenBank [4] that allows on-
line queries on over 100 GB genetic and protein sequence
data.

For data-intensive online servers, the I/O efficiency typ-
ically dominates the overall system throughput when the
dataset size far exceeds the available server memory.
During concurrent execution, sequential data access of
one request handler can be frequently interrupted by other
active request handlers in the server. Such a phenomenon,
which we call disk I/O switching, may severely affect I/O
efficiency due to long disk seek and rotational delays.

Anticipatory disk I/O scheduling [10] alleviates this prob-
lem by temporarily idling the disk so that consecutive
I/O requests that belong to the same request handler
are serviced without interruption. However, anticipatory
scheduling may not be effective when substantial think
time exists between consecutive I/O requests. The antici-
pation may also be rendered ineffective when a request
handler has to perform some interleaving synchronous
I/O that does not exhibit strong locality. Such a situ-
ation arises when a request handler simultaneously ac-
cesses multiple data streams. For example, the index
searching server needs to produce the intersection of mul-
tiple sequential keyword indexes when answering multi-
keyword queries.

Improving the I/O efficiency can be accomplished by em-
ploying a large I/O prefetching depth. A larger prefetch-
ing depth results in less frequent I/O switching, and con-
sequently yields fewer disk seeks per time unit. Unfor-
tunately, kernel-level prefetching may retrieve unneeded
data due to the lack of knowledge on how much data
are desired by the application. Such a waste tends to be
magnified by aggressive prefetching policies. This paper
investigates I/O prefetching technique that maintains the
balance between the overhead of I/O switching and that
of unnecessary prefetching.



Requests 
from the 
network

Timeline for a concurrent execution

Complete

Complete

Complete

Disk I/O CPU
Waiting for 
resources

Figure 1: Concurrent application execution in a data-intensive online server.

The rest of the paper is organized as follows. Sec-
tions 1.1 and 1.2 describe the related work and the char-
acteristics of targeted data-intensive online servers. Sec-
tion 2 presents the design of our proposed competi-
tive prefetching technique and its implementation in the
Linux 2.6.3 kernel. Section 3 provides the performance
results based on microbenchmarks and real applications.
Section 4 discusses several remaining issues and Sec-
tion 5 concludes the paper.

1.1 Related Work

I/O prefetching has long been studied by researchers.
Cao et al. first explored application-controlled prefetch-
ing with complete knowledge of I/O access pattern [5].
Patterson et al. proposed a cost-benefit model for eval-
uating the benefit of prefetching based on application
hints [16]. Their results suggested a limited prefetching
depth up to a process’ prefetch horizon under the assump-
tion of no disk congestion. In order to maximize the ap-
plicability, our work in this paper focuses on transparent
OS support that can improve the server throughput with-
out any application assistance or changes.

Previous studies have examined ways to acquire or pre-
dict I/O access pattern information without direct appli-
cation involvement, including modeling and analysis of
interesting system events [13, 20]. Aggressive prefetch-
ing was also proposed to increase disk access burstiness
and thus to save energy for mobile devices [15]. Fraser
and Chang suggested that speculative I/O prefetching can
reduce the running time for explicit I/O and swapping ap-
plications [8]. The above studies make no specific at-
tempt to increase the granularity of sequential I/O ac-
cesses or to reduce the I/O switching frequency in a con-
current on-demand server.

The recent work by Carrera and Bianchini examined
disk controller cache management and proposed two
firmware-level techniques to improve the disk through-
put for data-intensive servers [6]. Our work shares their

objective while focusing on the operating system-level
techniques. Anastasiadis et al. explored an application-
level block reordering technique that can reduce server
disk traffic when large content files are shared by concur-
rent clients [1]. Our work provides transparent operating
system level support for a wider scope of data-intensive
workloads.

1.2 Targeted Application Characteristics

Our work focuses on online servers supporting highly
concurrent workloads that access a large amount of lo-
cally attached disk-resident data. In such servers, each in-
coming request is serviced by a request handler upon ar-
riving from the network (shown in Figure 1). The request
handler then repeatedly accesses disk data and consumes
the CPU before completion. A request handler may block
if the needed resource is unavailable. While request han-
dlers consume both disk I/O and CPU resources, the over-
all server throughput is often dominated by the disk I/O
performance when the application data size far exceeds
the available server memory.

We make the following assumptions on our targeted
workloads: 1) request handlers perform mostly read-only
I/O when accessing disk-resident data; and 2) a substan-
tial fraction of the disk I/O follows a sequential access
pattern. Note that we allow request handlers to perform
some interleaving I/O that deviates from the sequential
access pattern. Applications that retrieve files in request
handlers, such as FTP and Web servers, satisfy our as-
sumptions. Many more applications are usually carefully
constructed to follow mostly sequential access patterns in
order to achieve efficient disk I/O.

2 Competitive Prefetching

Under concurrent execution, I/O throughput mostly de-
pends on the granularity of I/O switching, defined as the



average amount of sequentially accessed data between
consecutive I/O switches. Although an I/O prefetching
strategy can control such granularity, it must address the
following tradeoff in deciding the I/O prefetching depth:
a conservative prefetching strategy may produce high I/O
switching overhead while overly aggressive prefetching
may waste too much I/O bandwidth on fetching unneeded
data.

We analyze the problem using a simple model. We
assume a request handler sequentially accesses disk-
resident data of total size ����. Let the disk transfer rate
be ���. Also let the combined seek and rotational delay,
or the I/O switching cost, be �������. The minimal disk
resource consumption (in time) for request processing in-
cludes a single I/O switch and the transfer time for ����
data:

���	 �
����

���
� ������� (1)

This minimal cost can only be achieved by the optimal of-
fline strategy where ���� is known. Kernel-level prefetch-
ing, however, does not have this knowledge. We assume
the OS employs a fixed prefetching depth �
1. The total
I/O switching cost for request processing can be derived
as:

���� ������ � �
����

�

� � �������

� �
����

�

� �� � �������

(2)

The wasted time for fetching unneeded data can be
bounded by the cost of a single prefetch operation:

������ �
�


���
(3)

Therefore, the total disk resource (in time) consumed by
request processing is bounded by the following:

����� �
����

���
� ���� ������ � ������

�
����

���
� �

����

�

� �� � ������� �

�


���

(4)

Based on Equations (1) and (4), we find that:

if �
 � ������� ����� then ����� � � � ���	 (5)

1This is not strictly true in practice. For example, prefetching in
Linux starts with a relatively small initial depth, which yields more fre-
quent I/O switching at the initial stage. However, the number of re-
sulting additional I/O switches is bounded by a small constant for each
request processing.

This result allows us to design a prefetching strategy with
bounded worst-case performance, shown below:

When the prefetching depth is equal to the amount of
data that can be sequentially transfered within a single
I/O switching period, the total disk resource consump-
tion is at most twice that of the optimal offline strategy.

This also infers that the I/O throughput under this strat-
egy is at least half the optimal performance. Compet-
itive strategies have been used in the context of mem-
ory paging [17] and multiprocessor synchronization [12]
to name algorithms whose performance can be shown to
be no worse than some constant factor of an optimal of-
fline strategy. Following their terminology, we name our
prefetching strategy competitive prefetching.

Since the I/O switching time depends on the
seek/rotational distance and the sequential transfer
rate depends on the data location (due to zoning on
modern disks), the competitive prefetching depth may
dynamically change at runtime. In our strategy, the OS
first calculates the functional mapping from seek distance
to seek time (denoted by �����) and the mapping from
the data location to the sequential transfer rate (denoted
by ����	����). This measurement is done offline, at
disk installation time or OS boot time. During runtime,
our enhanced OS maintains an exponentially-weighted
moving average of the disk seek distance (denoted by
�����). For each prefetch operation starting at disk
location ����	����, the predicted seek time and data
transfer rate are ������������ and ����	���������	�����
respectively. The rotational delay is much harder to
predict at runtime. In particular, modern disks support
out-of-order transfer for large I/O requests to hide the
rotational delay. The intuition is that a read can start
at any track location if the desired data spans across
the whole track. Since we do not need a very accurate
estimation for our purpose, we simply use the average
rotational delay between two random track locations
(i.e., the time it takes the disk to spin half a revolution).

We quantitatively assess the competitive prefetching
depth for two specific disk drives: a 36.4 GB IBM
10 KRPM SCSI drive and a 146 GB Seagate 10 KRPM
SCSI drive behind an Adaptec RAID controller. We mea-
sure the disk properties by issuing direct SCSI commands
through the Linux generic SCSI interface, which allows
us to bypass the OS memory cache and selectively dis-
able the disk controller cache. Our disk profiling takes
less than two minutes to complete for each drive and it
could be easily performed at disk installation time. Fig-
ure 2 shows the measured sequential read throughput and



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Starting logical block number (in proportion to the max block number)

R
ea

d 
th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(A) Sequential read throughput

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

Seek distance (in proportion to the total disk size)

S
ee

k 
tim

e 
(in

 m
ill

is
ec

on
d)

(B) Disk seek time

Seagate "ST3146807LC"
IBM "DTN036C1UCDY10"

Seagate "ST3146807LC"
IBM "DTN036C1UCDY10"

Figure 2: Sequential read throughput and seek time for
two drives.

the seek time for these two drives. For the IBM drive, the
average transfer speed is 51.3 MB/sec; the average seek
time (between two independent random disk locations)
is 7.53 ms; and the average rotational delay is 3.00 ms.
Therefore, the average seek and rotational delays justify
transferring around 540 KB of data. In comparison, the
default maximum prefetching depth in Linux 2.6.3 is only
128 KB (32 pages). Note that the average seek distance is
often smaller at higher concurrency levels since the disk
scheduler can choose from more concurrent requests for
seek reduction.

Competitive strategies only address the worst-case per-
formance while a good prefetching policy should provide
high average-case performance, or at least it must not de-
crease the performance of the original kernel. Since the
prefetching depth in the proposed competitive prefetch-
ing policy is typically larger than that of the original
Linux kernel, it may exhibit inferior performance for
short access streams, including small-size random ac-
cesses. We remedy the problem by employing a rela-
tively small initial prefetching depth as in the original

kernel (i.e., 16 pages). When the data access pattern is
deemed as sequential by the OS, the depth for each ad-
ditional prefetching operation is doubled until it reaches
the desired competitive prefetching depth. We call this
the slow-start phase.

3 Experimental Evaluation

We assess the effectiveness of our proposed techniques
on improving the performance of data-intensive online
servers. Experiments were conducted on a Linux clus-
ter connected by Gigabit Myrinet. Each node is equipped
with two 2 GHz Xeon processors, 2 GB memory, and a
36.4 GB IBM 10 KRPM SCSI drive. Each experiment
involves a server and a load generation client. The client
can adjust the number of simultaneous requests to control
the server concurrency level (e.g., the number of concur-
rent processes or threads).

3.1 Evaluation Benchmarks

Our evaluation benchmark suite contains both mi-
crobenchmarks and real applications. All microbench-
marks access a dataset of 6000 4 MB disk-resident files.
At the arrival of each request, the server spawns a thread
to process it. Each thread reads disk files in certain pat-
tern and access private memory of 1 MB. We explore
the performance of four microbenchmarks with different
I/O access patterns. The microbenchmarks differ in the
number of files accessed by each request handler (one to
four), the portion of each file accessed (the whole file, a
random portion, or a 64 KB chunk), and a think time de-
lay during the processing of each request (0 ms or 10 ms).
We use a descriptive naming convention to refer to each
benchmark. For example, �Two-Rand-0� describes a
microbenchmark whose request handler accesses a ran-
dom portion of two files with 0 ms think time delay. Ac-
cesses within a portion of the file are always sequential
in nature. We use the following microbenchmarks in the
evaluation:

� One-Whole-0: Each request handler randomly
chooses a file and it repeatedly reads 64 KB data
blocks until the whole file is accessed.

� One-Rand-10: Each request handler randomly
chooses a file and it repeatedly reads 64 KB data
blocks from the file up to a random total size (evenly
distributed between 64 KB and 4 MB). Additionally,
we add a 10 ms think time at four random points



1 2 4 8 16 32 64
0

10

20

30

40

50

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)
(A) One−Whole−0

Linux
AP
CP

1 2 4 8 16 32 64
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(B) One−Rand−10

Linux
AP
CP

1 2 4 8 16 32 64
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(C) Two−Rand−0

Linux
AP
CP

Figure 3: Microbenchmark performance at various concurrency levels. The OS disk scheduler does not use anticipa-
tory scheduling.

1 2 4 8 16 32 64
0

10

20

30

40

50

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(A) One−Whole−0

1 2 4 8 16 32 64
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(B) One−Rand−10

1 2 4 8 16 32 64
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(C) Two−Rand−0

Linux
AP
CP

Linux
AP
CP

Linux
AP
CP

Figure 4: Microbenchmark performance at various concurrency levels. The OS disk scheduler employs anticipatory
scheduling.

during the processing of each request. The think
times are used to emulate possible delays during
request processing and may cause the anticipatory
disk scheduler to timeout.

� Two-Rand-0: Each request handler alternates read-
ing 64 KB data blocks sequentially from two ran-
domly chosen files. It accesses a random portion of
each file from the beginning. This workload emu-
lates applications that simultaneously access multi-
ple sequential data streams.

� Four-64KB-0: Each request handler randomly
chooses four files and reads a 64 KB random data
block from each file.

We also include two real applications in our evaluation:

� Index searching: We acquired an earlier prototype
of the index searching server and a dataset from the
Web search engine Ask Jeeves [3]. The dataset con-
tains the search index for 12.6 million Web pages.
It includes a 522 MB mapping file that maps MD5-
encoded keywords to proper locations in the search

index. The search index itself is approximately
18.5 GB, divided into 8 partitions. For each keyword
in an input query, a binary search is first performed
on the mapping file and then the search index is ac-
cessed following a sequential access pattern. Multi-
ple prefetching streams on the search index are ac-
cessed for each multi-keyword query. The search
query words in our test workload are based on a one-
week trace recorded at the Ask Jeeves online site in
early 2002.

� Apache hosting media clips: We include the Apache
Web server in our evaluation. Typical Web work-
loads often contain many small files. Since our work
focuses on applications with substantially sequen-
tial access pattern, we use a workload containing a
set of media clips, following the file size and access
distribution of the video/audio clips portion of the
1998 World Cup workload [2]. About 9% of files
in the workload are large video clips while the rest
are small audio clips. The overall file size range is
24 KB–1418 KB with an average of 152 KB. The
total dataset size is 20.4 GB. During the tests, indi-
vidual media files are chosen in the client requests



according to a Zipf distribution.

3.2 Microbenchmark Performance

We assess the effectiveness of the proposed technique by
comparing the server performance under the following
different kernel versions:

#1. Linux: The original Linux 2.6.3 kernel with a maxi-
mum prefetching depth of 32 pages.

#2. AP: Aggressive prefetching with a maximum
prefetching depth of 256 pages (about twice that of
competitive prefetching). This is a hypothetical ap-
proach included purely for the purpose of compari-
son.

#3. CP: Our proposed competitive prefetching strategy
described in Section 2.

Figure 3 shows the application-observed I/O throughput
for the first three microbenchmarks that possess a sig-
nificant amount of sequential data accesses. The results
were produced without the use of anticipatory schedul-
ing in the OS disk scheduler. We observe that our pro-
posed techniques are very effective in improving the
performance of all three microbenchmarks. Competi-
tive prefetching provides up to two-fold performance im-
provement compared with the original kernel. Aggressive
prefetching provides very limited additional benefit (up
to 14%) when application request handlers access whole
files. Aggressive prefetching may even hurt performance
as shown in Figures 3(B) and 3(C) because it wastes too
much I/O bandwidth on fetching unneeded data. The
wasted I/O bandwidth more than compensates the advan-
tage of less frequent I/O switching.

Figure 4 illustrates the performance of the same three
microbenchmarks when the OS disk scheduler employs
anticipatory scheduling. Figure 4(A) shows dramati-
cally improved concurrent performance for the first mi-
crobenchmark (One-Whole-0). The improvement is an
artifact of the reduction of I/O switching thanks to an-
ticipatory scheduling. However, Figures 4(B) and 4(C)
demonstrate that anticipatory scheduling is not very ef-
fective when significant think times are present in the re-
quest processing or when a request handler accesses mul-
tiple streams simultaneously. In such cases, our proposed
strategies can significantly improve the application per-
formance.

Figure 5 shows the performance of the random-access
microbenchmark. We observe that all kernels perform

1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

Four−64KB−0

Linux
AP
CP

Figure 5: Performance of a random-access microbench-
mark.

similarly. More aggressive prefetching strategies do not
suffer from fetching too much unnecessary data, because
the slow-start phase used in all kernels quickly identi-
fies the non-sequential access pattern and avoids large
prefetch operations.

Competitiveness assessment. We estimate the opti-
mal I/O throughput to assess the competitiveness of
competitive prefetching. We use a simple estimation

����
����������������

, where ���� is the mean size of the
benchmark sequential access streams, ��� is the mean
disk sequential transfer rate, and ������� is the mean
I/O switching time between two independent random
disk head locations. Our estimated optimal throughputs
for four microbenchmarks are 45.3 MB/sec, 40.5 MB/sec,
40.5 MB/sec, and 5.5 MB/sec respectively. Our results
show that the performance of competitive prefetching is
almost always at least half the optimal performance for
all benchmarks, which confirms its competitiveness. The
only exception is at concurrency one for One-Rand-10.
In this case, the long think time makes the disk under-
loaded, which violates our assumption that the workload
is disk I/O-bound.

3.3 Performance of Real Applications

In this section, we only show performance results when
anticipatory scheduling is enabled since it generally per-
forms no worse than the kernel without it for all our work-
loads. Figure 6 shows the I/O throughput of the index
searching server at various concurrency levels. The re-
sults suggest that competitive prefetching can improve
I/O throughput by around 47% when compared to the
original kernel. In comparison, aggressive prefetching
provides much less improvement (up to 29%) due to
wasted I/O bandwidth on fetching unneeded data. Even



1 2 4 8 16 32 64
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

Linux
AP
CP

Figure 6: I/O throughput of the index searching server.

124 8 16 32 64
0

1

2

3

4

5

6

Number of concurrent request handlers

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
(in

 s
ec

on
ds

)

Linux
AP
CP

Figure 7: Request response time of the index searching
server.

this improvement quickly diminishes as the concurrency
level climbs up because of higher memory contention
caused by aggressive prefetching. This issue will be dis-
cussed further in the next section. Figure 7 shows the re-
quest response time for the index searching server. Over-
all, our proposed techniques can reduce the average re-
quest response time by 28% when compared to the origi-
nal kernel.

Figure 8 shows the performance of the Apache Web
server hosting media clips. The improvement is 6% and
15% at concurrency levels of 2 and 64 respectively. Be-
cause each Web server request handler follows a strict se-
quential data access pattern on a single file, anticipatory
disk scheduling in the original kernel helps to achieve
quite good performance. The I/O throughputs increase
as the concurrency level climbs up due to lower average
seek distance when the disk scheduler can choose from
more concurrent requests for seek reduction. The perfor-
mance improvement due to competitive and aggressive
prefetching becomes more evident at higher concurrency
levels because the disk I/O anticipation is more likely to
be disrupted in these situations.

1 2 4 8 16 32 64
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

Linux
AP
CP

Figure 8: I/O throughput of Apache hosting media clips.

4 Discussion

Memory contention in high concurrency. I/O prefetch-
ing can consume a significant amount of server memory,
especially for highly concurrent online workloads. The
memory contention in high concurrency may lead to sig-
nificant performance degradation for at least two reasons:
1) the eviction of prefetched pages before they are ac-
cessed; 2) increased cache miss rate due to memory used
for prefetching. The competitiveness of our prefetching
strategy would not hold at the presence of these problems.

Memory contention between caching and prefetching has
been examined by Cao et al. [5] and Patterson et al. [16].
More recently, Kaplan et al. proposed a dynamic memory
allocation strategy based on the maintenance of detailed
cost and benefit statistics about candidate strategies [11].
Memory contention can also be avoided by limiting the
server concurrency level with admission control and re-
quest queuing.

Impact on other workloads. Our design takes measures
to minimize negative impact on applications not directly
targeted in this work. However, such impact may still ex-
ist. In particular, increased prefetching depths can lead to
reduced interactive responsiveness from the I/O subsys-
tem. Techniques such as priority-based disk queues [9]
and semi-preemptible I/O [7] can be employed to allevi-
ate this problem. Additional investigation is needed to
address the integration of such techniques. Further to our
relief, it is often the case that an online server (e.g., those
hosting Internet services) is dedicated for supporting a
single workload. Therefore, efficient support for other
types of workloads may be unnecessary on those servers.

Impact of multi-disk systems. Our current work focuses
on single-disk storage devices. We believe our compet-
itive prefetching strategy can be similarly employed to
guide prefetching depths for multi-disk systems, such as



disk arrays (RAID). These systems often allow simulta-
neous transfers out of multiple disks and thus offer much
higher aggregate disk bandwidth. On the other hand, seek
and rotational delays are inherently limited by individ-
ual disks. Consequently, multi-disk systems often require
larger competitive prefetching depths.

Impact of non-sequential data layout. File system allo-
cation algorithms can not guarantee all logically sequen-
tial data blocks are mapped to physically contiguous disk
blocks. But in most cases, the file system attempts to
organize them as contiguous as possible. Another issue
that can disrupt sequential block allocation is bad sec-
tor remapping. However, we believe this does not oc-
cur frequent enough in practice to diminish the benefit
of aggressive prefetching strategies such as competitive
prefetching.

5 Conclusion

This paper presents the design and implementation of
a competitive I/O prefetching strategy supporting data-
intensive online servers. Based on a simple model, it
is shown that the performance of competitive prefetch-
ing (in terms of I/O throughput) is at least half that of
the optimal offline policy. We implemented the proposed
technique in the Linux 2.6.3 kernel and conducted exper-
iments using microbenchmarks and two real applications:
an index searching server and the Apache Web server
hosting media clips. Overall, our evaluation demonstrates
that competitive prefetching can improve the throughput
of real applications by 15%–47%.

Acknowledgment

We would like to thank Michael L. Scott and others in
the URCS systems group for their valuable comments.
We would also like to thank Lingkun Chu, Tao Yang, and
Apostolos Gerasoulis at Ask Jeeves Inc. for providing us
the index searching server and traces used in the exper-
imentation. Last but not least, we are indebted to Li-
udvikas Bukys for setting up the machines used in this
study.

References

[1] S. V. Anastasiadis, R. G. Wickremesinghe, and J. S.
Chase. Circus: Opportunistic Block Reordering

for Scalable Content Servers. In Proc. of the 3rd
USENIX Conf. on File and Storage Technologies,
pages 201–212, San Fancisco, CA, March 2004.

[2] M. Arlitt and T. Jin. Workload Characterization of
the 1998 World Cup Web Site. Technical Report
HPL-1999-35, HP Laboratories Palo Alto, 1999.

[3] Ask Jeeves Search. http://www.ask.com.

[4] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman,
J. Ostell, B. A. Rapp, and D. L. Wheeler. GenBank.
Nucleic Acids Research, 30(1):17–20, 2002.

[5] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A
Study of Integrated Prefetching and Caching Strate-
gies. In Proc. of the ACM SIGMETRICS, pages
188–197, Ottawa, Canada, June 1995.

[6] E. Carrera and R. Bianchini. Improving Disk
Throughput in Data-Intensive Servers. In Proc. of
the 10th Int’l Symp. on High Performance Com-
puter Architecture, pages 130–141, Madrid,Spain,
February 2004.

[7] Z. Dimitrijevic, R. Rangaswami, and E. Chang. De-
sign and Implementation of Semi-preemptible IO.
In Proc. of the 2nd USENIX Conf. on File and Stor-
age Technologies, pages 145–158, San Francisco,
CA, March 2003.

[8] K. Fraser and F. Chang. Operating System I/O
Speculation: How Two Invocations Are Faster Than
One. In Proc. of the USENIX Annual Technical
Conf., pages 325–338, San Antonio, TX, June 2003.

[9] G. R. Ganger and Y. N. Patt. Using System-Level
Models to Evaluate I/O Subsystem Designs. IEEE
Transactions on Computers, 47(6):667–678, June
1998.

[10] S. Iyer and P. Druschel. Anticipatory Scheduling: A
Disk Scheduling Framework to Overcome Decep-
tive Idleness in Synchronous I/O. In Proc. of the
18th ACM SOSP, pages 117 – 130, Banff, Canada,
October 2001.

[11] S. F. Kaplan, L. A. McGeoch, and M. F. Cole.
Adaptive Caching for Demand Prepaging. In Proc.
of the 3rd Int’l Symp. on Memory Management,
pages 114–126, Berlin, Germany, June 2002.

[12] A. R. Karlin, K. Li, M. S. Manasse, and S. Ow-
icki. Empirical Studies of Competitive Spinning for
a Shared-Memory Multiprocessor. In Proc. of the
13th ACM SOSP, pages 41–55, Pacific Grove, CA,
October 1991.



[13] H. Lei and D. Duchamp. An Analytical Approach
to File Prefetching. In Proc. of the USENIX Annual
Technical Conf., Anaheim, CA, January 1997.

[14] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash:
An Efficient and Portable Web Server. In Proc.
of the USENIX Annual Technical Conf., Monterey,
CA, June 1999.

[15] A. E. Papathanasiou and M. L. Scott. Energy Ef-
ficient Prefetching and Caching. In Proc. of the
USENIX Annual Technical Conf., Boston, MA, June
2004.

[16] R. H. Patterson, G. A. Gibson, E. Ginting,
D. Stodolsky, and J. Zelenka. Informed Prefetch-
ing and Caching. In Proc. of the 15th ACM SOSP,
pages 79–95, Copper Mountain Resort, CO, De-
cember 1995.

[17] D. D. Sleator and R. E. Tarjan. Amortized Effi-
ciency of List Update and Paging Rules. Communi-
cations of the ACM, 28(2):202–208, February 1985.

[18] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: Scalable Threads for Internet
Services. In Proc. of the 19th ACM SOSP, pages
268–281, Bolton Landing, NY, October 2003.

[19] M. Welsh, D. Culler, and E. Brewer. SEDA: An Ar-
chitecture for Well-Conditioned, Scalable Internet
Services. In Proc. of the 18th ACM SOSP, pages
230–243, Banff, Canada, October 2001.

[20] T. Yeh, D. Long, and S. A. Brandt. Using Pro-
gram and User Information to Improve File Predic-
tion Performance. In Proc. of the Int’l Symposium
on Performance Analysis of Systems and Software,
pages 111–119, Tucson, AZ, November 2001.


