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ABSTRACT
Random walk is a means of network node sampling that re-
quires little index maintenance and can function on almost
all connected network topologies. With careful guidance,
node samples following a desired probability distribution can
be generated with the only requirement that the sampling
probabilities of each visited node and its direct neighbors
are known at each walk step. This paper describes a broad
range of network applications that can benefit from such
guided random walks in dynamic and decentralized settings.
This paper also examines several key issues for implementing
random walks in self-organizing networks, including the con-
vergence time of random walks, impact of dynamic network
changes and particularly resulted walker losses, and the dif-
ficulty of pacing walk steps without synchronized clocks be-
tween network nodes. Our result suggests that with proper
management, these issues do not cause significant problems
under many realistic network environments.

1. INTRODUCTION
Random walk is a way to sample network nodes — at each
step, a walker randomly chooses its next hop (among direct
neighbors of the current node) following certain probabilis-
tic preference for each neighbor. With careful guidance at
each step of the walk [12, 21], one can produce node samples
following a desired probability distribution. Such a tunable
probabilistic node sampling is a fundamental building block
for many network applications, such as non-uniform mem-
bership management [30], load balancing [13], small-world
routing [16], peer-to-peer (p2p) search [29], and biased in-
formation propagation [15].

Random walk is particularly attractive to self-organizing
networks like Internet overlay networks and wireless ad hoc
networks. In these systems, nodes can join and leave dynam-
ically without centralized control, and the network topology
itself can also change over time. Random walk requires little
index or state maintenance and it can function on almost all
connected network topologies. In these aspects, it is superior
to systems with sophisticated index states or rigid network
structures, e.g., distributed hash tables (DHTs) [25, 26, 28].
Compared with index-free node traversal schemes like net-
work flooding, random walk is inherently scalable in that
its network communication overhead does not increase as
the network size grows. Furthermore, guided random walk
is very flexible in achieving probabilistic (probably biased)
node sampling.

Despite its potential advantages, several issues need to be
addressed concerning random walks in self-organizing net-
works. First, random walk based node sampling can take
significant warm-up time to converge to the desired sam-
pling distribution. Such convergence is dependent on the
sampling distribution, network diameter, and the expansion
property of network topologies. Second, random walks may
be affected by dynamic network changes. In particular, a
walker may be lost due to link changes or node departures
in self-organizing networks. Third, without synchronized
clocks at network nodes, it is hard to guarantee equal time
interval for each walk step due to variable network link laten-
cies. We examine these issues in this paper. Our goal is to
provide a high-level understanding on the effectiveness and
suitability of using guided random walks in self-organizing
network applications.

A large body of previous works have already employed ran-
dom walks in network applications. Examples include ran-
dom walk based search [1, 8, 11, 20], network topology con-
struction [10, 18, 19], and information gathering [3]. These
studies focus on the functionality and performance of ran-
dom walks in supporting specific network management func-
tions and applications. They do not address general issues
concerning random walks in self-organizing networks that
we study in this paper. More specifically, previous studies
provided little result on random walk convergence, walker
loss, or the pacing of walkers in self-organizing networks.

The rest of this paper is organized as follows. Section 1.1
describes the background of our random walk based proba-
bilistic network node sampling. Section 2 illustrates a broad
set of network applications that can benefit from random
walk based node sampling. Sections 3, 4, and 5 study three
specific issues for random walks in self-organizing networks.
Section 6 concludes the paper with a summary of our find-
ings.

1.1 Background
Our random walks build on the Metropolis-Hastings algo-
rithm [12, 21] — an approach to assign transition probabili-
ties to Monte Carlo Markov chains so that they converge to
specified probability distributions.

Starting from an initial node, a random walk travels over
the network step by step. At each step, the random walk
either stays at the current node or moves to one of its di-
rect neighbors in a probabilistic fashion. Specifically, the
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Figure 1: The transition probabilities between i, j
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are the degrees of nodes i and j respectively.

random walk goes from node i to node j with probability
Pi,j and Pi,j = 0 for non-adjacent nodes i, j. The prob-
ability for a walker at node i to stay unmoved at a step
Pi,i = 1 −

P

j∈ neighbors(i) Pi,j . A random walk achieves

convergence if its node visitation probability distribution re-
mains unchanged (or changes very slightly) after any number
of future steps.

The Metropolis-Hastings algorithm guides the configuration
of random walks such that they converge to the application-
desired distribution, π with πi be the desired probability of
visiting node i. For any pair of adjacent nodes i, j, Fig-
ure 1 provides the guidance for setting appropriate transi-
tion probabilities when πi

di
≤ πj

dj
(without loss of general-

ity). Intuitively, Figure 1 achieves the desired convergence
to π because there are always balanced probability flows be-
tween arbitrary i, j once the random walk starts to visit i, j

with probabilities πi, πj respectively. In particular, a lazi-
ness factor 0 < α < 1 is used to discount probability flows,
which ensures that each step of the random walk has non-
zero probability to stay at the current node. Such self-loop
enabled random walks are guaranteed to have unique con-
verged distribution on connected topologies [9, 24]. It is
worth noting that the movement of random walks can be
determined solely based on the local knowledge about the
current node and its direct neighbors.

Let us consider a special case of probabilistic node sam-
pling — uniform node sampling, i.e., where ∀i, j, πi = πj .
According to Figure 1, the uniform node sampling can be
easily achieved by setting

Pi,j =

(

α · 1
di

if di ≥ dj ;

α · 1
dj

if di < dj .
(0 < α < 1)

where i, j are adjacent nodes.

2. APPLICATIONS OF RANDOM WALKS
Probabilistic node sampling is essential for many network
applications. Our guided random walks can naturally ben-
efit these applications. Below we describe several examples.

Random membership subset
In a random membership subset service, each node main-
tains a small, dynamically changing, random membership
subset with uniform representation of network members rather
than a full member list. The scalability is achieved in that

per-node random membership subsets can be much smaller
than the complete list. For many applications, making deci-
sions based on random membership subsets has comparable
performance with knowing the complete network member-
ship. Kostić et al. proposed a random membership subset
service for tree-shaped network topologies [17] but it cannot
be easily applied to more general mesh-like network struc-
tures. In comparison, random walk based node sampling can
function on almost any connected network topologies. Fur-
thermore, it can also support non-uniform membership man-
agement as follows [30]. Each node i initiates ki independent
random walks Ri,1, Ri,2, ..., Ri,ki

where ki is the size of node
i’s membership subset. Guided by the Metropolis-Hastings
algorithm described in Section 1.1, the random walks are
configured such that they all converge to the desired sam-
pling distribution over all network nodes. Whenever node
j receives a random walk Ri,l initiated from node i, node j

sends its own identity to node i. Upon receiving j’s iden-
tity referred by Ri,l, node i updates the lth member of its
membership subset with j.

Load balancing
A key issue for dynamic load balancing in self-organizing
networks is to identify hotspots (highly overloaded nodes)
and reassign their loads to others. In this application, each
load balancing node tries to learn the load information on
some other network nodes. When a large load variation
exists between the local node and a remote node, a load
transfer session is initiated to balance the load. Probabilis-
tic node sampling with load-biased probability distributions
(e.g., choose a node with probability proportional to its
load) is more likely to find hotspots than uniform sampling
used in some current p2p load balancing algorithms [13].
This is especially the case when there is a small number
of highly loaded nodes in the network (e.g., when the load
distribution is powerlaw).

Small-world routing
Simple greedy routing in a two-dimensional grid takes O(

√
n)

hops, where n is the total number of nodes in the network.
Kleinberg [16] illustrates a small-world routing as follows.
By having each node connect to one remote node (chosen
randomly following a distance-dependent probabilistic dis-
tribution), it is possible to reduce the greedy routing time
to O(log2 n) hops. Random walk based node sampling is in-
strumental for easy creation and maintenance of the random
remote link at each node.

Peer-to-peer search
The square-root principle [7] is known to achieve low search
time for p2p search techniques that do not utilize query
routing indices. Under this principle, each object is probed
with probability proportional to the square root of its query
popularity. Earlier search methods realize the square-root
principle by using either object replication [7] or topology
reconstruction [8], which may not be desirable for those ap-
plications with large, dynamic datasets and limited network
bandwidth. Being biased towards peers with popular con-
tents, random walk based probabilistic node sampling can
achieve the same goal without the need of object transfer
or network topology changes [29]. For each node probed by
the random walk, local matched objects, if discovered, are
returned to the query initiating node.



Applications Time norm. Callback

Random membership subset Yes Yes
Load balancing Yes Yes
Small-world routing Yes Yes
Peer-to-peer search No Maybe
Information propagation No No

Table 1: Application properties on 1) time normal-
ization; and 2) whether a callback to the original
node is needed at each step of the walk.

Distance-biased information propagation
Gossip-based broadcast algorithms [14, 23] provide a robust
and scalable mechanism for distributed information dissem-
ination. In many network applications (e.g., failure detec-
tion), new information is more “interesting” to nodes that
are nearby. Kempe et al. [15] show that with a carefully cho-
sen probability distribution, their non-uniform gossip algo-
rithms can provide both short broadcast time and distance-
biased propagation time bounds (information tend to reach
nearby nodes first). Their algorithm assumes the existence
of a scalable mechanism to identify random nodes with a
given distance-biased probability distribution. Such proba-
bilistic node sampling can be easily achieved by our guided
random walks.

Application Properties
Although all the above mentioned applications employ prob-
abilistic node sampling as a fundamental building block,
they differ in various ways. We are specifically interested
in two application properties that affect the management of
random walks.

• For some applications, node sampling probabilities con-
cern the chance for the node to be sampled at a given
step of the random walk. For other applications, how-
ever, the sampling probability concerns the chance for
the node to be sampled at a given time. For the latter
case (we call time-normalized probabilistic node sam-
pling), the variation of the interval time at each walk
step may affect the node sampling probability. More
specifically, walk steps with longer per-step interval
time would result in larger time-normalized sampling
probabilities for the corresponding nodes.

• For some applications, the random walker calls back its
original node after visiting each new node. Such call-
back is needed for applications maintaining the set of
sampled nodes at the original node. For object search
applications, callback might or might not be needed at
each step of the walk depending on whether the visited
node has any query matches. Walker callbacks can be
utilized to piggyback additional information desired by
the management of random walks.

Table 1 summarizes these two properties for our example
applications. Their detailed effects on random walk man-
agement will be discussed in later sections.

3. RANDOM WALK CONVERGENCE
The Metropolis-Hastings algorithm described in Section 1.1
guarantees that an appropriately configured random walk
converges to the desired node sampling distribution. How-
ever, random walks often take non-negligible convergence
time in typical self-organizing networks. For instance, after
one step of the walk, the walker cannot go beyond the imme-
diate neighbors of the starting node no matter how intelli-
gent the walker is. In this section, we study the convergence
time of random walk based probabilistic node sampling.

Network topologies
For a specific random walk configuration, its convergence
time is determined by the network topology, and particu-
larly the network diameter and its expansion property. 1)
Random walks tend to converge faster on networks with
smaller diameters. This is because random walks can quickly
reach remote nodes in these networks. 2) For a network
G = (V, E) with |V | = n, its expansion property is defined
as

h(G) = min
S⊂V ∧1≤|S|≤n

2

|ϑ(S)|
|S| (1)

where ϑ(S) is the set of edges with exactly one endpoint in
S. Intuitively, the expansion property characterizes the bot-
tleneck for traveling over the topology. When the expansion
is low, random walks may get trapped in a small network
area, which slows down their convergence to desired sam-
pling probabilities.

We examine the network diameter and expansion property
of several common self-organizing network topologies:

• Two-dimensional (2-d) tori. Tori-like structures have
been used for self-organizing content addressable net-
works [25]. Structures like 2-d tori are also common
in geographically-constrained networks (where nodes’
transmission ranges are limited by geographical dis-
tances) such as wireless ad hoc networks.

• Chord topologies [28]. An n-node ring-like network
with each node also connected to (besides its direct
neighbors on the ring) its 2-hop neighbors, 4-hop neigh-
bors, ..., n

2
-hop neighbors on the ring.

• Random powerlaw topologies. In a random powerlaw
network topology, each node is connected to a con-
stant number of nodes chosen randomly with probabil-
ity proportional to their degrees. Such a preferential
link creation process generates networks with power-
law degree distributions [2, 6].

• Random regular topologies. Random regular topologies
model those network applications in which each node
is connected to some random nodes and node degrees
are upper-bounded by a predetermined threshold [27].

Table 2 shows the network diameters and expansion proper-
ties of these network topologies. First, 2-d tori have the
largest values and hence it has the slowest convergence.
Other three topologies are known to possess low diameters
and high expansion properties (either constant or logarith-
mic in the network size), which leads to quick convergence.
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Figure 2: Random walk convergence time. Here inversely distance-proportional sampling chooses a node with
probability inversely proportional to its distance from the random walk originating node. Linear property-

biased sampling selects a node with probability proportional to its property value. Quadratic property-biased

sampling samples a node with probability proportional to the square of its property value.

2-d tori Chord random random
powerlaw regular

Diameter
√

n log n O(log n) O(log n)
[19] w.h.p. [5] w.h.p [4]

Expansion O( 1√
n
) O( 1√

log n
) Ω(1) Ω(1)

[19] w.h.p. [22] w.h.p [4]

Table 2: The diameters and expansion properties of
several common network topologies. n is the number
of nodes in the network.

Node sampling distributions
In addition to the network topology, the desired sampling
distribution also affects the random walk convergence time
in that edges with small transition probabilities may slow
down random walks. The problem may become more se-
vere when these edges happen to be the bottlenecks for ran-
dom walk movements as revealed by topology expansion. In
principle, the random walk converges slower to more skewed
node sampling distributions. Here we list some typical sam-
pling distributions employed by network applications:

• Uniform random sampling — each node has an equal
chance of being sampled. This is the most basic ran-
dom node sampling in which no sampling bias is needed.

• Distance-biased sampling. Small-world routing or in-
formation propagation often need to sample nodes with
probabilities dependent on its distance from the origi-
nal node, e.g., inversely proportional to the distance.

• Property-biased sampling — sampling based on per-
node capacities, loads, or content qualities. Many ap-
plications, including load balancing and search, benefit
from quickly discovering nodes with high loads, capac-
ities, or content qualities. This can be achieved by
using a variety of biased sampling distributions with
different bias parameters, e.g., sampling nodes with
probability proportional to their property values.

Simulation Results
We provide simulation results to quantitatively assess the
convergence time under common network topologies and
node sampling distributions.

We define the convergence time of a random walk as the
number of walk steps needed before the walker gets close
enough to the desired node sampling distribution. We pro-
vide a formal definition for the convergence time preceded by
a definition of the difference metric between two probability
distributions.

Definition 1. The difference between two arbitrary prob-
ability distributions, x and y, is defined as ‖x, y‖ = 1

2

P

i
|xi−

yi|. The factor 1
2

is to ensure that the maximum difference
does not exceed 1.

Definition 2. Let π(t) denote the node visitation dis-
tribution of a random walk exactly after t steps. Let π

be the desired sampling distribution of the random walk.
The convergence time (in number of steps) is defined as

min{t : ∀t′ ≥ t, ‖π(t′), π‖ < 0.01}.

In our simulations, the average node degrees for random
topologies and random powerlaw topologies are set at 8.
Figure 2 presents the random walk convergence time under
different network sizes, topologies, and sampling distribu-
tions. The results show that the convergence time of dif-
ferent network topologies follows the order of “2-d tori” >

“random powerlaw” > “random regular” > “Chord”. This
mostly matches the order of their network diameters and
expansion properties shown in Table 2. However, it is worth
noting that Chord networks unexpectedly outperform ran-
dom powerlaw and random regular topologies. This is be-
cause the average node degree of Chord topologies (log n)
is higher than that of these random topologies (a constant).
More per-node links increase expansion properties and re-
duce diameters.

Figure 2 also shows that the convergence time of differ-
ent node sampling distributions. For property-biased sam-
pling in our simulation, per-node properties follow Zipf’s
distribution — the number of nodes that have their ca-
pacity/load/quality values equal to k is proportional to 1

k
.

Results suggest that the order of convergence time follows
“quadratic property-biased sampling” > “linear property-
biased sampling” > “inversely distance-proportional sam-



pling” > “uniform random sampling”. This result is consis-
tent with the order of the skewness in their sampling distri-
butions. The convergence is particularly fast with uniform
sampling, e.g., less than 300 steps on 2-d tori and less than
100 steps on other studied topologies are needed to achieve
convergence on 4096-node networks. These numbers are not
significantly higher than the network diameters of respec-
tive topologies — absolute lower-bounds for the convergence
time.

4. IMPACT OF NETWORK CHANGES
Convergence in self-organizing networks must consider dy-
namic network changes, such as node arrivals, node de-
partures, and network topology changes. These network
changes do not cause substantial convergence problems be-
cause our guided random walks only require a limited amount
of local knowledge — the degree and sampling probabilities
of the direct neighbors of each node. More specifically, our
random walks can accommodate dynamic network changes
as long as the required state at each node (information
concerning direct neighbors only) can be properly updated.
However, one problem due to dynamic network changes war-
rants further attention — a walker may be lost due to link
adjustment or node departure in self-organizing networks.
To maintain correct node sampling, walker losses must be
promptly discovered and new walkers must be initiated.

Walker loss
We describe two strategies to recover from walk losses:

• Periodic callbacks. Each walker makes periodic call-
backs to the originating node. If a sufficient number
of callbacks are not received in a row, the walker is
considered lost and a new walker will be initiated.

• Reincarnation at TTL. Each random walker is associ-
ated with a certain Time-To-Live (TTL). The walker
will stop propagating after TTL number of walk steps.
The walker originating node keeps a timer that expires
after the TTL walk steps worth of time has elapsed. A
new walker will be initiated at such time. If the walker
is lost before the TTL expires, its replacement is not
initiated until the expiration time.

The main weakness with periodic callbacks lies in the over-
head of callbacks. The overhead is cheaper for networks
in which it takes a single network hop to communicate with
the walker originating node (e.g., Internet overlay networks)
while it is more expensive for other networks (e.g., wireless
ad hoc networks). On the other hand, some random walk
based applications require callback messages as part of the
application semantics (described in Section 2). For these
applications, periodic walker callbacks for loss detection can
be piggybacked in application callback messages and conse-
quently they are almost free.

Unlike periodic callbacks, reincarnation at TTL requires
no additional network overhead. However, its recovery of
walker losses may not be prompt — if a walker is lost soon
after it leaves the originating node, a replacement walker
will not be initiated until the full TTL timer expires. At the
other end, reincarnation at TTL forces walker re-initiation

even if the previous walker has not been lost, thus requiring
additional random walk convergence time to reach desired
node sampling distribution. An additional problem with this
scheme is that it is hard to set the reincarnation timer if the
time for each walk step is unpredictable. This is possible in
networks where nodes do not have synchronized clocks and
network latencies between nodes are unknown.

5. PACING OF WALK STEPS
We define walk step pacing as the condition under which
each walk step takes an equal time interval. Pacing is impor-
tant for applications requiring time-normalized probabilis-
tic node sampling (described in Section 2) such as random
membership subset, load balancing, and small-world rout-
ing. With unequal walk step interval time, the step-wise
node sampling distribution supported by the Metropolis-
Hastings algorithm is not equal to the time-normalized sam-
pling distribution. Additionally, pacing makes it easy to de-
termine when a walker finishes a certain number of steps and
thus it is straightforward to set the TTL expiration timer if
reincarnation at TTL is used to recover from walker losses.

Walk step pacing is usually realized by resting the walker
at each visited node for a certain amount of time. Overall,
the walk step time interval includes the rest time and the
network delay as well. Walk step pacing may not be en-
sured if network latencies between nodes vary significantly
and nodes in the network do not have synchronized clocks
(which is common in many self-organizing networks). In
these cases, additional network communications are needed
to realize strict pacing. In particular, a walker can periodi-
cally contact its originating node to synchronize and adjust
its walk speed. These communications can be piggybacked
with other messages when some form of walker callbacks
are already employed (as part of application semantics or
for walker loss detection).

Even if strict pacing cannot be realized, we can still bound
the difference between the step-wise node sampling distribu-
tion and the time-normalized distribution if the variations
among walk step time intervals are small. This is usually
the case when we can keep the walker rest time at each step
to be a constant and the rest time is significantly larger than
possible network link latency variations.

Let the average walk step time interval when the walker
passes node i be ti and let the average time interval over
all walk steps be t. Let π be the converged step-wise node
sampling distribution and let πT be the converged time-
normalized node sampling distribution. Then for any node

i, we have
πT

i

πi
= ti

t
. We assume the variations among walk

step time intervals are small. In other words, we have |ti −
t| ≤ α · t for all node i, where 0 < α � 1. Then we have

‖πT
, π‖ =

1

2

X

i

|πT
i − πi|

≤ 1

2

X

i

α · πi

=
1

2
α

(2)

where the difference between two distributions ‖x, y‖ was
defined in Definition 1 at Section 3.



We consider a typical Internet overlay network environment
in which the per-link latency is bounded by 200 ms. If the
average random walk step takes 10 second, then α = 0.02 so
‖πT , π‖ ≤ 0.01. In this case, the difference between the step-
wise node sampling distribution and the time-normalized
sampling distribution is very small even at the absence of
any specific mechanism supporting walk step pacing.

6. CONCLUSION
This paper highlights the effectiveness and challenges in us-
ing guided random walks to support applications in self-
organizing networks, including membership management,
load balancing, search, routing, and information propaga-
tion. We make the case for the general feasibility of random
walks in achieving application-specific probabilistic node sam-
pling. We also examines three important issues that concern
the random walks in practical self-organizing network envi-
ronments: random walk convergence, walker loss, and the
pacing of walkers. Our results are summarized below.

First, random walks tend to converge faster when the sam-
pling distributions are less skewed and the underlying topolo-
gies have small diameters and high expansions. Careful
quantitative evaluations may be necessary to achieve de-
sired application goals without excessive convergence time.
For instance, our results suggest a trade-off between sam-
pling bias parameters and the convergence time — a more
biased node sampling is more effective in discovering nodes
with high capacities, loads, or content qualities but it re-
quires longer warm-up time.

Second, we examined two strategies to address possible walker
losses: periodic callbacks and reincarnation at TTL. Our
basic conclusion is that periodic callbacks should always be
used when the callback overhead is acceptable (e.g., when
callbacks can be piggybacked in application messages or
when one hop callback is feasible as in Internet overlay net-
works). When reincarnation at TTL has to be employed,
the TTL setting must be chosen with care. It needs to be
large enough so that the random walker would not reach the
TTL until long after it converges. It also needs to be small
enough so that it would not wait too long to recover from a
walker loss.

Third, achieving strict walker spacing on network nodes
without synchronized clocks requires additional communica-
tion overhead. However, even without strict walker spacing,
the deviation between step-wide node sampling distribution
and the time-normalized sampling distribution is small un-
der many realistic network environments.

7. REFERENCES
[1] L. Adamic, B. Huberman, R. Lukose, and

A. Puniyani. Search in Power Law Networks. Physical
Review, (64):46135–46143, 2001.

[2] A. Barabási and R. Albert. Emergence of Scaling in
Random Networks. Science, 286:509–512, 1999.

[3] A.R. Bharambe, M. Agrawal, and S. Seshan. Mercury:
supporting scalable multi-attribute range queries. In
Proc. of the ACM SIGCOMM, pages 353–366,
Portland, OR, August 2004.

[4] B. Bollobás. Random Graphs. Academic Press,
London, UK, 1985.

[5] B. Bollobás and O. Riordan. The Diameter of a
Scale-free Random Graph. Combinatorica, 24(1):5–34,
2004.

[6] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnady.
The Degree Sequence of a Scale-free Random Graph
Process. Random Structures and Algorithms,
18(3):279–290, 2001.

[7] E. Cohen and S. Shenker. Replication Strategies in
Unstructured Peer-to-Peer Networks. In Proc. of the
ACM SIGCOMM, Pittsburgh, PA, August 2002.

[8] B.F. Cooper. Quickly Routing Searches Without
Having to Move Content. In Proc. of the 4th
International Workshop on Peer-to-Peer Systems
(IPTPS), Ithaca, NY, February 2005.

[9] W. Doeblin. Exposé de la théorie des châınes simples
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