
Reference-Driven Performance Anomaly Identification ∗

Kai Shen Christopher Stewart Chuanpeng Li Xin Li
University of Rochester, Rochester, NY, USA

{kshen@cs, stewart@cs, cli@cs, xinli@ece}.rochester.edu

ABSTRACT
Complex system software allows a variety of execution conditions
on system configurations and workload properties. This paper ex-
plores a principled use ofreference executions—those of similar
execution conditions from the target—to help identify the symp-
toms and causes of performance anomalies. First, to identify
anomaly symptoms, we construct change profiles that probabilisti-
cally characterize expected performance deviations between target
and reference executions. By synthesizing several single-parameter
change profiles, we can scalably identify anomalous reference-to-
target changes in a complex system with multiple execution pa-
rameters. Second, to narrow the scope of anomaly root cause anal-
ysis, we filter anomaly-related low-level system metrics asthose
that manifest very differently between target and reference exe-
cutions. Our anomaly identification approach requires little ex-
pert knowledge or detailed models on system internals and con-
sequently it can be easily deployed. Using empirical case studies
on the Linux I/O subsystem and a J2EE-based distributed online
service, we demonstrate our approach’s effectiveness in identifying
performance anomalies over a wide range of execution conditions
as well as multiple system software versions. In particular, we dis-
covered five previously unknown performance anomaly causesin
the Linux 2.6.23 kernel. Additionally, our preliminary results sug-
gest that online anomaly detection and system reconfiguration may
help evade performance anomalies in complex online systems.

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements, Modeling and prediction

General Terms
Experimentation, Measurement, Performance, Reliability

Keywords
Performance anomaly, Operating system
∗This work was supported in part by NSF CAREER Award CCF-
0448413, grants CNS-0615045, CCF-0621472, and by an IBM
Faculty Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS/Performance’09,June 15–19, 2009, Seattle, WA, USA.
Copyright 2009 ACM 978-1-60558-511-6/09/06 ...$5.00.

1. INTRODUCTION
Large system software such as operating systems and distributed

system middleware are complex in terms of their implementation,
their supported configuration settings, and their wide ranging work-
loads. Under certain execution conditions, these systems may de-
liver below-expectationanomalousperformance. Besides causing
performance degradation, such performance anomalies alsocom-
promise the predictability of system behaviors [11, 15, 17,18],
which is important for automatic system management.

Compared to program crashes and correctness violations, perfor-
mance anomalies are more difficult to identify becausenormal per-
formance behaviorsare not always easily known or even clearly de-
fined. Further, performance anomalies typically relate to high-level
system semantics and they do not possess common source-level
patterns such as accessing invalid pointers. Despite widespread
anecdotal observations of performance problems, relatively few of
them are clearly identified and understood. For instance, weexam-
ined CLOSED (i.e., resolved and corrected) bugs concerning Linux
2.4/2.6 IO/storage, file system, and memory management in the
Linux bug tracking system [9]. Among 219 reported bugs, only9
were primarily performance-related (about 4%). Here, we deter-
mine a bug to be primarily performance-related if it causes signif-
icant performance degradation but it does not cause any incorrect
behaviors like system crashes or deadlocks.

This paper explores principled, scalable techniques on using ref-
erence executions for performance anomaly analysis. A reference
execution is very similar to the targeted anomalous execution in
terms of system software, configuration settings, and workload
properties (which, we collectively call execution conditions). Like
a literary reference, it serves as a basis of comparison thathelps
understand the commonality and uniqueness of the target.

References can assist in identifying performance anomaly symp-
toms. We say that a target execution exhibits the symptoms ofa per-
formance anomaly if its performance is abnormally lower than that
of a reference—i.e., compared to the expected performance devia-
tion between them. Our approach utilizeschange profilesthat prob-
abilistically characterize expected performance deviations between
target and reference executions. In a complex system with multi-
ple execution parameters, we first use sampling to derive single-
parameter change profiles for a target and its reference thatdif-
fer only slightly in execution condition. By synthesizing multi-
ple single-parameter change profiles using a generally applicable
bounding analysis, we can scalably identify anomalous reference-
to-target changes over wide ranges of execution conditions.

Identified reference-target anomaly symptoms can serve as the
basis of root cause analysis. In particular, references mayhelp the
analysis by filtering anomaly-related system metrics from the large
set of collectible metrics in today’s systems. Our approachbuilds

2.6.3 2.6.10 2.6.19 2.6.23
0

0.5

1

1.5

2

2.5

Linux kernel versions

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

yt
es

/s
ec

)

System version evolution

Figure 1: An example of system version evolution anomaly on
SPECweb99 with an I/O-bound workload (19.5 GB total data
size on a machine with 2 GB memory). The I/O throughput
measures the speed of data access at the server application level
(Apache 2.0.44). All Linux kernel versions are configured with
the anticipatory I/O scheduler.

on the intuition that system metrics that manifest very differently
between the target anomalous execution and its normal reference
are likely related to the performance anomaly. Further, ouranomaly
identification approach can assist the management of complex on-
line systems. For instance, the online detection of anomalysymp-
toms coupled with adjustments of anomaly-inducing system con-
figurations may help improve the performance (or evade perfor-
mance anomalies).

Our reference-driven performance anomaly identification re-
quires little knowledge or detailed models on internal system de-
sign and implementation. This allows easy deployment on complex
systems supporting a variety of configuration settings and workload
conditions. We are able to apply it on two large software systems:
the Linux I/O subsystem and the JBoss J2EE distributed applica-
tion server. Our empirical studies uncovered previously unknown
anomaly symptoms and causes over wide ranges of system execu-
tion conditions (eight execution parameters for Linux and nine pa-
rameters for JBoss) as well as multiple system software versions.

2. ANOMALY SYMPTOM IDENTIFICA-
TION

A performance anomaly arises when the system performance be-
havior deviates from the expectation. Performance expectations
can be made in different ways, such as design-driven models,
service-level agreements, or programmer specifications. Our ob-
jective is to derive performance expectations that match high-level
design principles and that can be intuitively interpreted.For in-
stance, the expected performance of an I/O scheduler is thatin-
tended by the high-level scheduling algorithm (e.g., Cyclic-SCAN
or anticipatory scheduling [5]). Its behavioral changes under dif-
ferent execution conditions can be intuitively explained according
to the scheduling algorithm.

Intuitive interpretability is important for human understanding
of the expected performance behavior and it also helps validate
the derived expectation. With design-driven expectations, any per-
formance anomaly indicates an implementation deviation from the
high-level design. Such deviation may represent unintentional er-
rors, but sometimes the implementation intentionally deviates from
the design for simplification or due to a partially beneficialopti-
mization that degrades performance in some cases.

2.1 Motivating Examples and Our Approach
The high-level guidance of reference-driven anomaly symptom

identification can be explained in the following way. Given two

1 2 4 8
0

2

4

6

8

10

I/O concurency (num. of concurrent ops)

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

yt
es

/s
ec

)

Workload condition change

Figure 2: An example of workload condition change anomaly
on an I/O microbenchmark that sequentially reads 256 KBytes
from random locations in randomly chosen files of 4 MBytes
large. The workload is I/O-bound (19.5 GB total data size on
a machine with 2 GB memory) and the experiments run on the
Linux 2.6.23 kernel configured with thedeadline I/O sched-
uler. We control the number of simultaneously running bench-
mark instances to adjust the I/O concurrency levels.

executionsT andR: if T delivers much worse performance than
R against the expected performance deviation between them, then
you identify the target executionT as anomalous in relation to the
reference executionR.

We provide two illustrating examples. Figure 1 shows the per-
formance of the SPECweb99 benchmark with an I/O-bound work-
load. The I/O throughput over multiple Linux kernel versions in-
dicates anomalous performance degradation (around 20%) from
Linux 2.6.19 to Linux 2.6.23. In this example, Linux 2.6.23 (re-
leased in October 2007) is anomalous in relation to any of the
three earlier kernel versions (released in November 2006, Decem-
ber 2004, and February 2004, respectively) as a reference. In an-
other example, Figure 2 shows the I/O throughput of a simple I/O
microbenchmark. The measured throughput at different I/O con-
currency levels indicates a suspicious performance drop between
the concurrency levels of one and two. In this case, the execution
at the concurrency of two is suspected to be anomalous in relation
to the serial execution.

It is important to point out that the identified anomalies in the
above two examples are not just due to large performance degrada-
tions between the target and reference, but that such degradations
are against certain expectation. In the first example of the system
evolution anomaly, the obvious expectation is that a systemver-
sion upgrade should not lead to significant performance degrada-
tion. In the second example of the workload adjustment anomaly,
the somewhat less obvious expectation is that the increase of I/O
concurrency should not cause significant performance degradation.

So how to systematically derive these expectations? Our ap-
proach is to probabilistically infer expected performancedeviations
due to changing system execution conditions through randommea-
surements on the real system. The assumption is that commonly
observed performance behaviors in real systems likely match high-
level design principles and often they can be intuitively explained.

We define thechange profilefor an execution condition change
as the probabilistic distribution of resulted performancedeviations.
Different performance deviation metrics can be employed for the
change profile representation. Here we choose one with good il-
lustrating effects. From throughput measurements at old and new
conditions (told andtnew), we define:

deviation(told, tnew) =
tnew− told

max{tnew, told}
(1)

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

OS kernel version increase

Figure 3: Change profile (in his-
togram) for OS version increase from
Linux 2.6.3, 2.6.10, or 2.6.19 to 2.6.23.

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Workload concurrency increase

Figure 4: Change profile (in his-
togram) for workload concurrency in-
crease by a factor of four.

W
o
rk
lo
a
d
 p
ro
p
e
rt
y
 Y

Sy
ste
m
co
nfi
gu
rat
ion
 Z

System configuration X

Reference

Target

Figure 5: In a multi-parameter ex-
ecution condition space, the condi-
tion change from reference to target
is a combination of a single-parameter
change on Y and a single-parameter
change on X.

This performance deviation metric has a bounded range in
[−1.0, 1.0]. Given deviation(t1, t2) = −deviation(t2, t1), it also
exhibits symmetry at opposite change directions. This allows us
to simply revolve the distribution around the origin point when the
change direction is reversed.

As an example, we can derive the change profile for OS kernel
version increase by sampling the resulted performance deviations
under many randomly chosen execution conditions (including sys-
tem configuration parameters and workload properties, described
in Section 4.1). Figure 3 illustrates the results for migrating from
Linux 2.6.3, 2.6.10, or 2.6.19, to Linux 2.6.23. The resultsval-
idate the intuitive expectation that large performance degradation
is uncommon after system version increase but large performance
improvement is quite possible.

Similarly, Figure 4 illustrates the change profile for the workload
concurrency increase by a factor of four (the concurrency islimited
so memory thrashing [7] does not occur). Results suggest that a
workload concurrency increase tends to improve the I/O through-
put slightly. The intuition is that at a higher concurrency,the I/O
scheduler can choose from more concurrent requests and therefore
achieve better seek reduction.

Given a probabilistic distribution of expected performance devi-
ations with the probability density function ofπ(·). We can then
quantify the anomaly of an observed performance degradation (δ)
from a reference execution to the target. Specifically, we use the
one-tailed p-value in statistics:

pval(δ) =

Z δ

−1.0

π(x) dx. (2)

It represents the cumulative probability for a random observation
(drawn from the distribution with density functionπ(·)) to be no
more thanδ. Intuitively, it is the probability to observe a perfor-
mance degradation at least as extreme asδ. A lower p-value is
more anomalous. The p-value concept makes no assumption on the
underlying distributionπ, making it easily applicable to our case.

2.2 Scalable Anomaly Quantification
In the previous subsection, we use sampling to construct change

profiles for single-parameter adjustments (system versionin Fig-
ure 3 or workload concurrency in Figure 4). They are able to help
quantify the anomaly (in p-value) between a target and its reference
execution that differ only in one condition parameter. A complex
system, however, may have many execution condition parameters,
including multiple configurable parameters in the system software
and various properties for the hosted workloads. One may attempt
to directly construct change profiles for multi-parameter reference-

to-target condition changes (e.g., differing in workload concurrency
as well as the operating system I/O scheduler). However, there
would be too many multi-parameter combinations for a compre-
hensive construction.

We consider each execution condition as a single point in the
multi-dimensional space where each system configuration param-
eter and workload property represents a dimension. Figure 5pro-
vides an illustration of theexecution condition space. The multi-
parameter change between two execution conditions can be con-
sidered as a series of single-parameter changes. To achievescal-
ability, we directly construct only single-parameter change pro-
files and then analytically synthesize them to identify anoma-
lous performance deviations over multi-parameter execution con-
dition changes. The intuition is that the performance ratioaf-
ter a multi-parameter change is the product of the ratios of mul-
tiple single-parameter changes. The challenge, however, is the
non-deterministic (or probabilistic) nature of our changeprofiles.
Below we first describe a convolution-like synthesis that assumes
independent performance deviations due to different parameter
changes. We then present a generally applicable approach tocon-
servatively bound the quantified anomaly for low false positives.

Our change profile representation was defined on the perfor-
mance deviation metric (described in Equation 1) because itpro-
vides good illustrating effects (bounded range and symmetry at op-
posite change directions). However, for the simplicity of mathe-
matical formulations in this section, we introduce a new change
profile representation on the metric of performance ratio. The ra-
tio is defined astnew

told
wheretold andtnew are the system throughput

measures before and after the execution condition change respec-
tively. Specifically, theperformance ratio change profilefor an
execution condition change is the probabilistic distribution of re-
sulted performance change ratios. Note that the two change profile
representations can be easily converted to each other. So our an-
alytical results on performance ratio change profiles can beeasily
applied to the original change profile representation.

We introduce some notations. Let the target and reference ex-
ecutions differ on multiple condition parameters:p1, p2, · · · , pn.
The single-parameter performance ratio change profile onpi has a
known probability density function ofπpi

(·). Let pvalpi
(·) be its

one-tailed p-value function, or pvalpi
(δ) =

R δ

0
πpi

(x) dx.

Convolutional Synthesis of Independent Parameters.
By assuming the independence across multiple parameter changes,
we can probabilistically assemble the multi-parameter change pro-
file from multiple single-parameter profiles. In particular, below we
derive a two-parameter (p1 andp2) change profile using a variant

of the convolution operator:

πp1p2
(y) =

Z ∞

0

πp1
(x) · πp2

(
y

x
) dx. (3)

Change profiles adjusting more than two parameters can be derived
by repeatedly applying the above operator.

With the multi-parameter change profile, we can easily quantify
the p-value anomaly of any observed performance degradation.

Bounding Analysis with General Applicability.Unfor-
tunately, the assumption on independent performance deviations
across multiple parameter changes may not be true in practice. As
one example, different application I/O access patterns maylead to
varying performance effects of aggressive I/O prefetching.

Here we introduce a more generally applicable problem model.
Given the performance degradation (in the ratioδ) from a reference
execution to the target, our p-value anomaly is the probability to
observe a performance degradation at least as extreme asδ. We
consider a randomly observed multi-parameter performanceratio
change as an aggregate of multiple single-parameter changes—x1,
x2, · · · , xn (wherexi is drawn from the density functionπpi

(·)).
We have:

pvalp1···pn
(δ) = Prob

"

n
Y

i=1

xi ≤ δ

#

. (4)

Without any knowledge of independence or correlation across
different single-parameter performance changes (orxi’s), it is gen-
erally impossible to quantify the exact p-value anomaly in Equa-
tion 4. Here we derive a p-value upperbound which serves as a
conservative anomaly estimation. We begin by introducing the fol-
lowing lemma.

LEMMA 1. For any set of single-parameter performance ratio
changesx̂1, x̂2, · · · , x̂n (all greater than0) that exactly aggregate
to the overall change ofδ (in other words,

Qn

i=1
x̂i = δ), we can

show that pvalp1···pn
(δ) ≤

Pn

i=1
pvalpi

(x̂i).

Proof: For any set ofx1, x2, · · · , xn wherexi > x̂i for all i’s, we
know that

Qn

i=1
xi >

Qn

i=1
x̂i = δ. Conversely, if

Qn

i=1
xi ≤ δ,

thenxi ≤ x̂i holds for at least onei. Therefore:

pvalp1···pn
(δ) = Prob

"

n
Y

i=1

xi ≤ δ

#

≤ Prob[(x1 ≤ x̂1) or · · · or (xn ≤ x̂n)]

≤

n
X

i=1

Prob[xi ≤ x̂i]

=

n
X

i=1

pvalpi
(x̂i).

(5)

Lemma 1 can derive a p-value upperbound anomaly for any set
of single-parameter performance ratio changes that exactly aggre-
gate to the overall change ofδ. Since a tighter bound is more desir-
able, we want to identify the one yielding the smallest upperbound.
Formally, our problem is to:

Minimize
n

X

i=1

pvalpi
(x̂i), subject to

n
Y

i=1

x̂i = δ. (6)

The optimal solution to the above problem can be derived using
Lagrange multipliers as follows. As there is just a single constraint,
we use only one multiplierλ to combine the constraint and the

optimization goal together into the Lagrangian function:

Λ(x̂1, x̂2, · · · , x̂n, λ) =
n

X

i=1

pvalpi
(x̂i) + λ · (

n
Y

i=1

x̂i − δ) (7)

The critical values ofΛ are achieved only when its gradient is zero.
In other words, for eachk (1 ≤ k ≤ n), we have:

∂Λ

∂x̂k

=
∂pvalpk

(x̂k)

∂x̂k

+λ·
Y

i=1→n, i6=k

x̂i = πpk
(x̂k)+λ·

δ

x̂k

= 0.

(8)
Therefore, we know that the optimal solution must satisfy:

x̂1 · πp1
(x̂1) = x̂2 · πp2

(x̂2) = · · · = x̂n · πpn
(x̂n). (9)

Combining Condition 9 with the constraint
Qn

i=1
x̂i = δ, we can

compute a numerical solution using the iterative secant method (a
variant of the Newton’s method).

In practice, the calculation of the above optimal solution re-
quires accurate distribution density valuesπpi

(·)’s, which places
a high burden on the construction of single-parameter change
profiles. As a simpler alternative, one can use a Monte Carlo
approximation—to sample a large number of randomly chosen sets
of x̂i’s (where

Qn

i=1
x̂i = δ) and pick the one producing the mini-

mal
Pn

i=1
pvalpi

(x̂i).
By providing a conservative anomaly estimation without requir-

ing the independent parameter assumption, our bounding analysis
yields high confidence in identified anomaly symptoms (low false
positives). However, it may allow some anomalous reference-target
pairs to escape identification. This is acceptable if our goal is to
identify some but not all anomaly symptoms in the system.

2.3 Additional Discussions
We may need to construct multiple single-parameter change pro-

files on one parameter due to multiple possible change-from and
change-to parameter settings. For categorical parameterswith
more than two settings (like the Linux I/O scheduler withnoop,
deadline, andanticipatory settings), we would need to con-
struct multiple change profiles (one for each two-setting pair). For
quantitative parameters such as the workload concurrency,we may
need to construct change profiles for different concurrencyad-
justment magnitude. Alternatively, to save the overhead ofdi-
rect construction, we may only directly construct change pro-
files for small-magnitude setting changes. We then considera
large-magnitude setting change as an aggregate of multiplesmall-
magnitude changes and use our multi-step synthesis in Section 2.2
to derive anomaly quantification. Note, again, that our generally
applicable bounding analysis makes no assumption on how the
overall performance deviation is distributed across multiple small-
magnitude parameter changes.

The p-value calculation provides a way to quantitatively rank
suspected anomaly symptoms. However, there is a lack of well-
founded threshold below which a p-value would indicate a true
anomaly. In practice, 0.05 is a commonly used threshold to sig-
nify statistical significance, which can be traced to Fisher’s early
work on agriculture experiments [3].

3. UTILIZATIONS
Our approach identifies anomalous reference-to-target perfor-

mance degradations in a complex system with a large execution
condition space. This is an otherwise challenging task due to
the difficulty in constructing comprehensive, accurate performance
models for complex systems [11, 15, 17, 18]. Our anomaly symp-
tom identification can be utilized in a number of ways. We can

measure the system performance at some sample execution con-
ditions (with good coverage of the whole space) and use them to
serve as references to each other for identifying anomalousexe-
cution conditions. Anomalous symptoms can further serve asthe
basis for the root cause analysis. During online operations, the per-
formance anomaly detection on the current execution condition can
also enable more dependable system management.

3.1 Anomaly Cause Analysis
Given a pair of reference-target executions with anomalousper-

formance degradation, we want to discover the anomaly cause
in the system implementation. Corrections to anomaly causes
would improve the system performance, and more importantly,
they would maintain predictable performance behavior patterns for
the system. The root cause discovery also helps validate that the
anomaly symptom identifications are correct—i.e., they indeed cor-
respond to implementation deviations from the high-level design.

The anomaly cause analysis is challenging due to the implemen-
tation complexity in large systems. Fortunately, there is an abun-
dance of collectible metrics in today’s systems and low-level sys-
tem metrics may shed lights on internal system behaviors. Specifi-
cally for the case of the Linux I/O subsystem, example metrics in-
clude the I/O request granularity and workload concurrencyat dif-
ferent levels of the system, the frequency of various systemevents
(like system calls), as well as the latency of many concernedsystem
functions. It is likely that some collected metrics are related to the
anomaly cause. Such anomaly-related metrics, if discovered, may
help significantly narrow the scope of root cause analysis.

A scalable anomaly cause analysis needs to prune the vast ma-
jority of anomaly-unrelated metrics so that the manual examination
is only required in a very limited scope. Our approach is driven by
the intuition that system metrics that do not differ significantly be-
tween the target anomalous execution and its normal reference are
not likely related to the performance anomaly. Conversely,those
metrics with very different anomaly-reference manifestations may
be anomaly-related. This would be particularly so if the target and
reference execution conditions are very alike (or if a very recent
past version serves as the reference to a target system version).

Typically, a performance-oriented system metric manifests as a
set of varying quantitative sample measurements in a systemexe-
cution. In general, we represent the manifestation of each system
metric as a probability distribution of measured sample values. We
then quantify how each metric’s manifestation differs between the
target anomalous execution and its normal reference. As an ex-
ample, Figure 6 illustrates the probabilistic manifestations of one
metric in target and reference executions.

Motivated by Joukovet al.’s differencing of latency distribu-
tions [6], we utilize the earth mover’s distance [14] as the difference
measure between two distributions. Consider the process ofmov-
ing some probability density mass of one distribution’s probability
density plot to become another distribution’s probabilitydensity
plot, the earth mover’s distance indicates the minimum amount of
work (probability density mass times the moving distance) required
for such move. Note that different metrics may have different units
of measure or scales. To allow their difference measures to be di-
rectly comparable, we scale all sample values for each metric so
that the larger of the two distribution means equals 1.0.

The result of our approach is a list of system metrics ranked on
their manifestation differences between the target and reference ex-
ecutions. Although a large difference indicates a high likelihood
that the metric is anomaly-related, the difference may alsobe due
to the natural variation between reference and target executions.
Further, it may not be trivial to pinpoint the exact anomaly cause

1 16 32 64 96
0

0.2

0.4

0.6

0.8

1

I/O request size (in 4KB pages)

P
ro

ba
bi

lit
y

Target execution

1 16 32 64 96
0

0.2

0.4

0.6

0.8

1

I/O request size (in 4KB pages)

P
ro

ba
bi

lit
y

Reference execution

Figure 6: A real example of metric manifestations for target
and reference executions. The concerned metric is the gran-
ularity of read I/O requests at the device level (sent from file
system to the SCSI device driver). Probabilistic distributions
are computed from over 10,000 request size measurements in
each execution.

from an anomaly-related system metric. In some cases, a metric-
to-anomaly correlation does not necessarily mean causality or de-
pendence (i.e., the differing metric manifestation may not directly
cause the performance anomaly). We acknowledge that the final
metric screening and anomaly-cause reasoning still require signifi-
cant human efforts. However, our reference-driven metric filtering
can significantly narrow the scope of such manual work.

Our method can discover anomaly-related metrics on execution
states (e.g., the number of outstanding block-level I/O requests) as
well as control flows (e.g., the frequency of reaching a particular
I/O exception condition). More precise control flow tracking for
anomaly analysis can be done at function or basic block levels, such
as in Triage [20] and DARC [19]. Note that our analysis target(ex-
ecution of the full software system) is significantly broader than
that of Triage (execution of an application program) and DARC
(latency peak of a particular system operation). A good overall ap-
proach may be to first narrow down the analysis target using our
reference-driven metric filtering, and then apply more precise con-
trol flow tracking to further reduce the human analysis efforts.

3.2 Online Anomaly Detection and System
Management

It is hard to detect anomaly symptoms in complex systems.
The dynamic and wide ranging workloads of such systems can
mask small performance degradations. Further, such systems have
many complicated system parameters with hard-to-understand per-
formance effects. Our reference-driven anomaly identification is
useful in this scenario, because it uses easily-built change pro-
files (rather than expert knowledge or detailed models on system
internals) to capture design-intended performance. Further, our ap-
proach can be applied online to detect anomalies as they happen.

Our reference-driven approach to online anomaly detectionbe-
gins with the offline construction of single-parameter change pro-
files. Then during online execution, we monitor performance,
workload conditions, and system configurations. We periodically
compile monitoring data for the most recent executed condition.
This condition serves as the target in our anomaly identification.
For references, we use conditions encountered in previous online
executions or during the change profile construction.

Online anomaly detection has practical uses in system manage-
ment. It can alert system administrators of costly performance
degradations. With online anomaly detection, management soft-
ware may automatically increase logging activity to support later
analysis of anomaly root causes. And in autonomic systems, the
management software may avoid anomalous execution conditions
by reconfiguring the system to normal alternatives.

4. CASE STUDY ON LINUX I/O SYSTEM
In this section, we explore performance anomalies in the Linux

I/O subsystem. We consider an execution condition space that
spans eight system parameters and four Linux versions. Thiscase
study demonstrates our reference-driven anomaly symptom identi-
fication and root cause analysis on a real system implementation.

4.1 Empirical Setup
We empirically examined performance anomalies over a multi-

dimensional execution condition space, including the following
workload properties related to I/O system performance:

1. Number of concurrent I/O operations: 1, 2, 4, 8, 16, 32, 64,
128, or 256.

2. Average length of sequential access streams: 64 KB, 128 KB,
256 KB, 512 KB, 1 MB, or 2 MB.

3. Portions of sequential streams accessed without interleaving
I/O from other streams: 16 KB, 32 KB, 64 KB, · · · , up to
the length of sequential access streams. We also call this
parametersequential access run length.

4. Whether each stream start at file beginning: true or false.
5. Average application thinktime per megabyte of data access:

0 ms, 1 ms, 2 ms, 4 ms, or 8 ms.

To create workloads with arbitrary properties, we developed an
adjustable microbenchmark that can exhibit any combination of
workload property settings. It reads randomly selected files from
a dataset of 5,000 4 MBytes files (19.5 GB in total).

Further in the execution condition space, we considered three
system configuration parameters related to I/O system perfor-
mance:

6. File system caching: enabled or disabled.
7. File system prefetching depth: 64 KB, 128 KB, 256 KB, or

512 KB.
8. Linux I/O scheduling: noop, deadline, or anticipatory.

We augmented the operating system to allow these different config-
urations. The prefetching depth and I/O scheduler can be adjusted
by setting appropriate operating system configuration variables. To
disable the file system caching, one can discard the cached pages
encountered during I/O processing.

We experimented with four Linux versions released in the span
of about four years (2.6.23, October 2007; 2.6.19, November2006;
2.6.10, December 2004; and 2.6.3, February 2004). Our measure-
ments used a server equipped with dual 2.0 GHz Xeon processors
and 2 GB memory. The data is hosted on an IBM 10 KRPM SCSI
drive with raw seek time in the range of 1.3–9.5 milliseconds(de-
pending on the seek distance) and raw sequential transfer rate in
the range of 33.8–66.0 MBytes/second (depending on the diskzone
where the data is located).

4.2 Anomaly Symptom Identification
As the basis for our anomaly symptom identification, we created

single-parameter change profiles for all system parameters. Each
probabilistically characterizes the expected performance deviations
when a single execution condition parameter changes (whileall
other parameter settings remain unaltered). We produced the prob-
abilistic distribution by sampling the resulted performance devi-
ations under at least 288 randomly chosen settings of other pa-
rameters. At each execution condition, we measured the sys-
tem throughput by averaging the results of three 100-secondruns.
Our measurements are stable. Excluding the very low-throughput
(2 MBytes/second or less) execution conditions, the standard devi-
ation of every condition’s three-run throughputs is less than 10% of
the corresponding average.

Figure 7 shows some produced single-parameter change profiles
on execution condition adjustments. For quantitative parameters
like prefetching depth, workload concurrency, and the lengths of
sequential access stream/run, the provided change profilesare for
parameter value increases by a factor of four. Following ourdiscus-
sion at Section 2.3, our anomaly symptom identification approach
considers larger-magnitude setting changes on these parameters as
an aggregate of multiple small-magnitude changes. Figure 8shows
change profiles for the Linux kernel version evolution.

A key advantage of our approach is that the probabilistically de-
rived change profiles (in Figures 7 and 8) match high-level sys-
tem design principles and often they can be intuitively interpreted.
We provided such understanding for two single-parameter change
profiles in Section 2.1. Here we briefly explain several others.
Caching in memory improves the system performance, while the
specific improvement depends largely on the data-to-memoryra-
tio (19.5 GB data on 2 GB memory for our case). The anticipatory
scheduler may improve the concurrent I/O performance in cases
of deceptive idleness [5]. With respect to sequential I/O accesses,
it is intuitive that workloads with more sequential patterns tend to
deliver higher I/O throughput. More aggressive prefetching would
take advantage of sequential accesses to deliver better performance.

We identified symptoms of execution condition change anoma-
lies and system version evolution anomalies separately. Toexplore
execution condition change anomalies, we chose a number of sam-
ple conditions from the execution condition space. We measured
I/O throughput at all chosen conditions and used them as references
to each other for identifying anomalous execution conditions. For
reference-to-target execution condition changes that arenot directly
characterized by existing single-parameter change profiles, we used
our generally applicable bounding analysis in Section 2.2 to pro-
duce anomaly measures. To explore system evolution anomalies,
we measured I/O throughput of multiple system versions overthe
same set of sample execution conditions. We then used an earlier
system version as the reference to identify performance anomaly
symptoms in the more recent system version.

We explored execution condition change anomalies on both
Linux 2.6.23 and Linux 2.6.10. As multiple nearby sampled execu-
tion conditions may serve as references for a target condition, we
chose the one yielding the smallest p-value (or the highest anomaly
likelihood) to be its reference. The corresponding p-valueis the
anomaly measure for the target condition. We also examined evo-
lution anomalies between the two system versions. As inputsto our
studies, we chose 300 sample conditions from the execution condi-
tion space in a uniformly random fashion and measured the system
throughput at these 300 conditions for both kernel versions.

Validation. We validated whether the identified anomaly symp-
toms (reference-target pairs with anomalous performance degra-
dation) indeed correspond to implementation deviations from the
high-level design. As discussed in Section 2.3, we focused on the
symptoms with p-value measure of 0.05 or less. This indicates a
5%-or-less probability for observing performance degradations (in
the real system) at least as extreme as these symptoms. Ideally, for
each symptom, we need to find the real cause for the performance
difference first and then judge whether it corresponds to a departure
from the system design intention. In particular, our validation uti-
lized the discovered anomaly causes presented later in Section 4.3.
If an anomaly symptom can be explained by a valid anomaly cause,
we consider it a true anomaly. On the other hand, a symptom that
cannot be explained by any known anomaly cause is not necessar-
ily a false positive—it may be due to a not-yet-discovered anomaly
cause. As an indication of high confidence, all our suspectedfalse

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Caching: disabled −> enabled

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

I/O sched.: deadline −> anticipatory

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Prefetching depth increase

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Workload concurrency increase

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Longer sequential stream

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Longer sequential run

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Access start: filehead −> random

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Higher inter−I/O thinktime

Figure 7: Single-parameter change profiles (in histograms)for adjustments of various execution condition parameters. The perfor-
mance (I/O throughput) deviation is defined earlier in Equation 1.

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Kernel version: 2.6.3 −> 2.6.23

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Kernel version: 2.6.10 −> 2.6.23

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Kernel version 2.6.19 −> 2.6.23

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

Aggregate kernel version increase

Figure 8: Single-parameter change profiles (in histograms)for OS kernel version increases.

positives can be explained by some normal system design inten-
tions. We call themprobable false positives.

We provide the validation results to demonstrate the low false
positive rate of our approach. Below are results for the three per-
formance anomaly explorations. The cited anomaly cause numbers
point to detailed descriptions in Section 4.3:

• We identified 35 top anomaly symptoms on Linux 2.6.10 ex-
ecution condition changes. Within these, 32 are due to cause
#1, one is due to cause #3, and one is due to cause #6. The
remaining one is a probable false positive—the reference-to-
target performance degradation can be explained by the an-
ticipatory scheduler (of the reference execution)’s expected
high throughput for concurrent I/O.

• The exploration on Linux 2.6.23 execution condition
changes identified 12 top anomaly symptoms. Within these,
four are due to cause #2, one is due to #4, one is due to #5,
and three are due to a combination of causes #6 and #7. The
remaining three are probable false positives.

• We identified 15 top symptoms on Linux 2.6.10 to 2.6.23
evolution anomalies. Within these, 14 are due to cause #5
and one is due to cause #4. There is no false positive.

Comparison.For complex systems with multi-parameter exe-
cution conditions, our bounding analysis in Section 2.2 provides
a conservative estimation of the anomaly measure which leads to

low false positives in identified anomaly symptoms. We compared
this approach to the convolutional synthesis that assumes indepen-
dent parameters (also presented in Section 2.2). We furthercom-
pared against another approach, calledraw-difference, that quanti-
fies anomalous reference-to-target performance degradations based
on the raw degradation ratio. To minimize false positives inraw-
difference, we only consider references that are very similar to the
target (differing on no more than two execution condition parame-
ters with small-magnitude differences on quantitative parameters).

Figure 9 shows the anomaly symptom identification results in
the Linux 2.6.23 execution condition exploration. Resultssug-
gest that the convolutional synthesis approach may identify more
anomalies than the bounding analysis, but it does so at the cost of a
much higher false positive ratio. This is the result of potential over-
estimation of the anomaly measure (or under-calculation ofthe p-
value) due to the convolutional synthesis’s independent parameter
assumption. Figure 10 shows its quantified p-values in relation to
those under the more generally applicable bounding analysis.

Finally, Figure 9 also shows that the raw-difference approach is
poor in identifying performance anomalies. Most of the significant
reference-to-target performance degradations can be explained by
normal system design intentions.

4.3 Anomaly Cause Discovery
We attempted to discover the causes of the identified anomaly

symptoms using our reference-driven system metric filtering (de-

Category Event types

Process management Kernel thread creation, process fork or clone, process exit, process wait, process signal,
process wakeup, CPU context switch

System call System call enter, system call exit (distinct event type foreach system call number)
Memory system Page allocation, page free, page swapin, page swapout
File system File execution, file open, file close, file read, file write, fileseek, file ioctl, file prefetch,

start waiting for a data buffer, finish waiting for a data buffer
I/O scheduling Request arrival, request re-queue, request dispatch, request removal, request completion
Anticipatory scheduling Request arrival, request dispatch, request completion, anticipation timeout, request deadline
(when enabled) triggering immediate service, anticipation stop, variousreasons to stop anticipation
SCSI device SCSI device read request, SCSI device write request
Interrupt Enter interrupt handler, exit interrupt handler (distinctevent type for each interrupt identifier)
Network socket Socket call, socket send, socket receive, socket creation

Table 1: Traced Linux event types. The total number of event types is up to 624 for Linux 2.6.10 and up to 703 for Linux 2.6.23. The
difference in event type number is mainly due to additional system calls in newer kernels.

0

5

10

15

20

25

30

35

Id
en

tif
ie

d
sy

m
pt

om
s

Bounding

Convolution

Raw−difference

True anomalies

Prob. false positives

Figure 9: Numbers of identified true anomalies and probable
false positives (in Linux 2.6.23) out of the total 300 samples.
For raw-difference, the identified anomalies are those withthe
highest 5% reference-to-target performance degradation ratio.
This threshold is comparable to the 0.05 p-value threshold used
in the other two approaches.

0 100 200 300
0

0.05
0.1

0.5

Sampled executions (ranked on bounding p−value)

Q
ua

nt
ifi

ed
 a

no
m

al
y

in
 p

−
va

lu
e

Bounding
Convolution

Figure 10: Quantified p-values under different approaches for
300 sampled execution conditions (in Linux 2.6.23).

scribed in Section 3.1). This evaluation demonstrates the effective-
ness of our proposed approach. The discovered causes also help
validate the identified anomaly symptoms by matching them with
real causes in the implementation, as explained in Section 4.2.

Traced Events and Derived System Metrics.We first de-
scribe traced events and derived system metrics for our reference-
driven metric filtering. Table 1 lists the specific Linux event types
we traced by instrumenting the operating system. We chose them
for their easy traceability and their perceived relevance to the I/O
performance. From these traced events, we derived the following
system metrics for performance anomaly analysis:

• Delay of adjacent arrivals for each type of events.
• Delay between causal events of different types. Examples

include the delay between a system call enter and exit, the
delay between file system buffer wait start and end, the delay
between a block-level I/O request arrival and its dispatch,and
the delay between a request dispatch and its completion.

• Event parameters. Examples include the file prefetch size,
SCSI I/O request size, and file offset of each I/O operation to
block device.

• I/O concurrency(number of outstanding requests). Exam-
ples include the I/O concurrency at the system call level, the
block level, and the SCSI device level.

The total number of derived system metrics is up to 1,210 for
Linux 2.6.10 and up to 1,361 for Linux 2.6.23. Note that some
metrics may not manifest or manifest very rarely in specific execu-
tion conditions.

Discovered Anomaly Causes.For each pair of reference and
target executions with anomalous performance degradation, we
ranked the reference-target manifestation differences ofall derived
system metrics. As a larger difference infers a higher likelihood of
anomaly correlation, such ranking helps us to narrow the scope of
root cause analysis significantly. Note that even with the hints of
anomaly-related system metrics, the final root cause analysis still
involves non-trivial human effort. In our evaluation, suchhuman
analysis took about one or two days for each anomaly cause dis-
covery. Our explorations on Linux 2.6.10 and 2.6.23 discovered
seven anomaly causes (two of which matched known anomalies in
our earlier work [15]). Below we describe the discovered causes,
preceded by the metric filtering results that helped our discovery.

Anomaly cause #1 (known [15]), afflicting 2.6.10: The ranked
metric differences between reference and target executions
are shown in Figure 11(A). The two most differing metrics
are the decreases of prefetching operation frequency and of
the device-level I/O request size. These hints led us to the
following anomaly cause. Linux 2.6.10 marks the disk as
congested when there are a large number (113 and above)
of requests in the device queue. During disk congestion, the
OS cancels all prefetching operations and reverts to mostly
single-page granularity I/O accesses. This strategy is prob-
ably due to the intuition that at high load, prefetching is not
likely to complete on time for application access and thus it
is not useful. However, this may also lead to extremely poor
I/O throughput due to frequent disk seeking.

Anomaly cause #2 (new), afflicting 2.6.23: The fourth and fifth
highest ranked metrics in Figure 11(B), prefetching opera-
tion frequency and sizes, helped us to make the following

10−%tile median
0

0.2

0.4

0.6

0.8

1

Ranked system metrics

M
et

ric
 d

iff
er

en
ce

 b
et

w
ee

n
re

fe
re

nc
e/

ta
rg

et (A) Anomaly cause #1

10−%tile median
0

0.2

0.4

0.6

0.8

1

Ranked system metrics

M
et

ric
 d

iff
er

en
ce

 b
et

w
ee

n
re

fe
re

nc
e/

ta
rg

et (B) Anomaly cause #2

10−%tile median
0

0.2

0.4

0.6

0.8

1

Ranked system metrics

M
et

ric
 d

iff
er

en
ce

 b
et

w
ee

n
re

fe
re

nc
e/

ta
rg

et (C) Anomaly cause #3

10−%tile median
0

0.2

0.4

0.6

0.8

1

Ranked system metrics

M
et

ric
 d

iff
er

en
ce

 b
et

w
ee

n
re

fe
re

nc
e/

ta
rg

et (D) Anomaly cause #4

10−%tile median
0

0.2

0.4

0.6

0.8

1

Ranked system metrics

M
et

ric
 d

iff
er

en
ce

 b
et

w
ee

n
re

fe
re

nc
e/

ta
rg

et (E) Anomaly cause #5

10−%tile median
0

0.2

0.4

0.6

0.8

1

Ranked system metrics

M
et

ric
 d

iff
er

en
ce

 b
et

w
ee

n
re

fe
re

nc
e/

ta
rg

et (F) Anomaly causes #6/#7

Figure 11: Metric difference (in the earth mover’s distance[14]) between the target anomalous execution and its normalreference
for anomaly cause discovery. Each marker represents a metric (metrics with too few samples in the executions are not shown). We
single out the most helpful system metric(s) for each anomaly cause discovery and mark them as five-point star(s) in the plot.

discovery. Anomaly cause #1 appears to have been cor-
rected since Linux 2.6.11, by only canceling asynchronous
prefetching operations at disk congestions (i.e., synchronous
prefetching is allowed to proceed). However, the some-
what arbitrary disk congestion threshold at 113 queued
I/O requests still remains and it causes anomalous perfor-
mance deviations when such a threshold is crossed. Specifi-
cally, sometimes the throughput is dramatically improved at
slightly higher workload intensity due to the cancellationof
asynchronous prefetching.

Anomaly cause #3 (known [15]), afflicting 2.6.10/2.6.23: The
most differing metric in Figure 11(C) is the frequency of
anticipation stops due to the arrival of a new I/O request
with a shorter estimated disk seek cost. This directly led to
the anomaly cause that Linux inaccurately estimates that the
seek cost is proportional to the seek distance (which is inac-
curate due to disk head acceleration and settle-down cost).

Anomaly cause #4 (new), afflicting 2.6.23: The second highest
ranked metric in Figure 11(D), the I/O operation file offset,
helped us to discover the following anomaly cause. The OS
employs a slow-start phase in file prefetching—prefetching
takes place with a relatively small initial depth, and then
the depths increase for later prefetching upon detection of
a sequential access pattern. Compared to the earlier version
of Linux 2.6.10, Linux 2.6.23 employs a more conservative
slow-start—smaller initial depth and slower increases. This
may cause substantial increases in disk seek frequency under
concurrent I/O workloads. The intention of such change was
likely to reduce wasted prefetching on unneeded data. How-
ever, it might be a wrong tradeoff given that the existing I/O
prefetching depth is already far below a balanced level [8].

Anomaly cause #5 (new), afflicting 2.6.23: The fourth high-
est ranked metric in Figure 11(E), the device-level I/O re-
quest size, was helpful. Its manifestation distributions in tar-
get/reference executions were shown as an example in Sec-
tion 3.1 (Figure 6). When a file access does not start from

the file beginning, Linux 2.6.23 considers it a random access
and does no prefetching at all, which typically results in inef-
ficient small-granularity I/O. As in the case of cause #4, the
intention would likely be to reduce wasted prefetching on un-
needed data, but the potential cost of frequent disk seeking
may outweigh the reduced waste on I/O bandwidth.

Anomaly cause #6 (new), afflicting 2.6.10/2.6.23: The most dif-
fering metric in Figure 11(F), the frequency of anticipation
stops due to timeouts, led us to the following anomaly cause.
The anticipatory scheduler only allows outstanding read op-
erations from one process at a time. This restriction, how-
ever, does not prevent multiple outstanding device-level I/O
requests—in the case of splitting a large file system-level op-
eration into multiple device-level requests to satisfy thesize
limit, and in the case of concurrent asynchronous prefetching
and synchronous I/O from a single process. In such cases, the
anticipation timer is started after the first device-level request
returns, causing premature timeout and issuance of other pro-
cesses’ requests (often before all outstanding requests from
the current process return).

Anomaly cause #7 (new), afflicting 2.6.23: Correction to the
anomaly cause #6 does not completely compensate the
anomalous performance degradation between the reference
and target executions. A closer look at the two highest
ranked metrics, anticipation stops due to timeouts and ex-
cessive inter-I/O thinktime (in relation to timeout), led us to
the following additional anomaly cause. Considering the fol-
lowing code in anticipatory I/O timeout setup:
/* max time we may wait to anticipate a read

(default around 6ms) */

#define default_antic_expire ((HZ/150)?HZ/150:1)

With 1 KHz kernel ticks (HZ=1000), this code calculates cor-
rect timeout value of six ticks. However, very recent Linux
kernels (including 2.6.23) employ 250 Hz kernel ticks on
default. Consequently the above code calculates a timeout
value of one tick. Effectively, the anticipation timeout can

2.6.3 2.6.10 2.6.19 2.6.23
0

0.5

1

1.5

2

2.5

Linux kernel versions

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

yt
es

/s
ec

)

System version evolution

corrected

original

Figure 12: Effect of kernel correction (for anomaly cause #4)
on I/O-bounded SPECweb99. All workload setup is the same
as the experiment described in Figure 1.

occur anywhere from 0 to 4 ms and we observe timeouts
as short as 100µs in practice. After our discovery and re-
port, this performance anomaly has been acknowledged by
the Linux kernel development team [10].

The discovered anomaly causes are of different natures. We be-
lieve only #1, #6, and #7 are unqualified bugs that should be cor-
rected without question. Causes #4 and #5 are better described as
partially beneficial optimizations that may degrade performance in
some workload conditions. Corrections to these anomaly causes
should be made in special-purpose systems (e.g., machines dedi-
cated to run a particular web server workload) that are most sus-
ceptible to the anomalous conditions. Finally, #2 and #3 aremost
likely intentional simplifications for which perfections (i.e., opti-
mal threshold setting and accurate disk seek time estimation) are
difficult to realize.

Effects of Corrections.To demonstrate the effects of
anomaly corrections, we show the I/O performance on corrected
Linux 2.6.23 kernel for the two performance anomaly examples
provided in Section 2.1. Results in Figure 12 indicate that our
anomaly correction improves the SPECweb99 throughput by 30%
on Linux 2.6.23. Figure 13 demonstrates that our corrections im-
prove the system I/O throughput by 26–37% during concurrentexe-
cutions. More importantly, our corrections lead to predictable per-
formance behavior patterns during system version evolution and
execution condition changes.

5. CASE STUDY ON A DISTRIBUTED ON-
LINE SERVICE

This section presents a preliminary case study on anomaly detec-
tion and system management for a J2EE-based distributed online
service. First, we show that our change profiles capture intuitive
performance expectations across system parameters. Builton our
reference-driven anomaly identification, we further show that sys-
tem reconfiguration can be a promising technique to evade anoma-
lous performance degradations (leading to performance improve-
ments of up to 69%).

5.1 Empirical Setup
We studied performance anomalies for the RUBiS online auction

benchmark [13]. RUBiS is a multi-tier Internet service comprising
a web server, a database, and nine middle-tier Enterprise Java Bean
(EJB) components. The database manages persistent information
about users, items, and ongoing auctions. EJB components query
the database in order to compute business logic, such as the win-

1 2 4 8
0

2

4

6

8

10

12

I/O concurency (num. of concurrent ops)

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

yt
es

/s
ec

)

Workload condition change

corrected Linux 2.6.23
original Linux 2.6.23

Figure 13: Effect of kernel corrections (for anomaly causes
#6/#7) on an I/O microbenchmark. All workload setup is the
same as the experiment described in Figure 2.

ning bids or items for sale in various geographic regions. The web
server converts results from the middle-tier into presentable HTML
format for end users. RUBiS ran on top of the JBoss Application
Server, a middleware platform that provides procedures forcaching
remote data, communicating across cluster nodes, and managing
cluster resources. In our setup, the RUBiS application components
were distributed across three cluster nodes: our Tomcat webserver
ran on a front-end server, our MySQL database ran on a separate
back-end server, and the RUBiS EJB components were distributed
across all three for high performance [17].

Reference and target executions for this study are similar in
terms of their JBoss configuration and supported RUBiS workload.
An anomalous execution pair is one in which the request through-
put, i.e., the number of user requests successfully completed, is
unexpectedly lower in the target execution compared to the refer-
ence. We explored 5 JBoss configurations and 4 properties of the
RUBiS workload, which together represent over one million poten-
tial execution conditions. The considered JBoss configurations are
(* indicates default settings):

1. EJB-component cache coherence: no cache*, assuming
exclusive-access, or verifying content before use.

2. Component invocation protocol: Java RMI or JBoss-
specific*.

3. Invocation retry policy: never retry* or retry once.
4. Database driver: version 3.1 or version 5.0*.
5. Maximum concurrency (thread count): low (10), medium

(128)*, medium high (512), or high (2048).

We also considered several RUBiS workload properties:

6. HTTP session type: HTTP 1.0, HTTP 1.1, or SSL.
7. Database access frequency in the request mix: 0%, 25%,

50%, 75%, or 100%.
8. State maintenance method for EJB components: bean man-

aged state persistence, container managed state persistence,
session state maintenance, or stateless Servlets only.

9. Request arrival rate: up to 180 requests per second.

We developed a custom workload generator that could toggle be-
tween various settings of HTTP session types, request mixes, and
request arrival rates. The RUBiS benchmark can be configured
to use different state maintenance policies. The dataset for our
database was sized according to published dumps at the RUBiS
web site [13]. Each node in our cluster was equipped with two
1.266 GHz Intel Xeon processors, 2 GB memory, and connected to
1 Gbps Ethernet.

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

(A) DB Connector: 3.1 −> 5.0

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

(B) Cache: verification −> exclusive

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

(C) Invocation retry: never −> once

−1.0 −0.5 0.0 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

Perf. deviation: (new−old)/max

P
ro

ba
bi

lit
y

(D) Concurrency: low −> medium

Figure 14: A partial set of single-parameter change profiles
(in histograms) for JBoss execution condition adjustments. We
perform pairwise tests in which each pair differs on only one
execution condition parameter and their performance devia-
tion then contributes to the change profile of the said param-
eter. Each change profile reflects performance deviations be-
tween about 260 pairs of sampled conditions.

5.2 Anomaly Symptom Identification and
Online Management

Figure 14 plots four single-parameter change profiles for the
JBoss system (a partial set due to space limitation). Our profiles
capture intuitive performance variation patterns that reflect design-
intended effects of each execution condition change. Specifically,
we provide the following intuitive understanding on the single-
parameter change profiles of Figure 14:

A) Updates in version 5.0 of the database driver, MySQL Con-
nectorJ [2], included a performance improving capability
called resultset streaming.

B) The cache coherence policy has little impact on performance
since EJB cache misses are rare in our RUBiS setup.

C) Invocation retries may yield better performance since they
mask transient failures and sometimes salvage user requests
that would otherwise be unsuccessful.

D) Low concurrency limits the utilization of available physical
resources and therefore the medium concurrency may deliver
better performance.

Single-parameter change profiles are the basis for our reference-
driven approach to online anomaly detection. We deployed RUBiS
under the default JBoss configuration, and executed a realistic se-
quence of user requests for over 4 hours. The trace that we used is
derived from realistic workload patterns of a large e-commerce re-
tailer and a global enterprise application at HP. Requests for each
service were mapped to RUBiS requests to mimic their realistic
nonstationary workloads [16]. The workload trace is publicly avail-
able [1]. During our tests, request arrival rates varied by two orders
of magnitude and fluctuated in a sinusoidal fashion. Every request
mix setting was encountered.

We followed the general approach described in Section 3.2. The
execution was divided into 5-minute intervals. Figure 15 shows
the throughput of the execution condition at each interval (ranked

Figure 15: Throughput under each 5-minute interval in our
trace. Each point on the x-axis reflects a unique combinationof
request rate and request mix. Diamonds and five-point stars re-
flect throughput under default configuration settings. Stars are
conditions identified as anomalous. Squares show the through-
put under alternative JBoss configuration settings. We found
the alternative settings by randomly testing 20 nearby configu-
ration settings.

on the observed throughput). Our approach identified 7 anoma-
lous execution conditions (p-value of 0.10 or less in this evalua-
tion), including the conditions with 7th and 11th highest through-
put. Anomalies with such subtle symptoms,i.e., anomalous targets
exhibiting decent absolute performance, are hard to detect. How-
ever, Figure 15 also shows the opportunistic cost represented by
such anomalies. By reconfiguring the JBoss system parameters of
the two anomalies, we were able to achieve respective performance
improvements of 25% and 69% under the same workload condi-
tions. This result suggests that system reconfiguration might be a
valuable tool in evading performance anomalies.

6. RELATED WORK
Recent research has tackled performance anomaly detectionand

diagnosis for complex systems. Reynoldset al. [12] proposed
an infrastructure, calledPip, to expose system performance prob-
lems by comparing system metric manifestation and programmer-
specified expectation. Joukovet al. [6] uncovered operating sys-
tem performance problems by analyzing the latency distribution
of system execution. Without systematic understanding of ex-
pected performance, these anomaly identification approaches rely
on programmer-specified expectations or they target specific sys-
tem properties with known normal behaviors. By using references,
our approach requires little knowledge on the target systemde-
sign/implementation and it can identify anomalies over wide ranges
of system execution conditions.

Besides our reference-driven approach, performance expecta-
tions can also be derived through absolute performance models
(typically driven by design specifications) [15,17,18]. Inparticular,
IRONModel [18] characterizes performance anomalies as observed
deviations from such model expectations. However, it is difficult
to construct comprehensive, design-driven performance models for
complex systems with varying execution conditions (including sys-
tem configuration parameters and workload properties). Expecta-
tions and corresponding anomalies can also be derived through ma-
chine learning techniques [11]. Most of the learning techniques,
however, do not produce easily interpretable results. Consequently
they cannot directly help discover anomaly causes and derived
anomalies are often hard to validate.

The use of correct peer systems to aid problem diagnosis is not
new. Wanget al. [21] discovered erroneous Windows registry con-

figurations by matching with a set of known correct configurations.
Triage [20] and delta debugging [22] proposed to isolate prob-
lem sources by comparing against successful program runs with
slightly different inputs. These studies focus on diagnosing non-
performance problems for which anomaly symptoms (crashes or
program failures) are obvious. However, the normal peer execu-
tions are not easily identifiable for performance anomaly analy-
sis. Further, performance analysis must handle quantitative system
metrics (e.g., the latency of theread system call or the number of
outstanding I/O requests) that typically manifest as a set of varying
sample measurements. This increases the challenge in understand-
ing the difference between the anomalous target and its reference.

Our search of performance anomalies in a multi-parameter sys-
tem condition space is reminiscent of the software testing problem
of designing efficient test cases with good coverage over a complex
system. Grindalet al.’s survey [4] summarized a number of combi-
natorial strategies to choose values for individual input parameters
and combine them into complete test cases. In the context of soft-
ware testing, it is assumed that the success or failure at a system
condition can be easily determined after testing. However,identi-
fying performance anomaly at a tested condition is fundamentally
more challenging. This paper proposes to identify performance
anomalies by checking unexpected performance degradations from
reference to target conditions. This approach is based on a scalable
technique to construct probabilistic characterizations of expected
performance deviations over a large execution condition space.

7. CONCLUSION
This paper makes several contributions to reference-driven per-

formance anomaly identification. First, we present a scalable ap-
proach to produce probabilistic expectations on performance devi-
ations due to execution condition changes. This approach allows us
to identify anomalous performance degradations between reference
and target executions in complex systems with wide ranges ofexe-
cution conditions. Second, we propose a reference-driven approach
to filter anomaly-related performance metrics from many varieties
of collectible metrics in today’s systems. Such filtering can help
narrow the scope of anomaly root cause analysis.

We apply our techniques to identify anomaly symptoms and
causes in real system software including the Linux I/O subsystem
and a J2EE-based distributed online service. In particular, we have
discovered five previously unknown performance anomaly causes
in the recent Linux 2.6.23 kernel, including one that has been ac-
knowledged by the Linux kernel development team [10]. Correc-
tions to these anomalies can significantly improve the system per-
formance. But more importantly, they lead to predictable perfor-
mance behavior patterns during system version evolution and ex-
ecution condition changes. Such predictability [11, 15, 17, 18] is
an essential foundation for automatic system management like re-
source provisioning and capacity planning.

Finally, our work has uncovered interesting characteristics of
real performance anomalies. For instance, less than half ofour dis-
covered Linux performance anomaly causes are unqualified bugs.
The rest are better described either as partially beneficialoptimiza-
tions that may degrade performance in some workload conditions,
or as intentional simplifications for which perfect implementations
are difficult to realize. Also, we demonstrated the potential for
reference-driven anomaly detection in a realistic distributed online
system. In doing so, we discovered that subtle anomalies that do
not exhibit poor absolute performance can represent significant op-
portunistic cost. System reconfiguration may be a promisingtech-
nique to avoid such lost performance.

Acknowledgment
We thank the anonymous SIGMETRICS reviewers and our shep-
herd Erez Zadok for comments that helped improve this paper.

8. REFERENCES
[1] Realistic nonstationary online workloads.

http://www.cs.rochester.edu/u/stewart/models.html.
[2] MySQL JDBC driver. http://www.mysql.com/products/connector.
[3] R. A. Fisher. The arrangement of field experiments.J. of the Ministry

of Agriculture of Great Britain, 33:503–513, 1926.
[4] M. Grindal, J. Offutt, and S. F. Andler. Combination testing

strategies: A survey.Software Testing, Verification and Reliability,
15(3):167–199, Mar. 2005.

[5] S. Iyer and P. Druschel. Anticipatory scheduling: A diskscheduling
framework to overcome deceptive idleness in synchronous I/O. In
18th ACM Symp. on Operating Systems Principles, pages 117–130,
Banff, Canada, Oct. 2001.

[6] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok.Operating
system profiling via latency analysis. In7th USENIX Symp. on
Operating Systems Design and Implementation, pages 89–102,
Seattle, WA, Nov. 2006.

[7] C. Li and K. Shen. Managing prefetch memory for data-intensive
online servers. In4th USENIX Conf. on File and Storage
Technologies, pages 253–266, Dec. 2005.

[8] C. Li, K. Shen, and A. Papathanasiou. Competitive prefetching for
concurrent sequential I/O. InSecond EuroSys Conf., pages 189–202,
Lisbon, Portugal, Mar. 2007.

[9] Linux kernel bug tracker. http://bugzilla.kernel.org/.
[10] Linux kernel bug tracker on “many pre-mature anticipation timeouts

in anticipatory I/O scheduler”.
http://bugzilla.kernel.org/showbug.cgi?id=10756.

[11] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng, and G. R.
Ganger. Modeling the relative fitness of storage. InACM
SIGMETRICS, pages 37–48, San Diego, CA, June 2007.

[12] P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah, and A. Vahdat.
Pip: Detecting the unexpected in distributed systems. InThird
USENIX Symp. on Networked Systems Design and Implementation,
San Jose, CA, May 2006.

[13] RUBiS: Rice University bidding system. http://rubis.objectweb.org.
[14] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’sdistance

as a metric for image retrieval.Int’l J. of Computer Vision,
40(2):99–121, 2000.

[15] K. Shen, M. Zhong, and C. Li. I/O system performance debugging
using model-driven anomaly characterization. In4th USENIX Conf.
on File and Storage Technologies, pages 309–322, San Francisco,
CA, Dec. 2005.

[16] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for
performance prediction. InSecond EuroSys Conf., pages 31–44,
Lisbon, Portugal, Mar. 2007.

[17] C. Stewart and K. Shen. Performance modeling and system
management for multi-component online services. InSecond
USENIX Symp. on Networked Systems Design and Implementation,
pages 71–84, Boston, MA, May 2005.

[18] E. Thereska and G. R. Ganger. IRONModel: Robust performance
models in the wild. InACM SIGMETRICS, pages 253–264,
Annapolis, MD, June 2008.

[19] A. Traeger, I. Deras, and E. Zadok. DARC: Dynamic analysis of root
causes of latency distributions. InACM SIGMETRICS, pages
277–288, Annapolis, MD, June 2008.

[20] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:
Diagnosing production run failures at the user’s site. In21th ACM
Symp. on Operating Systems Principles, pages 131–144, Stevenson,
WA, Oct. 2007.

[21] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with PeerPressure. In
6th USENIX Symp. on Operating Systems Design and
Implementation, pages 245–258, San Francisco, CA, Dec. 2004.

[22] A. Zeller. Isolating cause-effect chains from computer programs. In
10th ACM Symp. on Foundations of Software Engineering, pages
1–10, Charleston, SC, Nov. 2002.

