
Distributed Hashtable on Pre-structured Overlay Networks

Kai Shen
kshen@cs.rochester.edu

Department of Computer Science, University of Rochester

Technical Report #831

Abstract

Internet overlay services must adapt to the substrate
network topology and link properties to achieve high
performance. A common overlay structure management
layer is desirable for enhancing the architectural modular-
ity of service design and deployment. For instance, new
link probing techniques can be incorporated into the com-
mon structure layer such that a large number of overlay
services can benefit transparently. Additionally, a shared
substrate-aware overlay structure can potentially reduce
redundant per-service link-selection probing when over-
lay nodes participate in multiple services. The concept
of building services on a common structure management
layer fits well with unstructured services, those that do
not place specific requirements on the overlay connectiv-
ity structure (e.g., Gnutella).

Despite the benefits, it is unclear how the distributed
hashtable (DHT) service can take advantage of a service-
independent structure management layer, considering
recently proposed scalable DHT protocols all employ
protocol-specific overlay structures. In this paper, we
present the design of a self-organizing DHT protocol
based on the Landmark Hierarchy. Coupled with a simple
low-latency overlay structure management protocol, this
approach can support low-latency DHT lookup without
any service-specific requirement on the overlay structure.
Compared with Chord, a well-known DHT protocol, sim-
ulations and experimentation on 51 PlanetLab sites find
that the proposed scheme can deliver better lookup perfor-
mance (reducing the lookup latency by almost half) under
the same link density. This benefit is achieved at the cost
of less balanced lookup routing overhead. Our evaluation
also demonstrates that the balance of key placement and
fault tolerance for the proposed scheme are close to those
of Chord. However, our approach produces more key re-
assignments after overlay membership changes, due to its
structure-sensitive DHT mapping scheme.

1 Introduction

Internet overlays are successfully bringing large-scale
wide-area distributed services to the masses. A key factor
to this success is that an overlay service can be quickly
constructed and easily upgraded because it only requires
engineering at Internet end hosts. However, Internet over-
lay services may suffer poor performance when they ig-
nore the topology and link properties of the substrate net-
work. Various service-specific techniques have been pro-
posed to adapt to Internet properties by selecting over-
lay routes with low latency or high bandwidth. No-
table examples include the unicast overlay path selec-
tion [1, 25] and measurement-based end-system multicast
protocols [2, 5, 10, 33].

Under such a context, it is natural to conceive a com-
mon layer that maintains overlay connectivity structure,
which can greatly ease the design and deployment of over-
lay services. For instance, more effective link probing
techniques or a new partition repair protocol can be in-
corporated into the common structure layer such that a
large number of overlay services can benefit transparently.
Another powerful supporting argument for this concept
is that a common substrate-aware overlay structure layer
can reduce redundant service-specific link-selection prob-
ing when overlay nodes participate in multiple services.
Early experience on PlanetLab [19], an overlay hosting
platform, indicates that link-selection probing can con-
sume significant network resources. A common structure
management layer can maintain an overlay connectivity
structure with good links of low latency or high band-
width. Upper-level services can use Internet transport ser-
vices along overlay links selected by this layer, which al-
lows these services to achieve high performance without
incurring any additional link probing overhead.

The key for overlay services to take advantage of a
common structure management layer is that they must be
able to function on pre-structured overlay networks. In
other words, these services must not dictate how over-
lay links are structured in any service-specific way. This
requirement fits well with services such as unstructured

1

peer-to-peer search [7, 14]. This layer can also benefit
unicast or multicast overlay path selection services (e.g.,
RON [1] and Narada [5]). For instance, Narada employs
a DVMRP-style multicast routing protocol running on
top of a low-latency pre-structured overlay network. It
achieves high performance without any additional link-
selection probing beyond the structure management layer.

Despite these benefits, it is unclear how a given
substrate-aware overlay structure can assist the construc-
tion of the distributed hashtable (DHT) service. A DHT
is a self-organizing overlay network of hosts that sup-
ports the insertion, deletion, and lookup with hash keys.
A distributed hashtable can serve as a powerful utility
supporting many Internet applications including cooper-
ative mirroring, time-shared storage, and distributed in-
dexes [28]. The heart of a DHT protocol is a distributed
lookup scheme that maps each hash key into a determinis-
tic location with well balanced object placement and run-
time overhead. Recently proposed scalable DHT proto-
cols such as Chord [28], CAN [20], and Pastry [24] are all
strongly structured. In other words, they place protocol-
specific requirements on overlay connectivity structures.
As a result, substrate-aware link-selection enhancements
built for these DHT protocols [3, 21, 35, 34] cannot bene-
fit other services.

In this paper, we set out to answer the following ques-
tions: Can a scalable DHT service be built to take ad-
vantage of a service-independent structure management
layer? And if so, can such a service perform competi-
tively compared with strongly structured DHT protocols?
More specifically, we are interested in the DHT perfor-
mance in the following aspects: the lookup latency, fault
tolerance, the balance of key placement, the load balance
of runtime query routing overhead, and the amount of key
reassignment due to overlay membership changes.

The rest of this paper is organized as follows. Section 2
describes a low-latency structure management layer that
our DHT construction can be built on. Section 3 then
presents the design of a hierarchical DHT protocol that
operates on pre-structured overlays. Section 4 describes
our evaluation results based on discrete-event simulations.
Section 5 reports our implementation and experimentation
on the PlanetLab testbed. Section 6 discusses related work
to our research and Section 7 concludes the paper.

2 Substrate-aware Overlay Structure Con-
struction

Our DHT construction is based on our earlier design
of a common structure management layer, called Sax-
ons, that provides Substrate-Aware Connectivity Support
for Overlay Network Services [27]. The Saxons over-
lay structure management layer contains six components.
The bootstrap process determines how new nodes join

the overlay structure. The structure quality maintenance
component maintains a high quality overlay mesh while
the connectivity support component actively detects and
repairs overlay partitions. They run periodically to ac-
commodate dynamic changes in the system. The above
Saxons components are all supported by the membership
management component that tracks a random subset of
overlay members. The structure quality maintenance is
further supported by two other components responsible
for acquiring performance measurement data for overlay
links and finding nearby overlay hosts. Figure 1 illustrates

Node bootstrap
Connectivity

support

Structure

quality

maintenance

Network

measurement

Random

membership

subsets

Finding nearby

hosts

Figure 1: Saxons components.

the six Saxons components and their relationship. Below
we briefly describe the low-latency structure quality main-
tenance that is most related to our DHT construction in
this paper. A more complete description of the Saxons
structure management layer can be found in [27].

A critical problem for low-latency overlay services is
how to acquire latency performance data to support ef-
ficient overlay service construction. Measurement accu-
racy, scalability, and ease of deployment are some impor-
tant issues for such network measurement. Previous stud-
ies have proposed various techniques for estimating Inter-
net host distances [6, 16] or locating nearby hosts [8, 21].
In principle, Saxons can utilize any of the existing tech-
niques for latency estimation. In particular, we point out a
landmark-based Cartesian distance approach for its sim-
plicity. This approach requires a set of l well-known land-
mark hosts spread across the network and each landmark
defines an axis in an l-dimensional Cartesian space. Each
group member measures its latencies to these landmarks
and the l-element latency vector represents its coordinates
in the Cartesian space. For nearby host selection, a node
chooses the one to which its Cartesian distance is mini-
mum. This approach has been shown to be competitive to
a number of other landmark-based schemes [21].

A main functionality of the Saxons structure manage-
ment layer is to maintain a high-quality overlay structure
connecting member nodes. The protocol runs at a certain
link density, specified by a node degree range <da � dt>.
Each node makes da active overlay links and each node
can also accept a number of passive links as long as the
total degree does not exceed dt. The degree upper-bound
is maintained to control the stress on each node’s physi-
cal access link and limit the impact of a node failure on

2

the Saxons structure. Note that the average node degree is
2da under such a scheme.

The heart of the Saxons structure quality maintenance
is a periodic routine that continuously adjusts for poten-
tially better structure quality. More specifically, it checks
the distance to hosts in the local random membership sub-
set and replace the longest existing links if new hosts are
closer. The host distance comparison is determined based
on landmark-based Cartesian distance or other means if
available. In addition to quality-oriented link adjustments,
each node also periodically pings its Saxons neighbors. A
neighbor link will be replaced when several consecutive
pings fail.

The overlay structure stability is important for the per-
formance of overlay services that maintain link-related
state, including the DHT service we describe in the next
section. In order to avoid frequent structure changes, we
require that a link adjustment occurs only when a new link
is shorter than the existing overlay link for more than a
specified threshold. If needed, it is also possible to dis-
able the quality-oriented structure changes sometime after
a node bootstrap to further enhance the structure stability.
It should be noted that runtime structure changes cannot
be completely avoided at the presence of overlay mem-
bership changes.

If we use landmark-based latency estimation for struc-
ture quality maintenance, link probing is only necessary
at node startup to measure latencies to a few designated
landmark nodes. No additional runtime network overhead
would be needed for the structure quality maintenance.
Other Saxons components incur a runtime network over-
head of around 1.3Kbps [27]1.

3 Distributed Hashtable on Pre-structured
Overlay Networks

Distributed hashtable on pre-structured networks re-
sembles network routing in subtle ways. A DHT lookup
can be considered as a network routing request with its
destination labeled with a hash key instead of a host ID.
Our DHT design can draw upon many earlier efforts in de-
signing scalable network routing protocols. In particular,
we choose to base our design on the Landmark Hierar-
chy [29]2, due to its potential of self-organization and au-
tomatic adaptation to overlay membership changes. Our
Landmark Hierarchy-based DHT protocol is designed to
achieve the following goals:

Self-organization and automatic adaptation: In order

1Higher runtime network overhead may be incurred for bandwidth-
oriented structure optimizations in Saxons. However, bandwidth-
oriented structure optimizations are not needed for the DHT construction
targeted in this paper.

2Do not confuse the Landmark Hierarchy with the landmark-based
Cartesian distance approach we use for latency estimation.

to achieve quick deployment with low maintenance
overhead, this protocol must be able to self-organize
at startup and it must also automatically adapt to
dynamic overlay membership changes due to node
joins, leaves, and failures.

Scalability: To support large overlay groups, the per-
node protocol maintenance overhead and storage
consumption must increase slowly with the growth
of the overlay size. For instance, a linear increase in
such overhead would cripple the protocol scalability.

High-performance DHT lookup: We are interested in
the DHT lookup performance in terms of both
lookup latencies and hop-counts. Without count-
ing any processing time at each intermediate over-
lay node, the lookup latencies represent the best-case
DHT lookup performance. The hop-counts, on the
other hand, indicate the amount of potential perfor-
mance penalty in the presence of transient conges-
tion or faults at intermediate nodes.

Balanced key placement and lookup routing overhead:
Load balance is also an essential goal for a dis-
tributed hashtable and it is especially difficult to
achieve for hierarchical schemes. We consider pro-
tocol load balance in terms of both key placement
and lookup routing overhead.

The rest of this section describes a Landmark Hierar-
chy on pre-structured overlays (Section 3.1), followed by
its automatic construction and adaptation scheme (Sec-
tion 3.2). We then present our DHT design based on this
Landmark Hierarchy (Section 3.3).

3.1 Landmark Hierarchy on Pre-structured
Overlays

Our concept of Landmark Hierarchy mostly follows
that of the original Landmark Hierarchy [29], with nec-
essary changes to support the DHT service. A Landmark
is a node whose neighbors within a certain number of
hops (called routing radius) contain routing entries for it.
This is usually achieved by having each landmark peri-
odically flood a route advertisement message along the
overlay structure for up to a hop-count bound of its rout-
ing radius. For our DHT protocol, all overlay nodes form
a hierarchy of landmarks, with level 0 being the lowest
level, and level H being the highest level. Every overlay
node is at least a level 0 landmark. All landmarks in the
same level have the same routing radius. A higher-level
routing radius is always larger than a lower-level routing
radius. And the levelH landmarks flood their route adver-
tisements to the complete overlay. Let rrl be the level l
routing radius. Therefore we have rr l+1 > rrl for each
0 � l < H ; and rrH =1.

3

We call a child-parent relationship exist between node
A and B when A is one-level lower than B in the Land-
mark Hierarchy and they are within each other’s routing
radii, i.e., they have routing entries for each other. We re-
quire that all nodes except those at the top level have at
least a parent. Note that a node may have multiple par-
ents in the hierarchy. We also require each node carry
IDs of all its children in its route advertisements and sub-
sequently they are stored as part of the routing entry at
nodes within the routing radius. This information is criti-
cal for our DHT construction, though it is not needed for
network routing in the Landmark Hierarchy [29]. Figure 2
illustrates a Landmark Hierarchy and its routing table lay-
out.

A

C

B

Node Level
Next

hop
Children

B

C

1

2

...

...

...

...

… … … ...

A’s routing table

B,

A,

Figure 2: A Landmark Hierarchy and its routing table lay-
out. Nodes A, B, and C are level 0, 1, and 2 landmarks
respectively.

Having small routing tables is a key benefit for hier-
archical routing schemes. Kleinrock and Kamoun found
that the average number of routing table entries in an
H-level hierarchy with a single top-level node is at best
H � N

1

H , where N is the total number of nodes in the
hierarchy [12]. This may only be achieved when every
landmark (except level 0 nodes) has the same number of
children and no landmark has more than one parent. In
practice, the routing table sizes are somewhat larger and
we will examine that in the performance study.

3.2 Hierarchy Construction and Adaptation

We now describe an automatic hierarchy construction
and adaption scheme. The goal is to dynamically maintain
a balanced hierarchy with exponentially smaller popula-
tion at higher levels. All overlay nodes start at level 0 with
a routing radius of rr0 hops. Each node sends out peri-
odic routing advertisements at interval tint to other nodes
within its routing radius. Routing entries are recorded or
refreshed upon the receipt of these advertisements. Rout-
ing entries are kept as soft state such that they expire after
not being refreshed for several rounds. Periodically, every
node checks the existence of an unexpired routing entry
for a parent. If a parent routing entry does not exist and

the hierarchy level-bound has not be reached, it sched-
ules a promotional procedure at a random delay. The
node increases its landmark level by one at the execu-
tion of the promotional procedure. The random delay for
scheduling promotional procedures is chosen uniformly
from [tint + tdelay, (1 + �Npeer)tint + tdelay], where
tdelay is the estimated message propagation delay upper-
bound in the overlay network, � is a constant, and Npeer

is the number of same-level peers in the local routing ta-
ble. The linear back-off component onNpeer is employed
to prevent many nodes in a densely connected area to pro-
mote themselves simultaneously. The scheduled promo-
tional procedure is canceled when a routing advertisement
from a parent is later received.

When the hierarchy level-bound is large, it is desirable
to stop the hierarchy buildup when there is only a sin-
gle top-level landmark node. Following an idea presented
in [13], a node without any same-level peer in its rout-
ing table never promotes itself. This scheme works when
each node sees at least one same-level peer if any exists,
which can be ensured by having rr l+1 > 2 � rrl for all
l � 0. However, one drawback with this approach is that
the routing radii increase too fast for high levels, resulting
in large number of children nodes at high levels. We fix
this problem by introducing a peer notification radius (de-
noted by prl at level l) independent of the routing radius.
Each level l landmark floods the overlay network with a
peer notification announcement for up to pr l hops. We re-
quire prl+1 > 2�rrl such that each node sees at least one
same-level peer if any exists.

A node may want to lower its hierarchy level after some
other nodes depart from the overlay or if an earlier promo-
tion has been pre-mature. We employ two demotion rules
in the automatic hierarchy adaptation.

Rule 1: Each node periodically checks the existence of
an unexpired routing entry for a child. When discov-
ering no child is present, it schedules a demotional
procedure at the delay of tint+ tdelay. We use a con-
stant scheduling delay because no back-off is neces-
sary in this case.

Rule 2: Each node also checks its routing table for
whether a hierarchy peer can serve as a parent if it
demotes itself. This is the case when the hop count
distance to one of the peers is within the routing ra-
dius of the hierarchy level after the demotion. If so, a
demotional procedure is scheduled at a random delay
between [tint + tdelay , (1 + �Npeer)tint + tdelay].
The linear back-off component onNpeer is employed
to prevent all peers to demote themselves simultane-
ously. This demotion rule ensures that no two level l
landmarks are within the distance of rrl�1 from each
other.

4

3.3 Distributed Hashtable on the Landmark Hi-
erarchy

In this section, we first describe the mapping scheme
between each hash key and a deterministic host in our
DHT protocol. We then present a distributed algorithm
for any node to find such location with a given hash key.

One of the building blocks in our DHT mapping
scheme is the Chord identifier circle [28]. It is necessary
to provide a brief description of it. In Chord, each overlay
node and key is assigned an identifier in <0 � IDmax>
using an ID assignment function such as SHA-1 [26] or
MD5 [22]. A node’s identifier is chosen by hashing the
node’s IP address, while a key identifier is generated by
hashing the key. All identifiers are ordered in an iden-
tifier circle modulo IDmax + 1. Key k is assigned to
the first node whose identifier is equal to or follows k’s
in the identifier space, called owner(k:id). If identifiers
are represented as a circle of numbers from 0 to IDmax,
then owner(k:id) is the first node clockwise from k. Fig-
ure 3 shows one such identifier circle, following an exam-
ple given in [28].

0

1

3

2

4

5

6

7
owner(1)=1

owner(2)=3owner(6)=0

Figure 3: An ID circle with three nodes 0, 1, 3. In this
example, key 1 maps to node 1, key 2 to node 3, and key
6 to node 0.

Instead of a single identifier circle, our protocol em-
ploys a hierarchy of identifier circles to map hash keys
to overlay nodes. First, all top level (e.g., level H) land-
marks form a level H identifier circle (denoted by idcH).
In addition to the top level identifier circle, all children
of each level l + 1 landmark X (0 � l < H) form a
level l identifier circle (denoted by idcl(X)). Note that
there are typically multiple identifier circles in each level
below level H . Each hash key k is first mapped to a
level H landmark node (denoted by nH(k)) in the top
level identifier circle. Then it is subsequently mapped to
a level H � 1 landmark in nH(k)’s children identifier cir-
cle. This process continues until the hash key is eventu-
ally hashed into a level 0 landmark n0(k), which is con-
sidered as the key’s final owner. One problem with this
scheme is that hash keys mapped to a particular landmark
are close to each other in the identifier circle. Therefore
these keys would always map into the same region in sub-
sequent lower-lever identifier circles, causing imbalance

in key placement. In order to fix this problem, we use
different key-identifier assignment functions in each level
such that keys with close identifiers in one level are spread
out in the identifier circles for all other levels. We use
MD5l() to denote the ID assignment function at level l.
Equation (1) and Figure 4 illustrate our DHT mapping
scheme at each level. Note again that the level 0 DHT
owner n0(k) is considered as k’s final owner.

nl(k) =

�
idcH :owner(MD5H(k)) if l = H;

idcl(nl+1(k)):owner(MD5l(k)) if 0 � l < H:

(1)

nH(k)

idcH

idcH-1(nH(k))

nH-1(k)

… … ...

idc0(n1(k))

n0(k):

final DHT owner of k.

Level H identifier

circle

Level H-1

identifier circles

… …

Level 0 identifier

circles

…

Figure 4: Illustration of the proposed DHT mapping
scheme.

We now describe a distributed lookup algorithm to im-
plement the DHT mapping described above. For each
given hash key k, the lookup initiator node A first finds
k’s level H owner (denoted by nH(k)) in the top level
identifier circle. This can be performed locally at every
node since the identifiers of all top level landmarks are
known to all through their route advertisements. Because
all children identifiers are carried in each route advertise-
ment, A is also able to locally find k’s level H � 1 owner
(denoted by nH�1(k)) in nH’s children identifier circle.
If A has nH�1(k)’s routing entry (and therefore the iden-
tifiers of all its children), A would continue to perform
lookup for lower-level DHT owners. When A’s local
lookup stops because it does not have the routing entry
for k’s level l � 1 DHT owner nl�1(k), A forwards the
lookup query to its next hop node toward n l(k), which it
has a routing entry for. This process continues until n0(k)
is located. Figure 5 illustrates this algorithm in recursive
form. This algorithm is invoked at the lookup initiator
node with DHT LOOKUP(key, H , nH(key)).

Note that lookup queries normally do not go through
high-level DHT owners before finding the final level 0
owner. This is because a lookup query aiming at the level l
DHT owner shifts toward the level l� 1 owner as soon as
it moves within its routing radius. This is more so when
rri is much larger than rri�1. This behavior is essential

5

Algorithm 3.1: DHT LOOKUP(key; l; nl)

Input: key: the hash key.
Input: l: the current lookup level.
Input: nl: the DHT owner in the current lookup level.

// Local lookup for lower-level DHT owners.
while l > 0 do
nl�1 idcl�1(nl):owner(MD5l�1(key));
if nl�1is not in the local routing table then break;
l l� 1;

enddo;

// Finding n0 � global termination.
if l = 0 then return (n0);

// Proceed to the next hop and perform recursive lookup.
m the next hop node toward nl;
return (m:DHT LOOKUP(key; l; nl));

Figure 5: The distributed lookup algorithm in recursive
form.

for offloading higher-level landmarks in terms of lookup
routing overhead.

The stability of the DHT mapping scheme is impor-
tant for applications that require data migration when key
assignments change, such as distributed storage systems.
Our hierarchy generation and DHT mapping scheme are
sensitive to changes in the overlay structure. For instance,
a link change may alter a parent-child relationship, which
results in a change of the DHT mapping. As being men-
tioned in Section 2, the Saxons structure quality mainte-
nance protocol can be configured to provide high stability.
However, structure changes are necessary as the result of
overlay membership changes. In comparison, key/node
mapping schemes in structured DHT protocols are inde-
pendent of overlay structures, therefore they are likely
to produce fewer key reassignments due to membership
changes. Section 4.5 provides a quantitative comparison
on this.

4 Simulation Results

Our performance evaluation consists of simulations and
Internet experiments. The goal of simulation studies is to
assess the effectiveness of proposed techniques for large-
scale overlays while Internet experiments illustrate the
system performance under a small but practical real-world
environment.

In this section, we evaluate the performance of our
Saxons-based DHT protocol using discrete-event simula-
tions. We first describe our evaluation methodology and
setup, followed by results on the quality of the Saxons

overlay structure management layer. We then demon-
strate our DHT performance compared with a strongly-
structured scalable DHT protocol. We show the per-
formance results in terms of lookup latency, load bal-
ance, and performance under frequent overlay member-
ship changes. Section 5 presents experimental results on
51 PlanetLab sites.

4.1 Simulation Methodology and Setup

We use a locally-developed discrete-event simulator in
our evaluations. We simulate all packet-level events at
overlay nodes. We do not simulate the packet routing
at the substrate network routers. Instead, we assume
shortest-path routing in the substrate network and use that
to determine the overlay link latency. We acknowledge
that this model does not capture packet queuing delays or
packet losses at routers and physical links. However, such
a tradeoff is important to allow us achieve reasonable sim-
ulation speed for large networks.

Backbone Node count Link latency

ASmap 3,104 1� 40ms
Inet 3,050 1� 40ms

TransitStub 3,040 1� 20ms for stub links
1� 40ms for other links

AMP-all 118 measurement
AMP-domestic 108 measurement

Table 1: Backbone networks.

The substrate networks we use in the simulations are
based on four sets of backbone networks including a
measurement-based one. First, we use Internet Au-
tonomous Systems maps extracted from BGP routing ta-
ble dumps, available at NLANR [17] and at the Univer-
sity of Oregon Route Views Archive [23]. Second, we
include some transit-stub topologies generated using the
GT-ITM toolkit [32]. We also use topologies generated by
the Michigan Inet-3.0 Internet Topology Generator [31].
For ASmap and Inet topologies, we assign a random link
latency of 1 � 40ms. For TransitStub topologies, we as-
sign a random link latency of 1� 20ms for stub links and
1�40ms for other links. The last set of backbone network
is based on end-to-end latency measurement data among
118 Internet nodes, reported by the Active Measurement
Project (AMP) at NLANR [18]. Table 1 lists some spe-
cific backbone networks we used in our evaluations. The
AMP-domestic network excludes 10 foreign hosts from
the full AMP dataset. These 10 hosts have substantially
larger latencies to other hosts than others. With a given
backbone network, each overlay node in our simulations
is randomly attached to a backbone node through an edge
link. We assign a random latency of 1� 4ms for all edge
links.

6

0 50 100 150
0%

20%

40%

60%

80%

100%

Latency (in milliseconds)

C
um

ul
at

iv
e

pe
rc

en
til

e

AMP−all
AMP−domestic
ASmap
Inet
TransitStub

Figure 6: All-pair latency CDFs of backbone networks.

Our link latency assignments for non-measurement net-
works are quite arbitrary. As an interesting exercise, we
calculated the cumulative percentile of all-pair shortest
path latencies for each backbone network (shown in Fig-
ure 6). It appears that the latency CDFs of the three non-
measurement networks are quite close to that of AMP-
domestic. The latency CDF for AMP-all has a lower tail
than others due to the substantially larger latencies for
paths associated with the 10 foreign hosts.

The evaluation results are affected by many factors, in-
cluding the backbone networks, protocol parameters, and
the combination of different schemes for various protocol
components. Our strategy is to demonstrate the protocol
effectiveness at the most typical settings and then evaluate
the impact of additional factors when necessary. Except a
few experiments explicitly evaluating the impact of back-
bone networks, most results shown in this paper are based
on the ASmap backbone network. The periodic Saxons
structure quality maintenance routine runs at 30-second
intervals.

4.2 Overlay Structure Quality

We show the overlay structure quality in two metrics:
1) overlay path latency, defined as the end-to-end latency
along the shortest overlay path for each pair of nodes; and
2) relative delay penalty (or RDP), defined as the ratio
of the overlay path latency to the direct Internet latency.
We compare three different overlay structure construction
schemes. First, we consider the Saxons protocol with the
landmark-based Cartesian distance approach for latency
estimation (denoted by Saxons (Landmark)). Second, we
examine Saxons with an accurate latency estimation be-
tween any two nodes (denoted by Saxons (Accurate)).
Even though we are unaware of any accurate latency es-
timation scheme that scales to a large number of nodes,
the results for Saxons (Accurate) are useful in indicat-
ing the performance potential of a Saxons-like structure
management protocol. We finally consider the degree-

100 200 400 800 1600 3200 6400 12800
0

50

100

150

200

250

Overlay size (in number of nodes)

La
te

nc
y

(in
 m

ill
is

ec
on

ds
)

(A) Overlay path latency (mean and 95 percentile)

Random
Saxons (Landmark)
Saxons (Accurate)

100 200 400 800 1600 3200 6400 12800
0

1

2

3

4

5

6

7

Overlay size (in number of nodes)

R
el

at
iv

e
de

la
y

pe
na

lty

(B) Overlay RDP (mean and 95 percentile)

Random
Saxons (Landmark)
Saxons (Accurate)

Figure 7: Overlay structure quality at various overlay
sizes.

bounded random structure construction used in protocols
like Gnutella [7] (denoted by Random).

Figure 7 illustrates the overlay path latency and RDP at
various overlay sizes. For each overlay size, nodes join
the network at the average rate of 10 joins/second with
exponentially distributed inter-arrival time. Node joins
stop when the desired overlay size is reached and the mea-
surement results are taken after the system stabilizes. All
three schemes are configured with a node degree range of
<4�16>. In other words, each node is allowed to make 4
active links. Each node can also accept a number of pas-
sive links as long as the total degree does not exceed 16.
For 12800-node overlays, results show that Saxons (Ac-
curate) achieves 42% lower overlay path latency and 47%
lower RDP compared with Random. The saving for Sax-
ons (Landmark) is 22% on overlay path latency and 26%
on RDP.

Figure 8 shows such comparison over different back-
bone networks. 3200-node overlays are used for the three
large backbones and 200-node overlays are used for the
two measurement-based backbones (AMP-all and AMP-
domestic). Results show that the performance difference

7

ASmap Inet TransitStub AMP−allAMP−domestic
0

20

40

60

80

100

120

140

160

180

200

M
ea

n
ov

er
la

y
la

te
nc

y
(in

 m
ill

is
ec

on
ds

)

Random
Saxons (Landmark)
Saxons (Accurate)

Figure 8: Overlay path latency over different backbone
networks.

is not significantly affected by the choice of backbone net-
works. The savings are smaller for the two measurement-
based backbones due to their small sizes.

The performance results of the Saxons structure man-
agement layer indicate how much it can benefit overlay
services built on top of it. The rest of the performance
evaluation focuses on our proposed DHT protocol running
on top of the Saxons layer.

4.3 Statistics on the Landmark Hierarchy

We show some statistics on the self-organizing Land-
mark Hierarchy construction over the Saxons overlay
structure. The Saxons overlay structure is configured with
a node degree range of <4� 16>. The routing radii (start-
ing from level 0) for the Landmark Hierarchy are set as
2, 4, 8, 16, 32, 64, ... The peer notification radii (starting
from level 0) are 2, 5, 9, 17, 33, 65, ... Note that we re-
quire prl+1 > 2�rrl such that each node sees at least one
other same-level peer if any exists.

100 200 400 800 1600 3200 6400 12800

1

10

100

1000

10000

Overlay size (in number of nodes)

N
od

e
co

un
t a

t e
ac

h
hi

er
ar

ch
y

le
ve

l

Level 0
Level 1
Level 2
Level 3
Level 4

Figure 9: Node count at each hierarchy level. Note that
the Y-axis is on the logarithmic scale.

Figure 9 shows the overlay node count in each hierar-

100 200 400 800 1600 3200 6400 12800
0

10

20

30

40

50

60

70

80

Overlay size (in number of nodes)

M
ea

n
ro

ut
in

g
ta

bl
e

si
ze

 (
pe

r−
no

de
)

at
 e

ac
h

hi
er

ar
ch

y
le

ve
l

Level 0
Level 1
Level 2
Level 3
Level 4

Figure 10: Mean routing table size at each hierarchy level.

chy level for up to 12800 overlay nodes. Note that the
Y axis is on the logarithmic scale. The results are as-
signed using the average value of five runs, which explains
some non-integer values in the figure. The results indicate
an exponentially larger population at lower hierarchy lev-
els with around ten times more nodes at each immediate
lower level.

Figure 10 illustrates the mean routing table size in each
hierarchy level. The level-l routing table at a node con-
tains all received route advertisements from level-l land-
marks. We observe that the number of routing entries at
each level remains around or below 80 for up to 12800
overlay nodes. The reason is that the large advertisement
flooding hops of high-level landmarks are compensated
by their sparse presence in the overlay structure. Note
that the routing table sizes can be controlled by adjusting
the routing radii in the hierarchy generation. Our adaptive
promotion and demotion schemes result in the automatic
construction of balanced hierarchies.

100 200 400 800 1600 3200 6400 12800
0

10

20

30

40

50

60

Overlay size (in number of nodes)

M
ea

n
nu

m
be

r
of

 c
hi

ld
re

n
(p

er
−

no
de

)
at

 e
ac

h
hi

er
ar

ch
y

le
ve

l

Level 1
Level 2
Level 3
Level 4

Figure 11: Mean number of children at each hierarchy
level.

8

Since the list of children is included in the landmark
route advertisement, a large children population at overlay
nodes may result in excessive route advertisement over-
head. Figure 11 shows the average number of children for
nodes in each hierarchy level. There are no level-0 results
because level-0 landmarks have no child. We observe that
the number of children at each node remains around or
below 50 for up to 12800 overlay nodes. Again, the large
advertisement flooding hops of high-level landmarks are
compensated by their sparse presence in the overlay struc-
ture.

4.4 DHT Lookup Performance

We examine the performance of our proposed DHT
protocol that does not employ service-specific overlay
structures. We compare our protocol built on top of the
Saxons structure management layer (denoted by Saxons-
DHT) with Chord [28], a well-known DHT protocol. A
recent study [9] shows that Chord performs competitively
against other strongly-structured DHT protocols such as
CAN [20] and Pastry [24] in terms of lookup latency
and load balance. We implemented the SaxonsDHT and
Chord protocols in our overlay simulator. In our compari-
son, both schemes are configured at the same link density.
For SaxonsDHT, the Saxons overlay structure is config-
ured with a node degree range of <4� 16> and therefore
an average degree of 8. For Chord, each node maintains
an 8-entry finger table supporting DHT lookups 3. Higher-
level finger entries in Chord point to nodes with exponen-
tially larger distances in the identifier circle.

Figure 12(A) illustrates the DHT lookup hop-count for
SaxonsDHT and Chord at various overlay sizes. The re-
sults are based on the average of five runs, each with
100,000 DHT lookups on randomly chosen initiator nodes
and hash keys. A quick analysis finds that the mean
lookup hop-count for a Chord protocol with d finger en-
tries is d(d

p
N � 1)=2. Results in Figure 12(A) show that

SaxonsDHT achieves slightly better performance (around
12% fewer lookup hops for 12800-node overlays) due
to its hierarchical lookup routing scheme. Figure 12(B)
shows the DHT lookup latency at various overlay sizes.
We introduce variations of the SaxonsDHT and Chord
protocols that may have significant impact on the lookup
latency. For SaxonsDHT, we examine two variations: one
with the landmark-based Cartesian distance approach for
latency estimation and another with an accurate latency
estimation. As we discussed earlier, accurate latency es-
timation may not be practical for large-scale overlays, but
it is useful in indicating the performance potential of the

3Strictly speaking, the Chord structure with an 8-entry finger table at
each node has an average node degree of 16. It might appear that Chord
has some unfair advantage in this comparison. Our rationale for such
a comparison setting is that Saxons links are bidirectional while Chord
finger links are not.

100 200 400 800 1600 3200 6400 12800
0

1

2

3

4

5

6

7

8

9

10

Overlay size (in number of nodes)

Lo
ok

up
 h

op
−

co
un

t

(A) DHT lookup hop−count

Chord
SaxonsDHT

100 200 400 800 1600 3200 6400 12800
0

50

100

150

200

250

300

350

400

450

500

Overlay size (in number of nodes)

Lo
ok

up
 la

te
nc

y
(in

 m
ill

is
ec

on
ds

)

(B) DHT lookup latency

Chord (0 alt)
Chord (1 alt)
Chord (2 alt)
Chord (4 alt)
SaxonsDHT (Landmark)
SaxonsDHT (Accurate)

Figure 12: DHT lookup performance at various overlay
sizes.

SaxonsDHT protocol if more accurate latency estimation
schemes become available. We also examine variations of
the Chord protocol with a substrate-aware link-selection
enhancement, as indicated in Section 7 of [28]. In this
enhancement, instead of simply picking the first node in
each finger table entry’s interval in the identifier ring, a
few alternative nodes in each interval are probed and then
the closest node is chosen to fill the finger table entry. We
use Chord (n alt) to denote the Chord protocol with n al-
ternative link probings for each finger table entry. In par-
ticular, Chord (0 alt) stands for the basic Chord protocol
without the link-selection enhancement. For 12800-node
overlays, results in Figure 12(B) show that SaxonsDHT
(Landmark) achieves 37% less lookup latency than the ba-
sic Chord protocol and its performance is close to that of
Chord (4 alt). Results also show that SaxonsDHT (Accu-
rate) outperforms Chord (0 alt) and Chord (4 alt) at 65%
and 31% respectively, indicating the vast performance po-
tential of SaxonsDHT.

Figure 13 shows the DHT lookup latency over differ-
ent backbone networks. Results indicate that the per-
formance difference is not significantly affected by the

9

ASmap Inet TransitStub AMP−allAMP−domestic
0

50

100

150

200

250

300

350

400

D
H

T
 lo

ok
up

 la
te

nc
y

(in
 m

ill
is

ec
on

ds
)

Chord (0 alt)
Chord (4 alt)
SaxonsDHT (Landmark)
SaxonsDHT (Accurate)

Figure 13: DHT lookup latency over different backbone
networks.

100 200 400 800 1600 3200 6400 12800
0

1000

2000

3000

4000

5000

6000

Overlay size (in number of nodes)

N
um

be
r

of
 k

ey
s

pe
r

no
de

Balance on key placement (mean, 1st and 99th percentile)

Chord
SaxonsDHT

Figure 14: DHT load balance on key placement.

choice of backbone networks. Again, savings are smaller
for the two measurement-based backbones due to their
small sizes.

4.5 DHT Load Balance

Load balance is another essential goal for a distributed
hashtable and it is particularly challenging for hierarchical
schemes. In our DHT protocol, we employ different key-
identifier assignment functions at each hierarchy level to
achieve balanced key placement. The balance on lookup
routing overhead is supported by the property that queries
often shift toward lower-level DHT owners before actu-
ally reaching any high-level DHT owner.

Figure 14 illustrates the DHT load balance on key
placement over various overlay sizes. 1000�N (N is the
overlay size) random keys are generated and mapped into
overlay nodes. The mean, 1st, and 99th percentile values
are shown for each configuration. Results show that the
balance of key placement for SaxonsDHT is close to that
of Chord. We do not show results for different variations
of the SaxonsDHT and Chord protocols because they do

100 200 400 800 1600 3200 6400 12800
0

1

2

3

4

5

6

7

8

9

10

Overlay size (in number of nodes)

N
um

be
r

of
 r

ou
te

d
lo

ok
up

 q
ue

rie
s

pe
r

no
de

 (
no

rm
al

iz
ed

)

Balance on lookup routing overhead (mean, 1st and 99th percentile)

Chord (0 alt)
Chord (4 alt)
SaxonsDHT (Landmark)
SaxonsDHT (Accurate)

Figure 15: DHT load balance on lookup routing overhead.

Infinity 240 120 60 30 15
0%

10%

20%

30%

40%

Mean node lifetime (in minutes)

Lo
ok

up
 fa

ilu
re

 r
at

e

Chord
SaxonsDHT

Figure 16: Lookup failure rate during overlay member-
ship changes.

not have significant impact on the balance of key place-
ment.

Figure 15 shows the DHT load balance in terms of the
lookup routing overhead. Note that the results in Fig-
ure 15 are normalized to the mean values. We observe
that protocols with lower lookup latency typically exhibit
less desirable load balance. For 12800-node overlays,
the normalized 99-percentile lookup routing overhead for
Chord (0 alt) is 44% and 61% less than those of Sax-
onsDHT (Landmark) and SaxonsDHT (Accurate) respec-
tively. The difference between the substrate-aware Chord
(4 alt) and the two SaxonsDHT schemes is much less. The
inferior load balance of substrate-aware DHT protocols
can be explained by their tendency of avoiding nodes that
have long latency to other overlay nodes. We will revisit
this issue in Section 5 using Internet experimentation.

10

1 1.5 2 2.5 3
0%

10%

20%

30%

40%

50%

Failure bias factor

Lo
ok

up
 fa

ilu
re

 r
at

e

Mean node lifetime − 15 min
Mean node lifetime − 30 min
Mean node lifetime − 60 min

Figure 17: SaxonsDHT lookup failure rate under biased
node failures.

4.6 DHT Performance under Unstable Environ-
ments

Figure 16 shows the DHT lookup failure rate of Sax-
onsDHT and Chord under frequent node joins and de-
partures at various average node lifetimes. The results
are for 3200-node overlays. Individual node lifetimes
are picked following an exponential distribution with the
proper mean. In these experiments, a lookup is consid-
ered a success if it reaches the current level 0 DHT owner
of the desired key. In a real system, however, there might
be delays in which the current owner has not yet acquired
the data associated with the key from the prior owner. We
do not consider this factor since it is highly dependent on
higher-level service implementation while we are primar-
ily concerned with the DHT protocol. Results in Figure 16
show that SaxonsDHT and Chord deliver similar lookup
success rate during overlay membership changes. Follow-
ing an argument in [28], the lookup success rate under a
certain frequency of membership changes mainly depends
on the average lookup hop-counts. The similar success
rate between SaxonsDHT and Chord can be explained by
their similar lookup hop-counts.

A hierarchical scheme like SaxonsDHT may suffer
poor performance under targeted attacks against nodes
of high importance. We examine the lookup failure rate
when nodes at higher hierarchy levels have shorter life-
time. To quantify such scenarios, we introduce the con-
cept of failure bias factor, defined as the ratio of the aver-
age node lifetime at each hierarchy level to that of the im-
mediate higher level. In other words, for a failure bias fac-
tor of 2, level 1 nodes are twice likely to fail than level 0
nodes while level 4 nodes are 16 times more likely to
fail than level 0 nodes. Figure 17 illustrates the Saxons-
DHT lookup failure rate under biased node failure rates
for 3200-node overlays. The results show that the lookup
failure rate increases initially at the increase of the failure

bias factor. However, this increase tapers off quickly and
it may even decrease as the failure bias factor continues
to grow. This is because the SaxonsDHT lookups do not
critically rely on the constant aliveness of high-level land-
mark nodes. Lookups are mainly based on local routing
entries and high-level nodes are often not visited. This re-
sult shows that SaxonsDHT lookups are not particularly
susceptible to targeted attacks despite the nature of its hi-
erarchical design.

50 100 200 400 800 1600
0%

20%

40%

60%

80%

100%

Number of membership changes

P
ro

po
rt

io
n

of
 k

ey
 r

ea
ss

ig
nm

en
ts

Chord
SaxonsDHT (bias 1)
SaxonsDHT (bias 1.5)
SaxonsDHT (bias 2)
SaxonsDHT (bias 2.5)
SaxonsDHT (bias 3)

Figure 18: Key reassignments due to overlay membership
changes. Note that the X-axis is on the logarithmic scale.

Due to its structure-sensitive DHT mapping scheme,
SaxonsDHT tends to produce more key reassignments af-
ter overlay membership changes. Figure 18 shows such
performance of SaxonsDHT and Chord. The results are
for 3200-node overlays. We measure the proportion of
key assignment changes after certain number of random
node joins and leaves. We consider the SaxonsDHT per-
formance under several failure bias factors to model the
impact of targeted failures of high-level landmarks. The
results show that SaxonsDHT produce two to three times
more key reassignments (186% more in average) after
overlay membership changes. Targeted failures of high-
level landmarks may result in even more key reassign-
ments. Such a performance difference is significant. This
suggests that our DHT design may be better suited for ap-
plications that do not require large data migration after the
DHT mapping changes. We should also point out that the
DHT mapping in Chord is based on consistent hashing, a
technique with provable minimal key reassignments after
membership changes [11].

5 Implementation and Internet Experimen-
tation

We have made a prototype implementation of the pro-
posed DHT design on the Saxons structure management
layer. Saxons components are implemented in a single
event-driven daemon. The Saxons prototype can run as

11

a standalone process communicating through UNIX do-
main sockets with hosted overlay applications linked with
a Saxons stub library. Alternatively, the Saxons runtime
can be dynamically linked and run inside the application
process space. A standalone Saxons process allows pos-
sible runtime overhead sharing when overlay nodes host
multiple services.

In our DHT implementation, every node maintains a
TCP connection with each of its overlay neighbors. The
route advertisement flooding and lookup query routing
flow through these TCP connections on the overlay struc-
ture. All the DHT components are implemented in a sin-
gle event-driven daemon (separate from the Saxons dae-
mon). The DHT service periodically queries the Saxons
kernel for up-to-date overlay structure information. Link-
related state such as the TCP connections to neighbors and
some routing table entries may have to be adjusted when
directly attached overlay links change. For the purpose of
comparison, we also made a prototype implementation of
Chord. Our prototype can correctly form the Chord fin-
ger tables at the absence of node departures. We did not
implement the full Chord stabilization protocol for sim-
plicity. Each node in our Chord prototype maintains a
TCP connection with each of the nodes listed in its finger
table. Lookup queries flow through these pre-established
TCP connections. For both DHT implementations, node
IDs are assigned using MD5 [22] hashed IP addresses.

We conducted experiments on the PlanetLab
testbed [19] to evaluate the performance of the pro-
posed DHT service in a real-world environment. Our
experiments involve 51 PlanetLab nodes, all from unique
wide-area sites. Among these 51 sites, 43 are in the
United States, 5 are in Europe. The other three sites are in
Australia, Brazil, and Taiwan respectively. The round-trip
latency between a U.S. site and a non-U.S. site is often
much higher than that between two U.S. sites. Due to
the small number of sites in the experiments, we are able
to employ direct runtime latency measurements for the
Saxons structure quality maintenance. This scheme is
close to Saxons (Accurate) examined in the simulation
studies. For runtime latency measurement, a node pings
the otherN times and measure the round-trip time. It then
takes the average of the median 60% of the measurement
results. We choose N=10 in practice. To demonstrate
its accuracy, we compare measurement results under this
scheme with those using 100 pings in each test (shown in
Figure 19). Results are ranked in the ascending order of
the 100-ping measurements.

Though a 51-node overlay is too small for a practical
DHT deployment, we believe it still serves our purpose
of verifying the simulation results. We had the option
of experimenting with larger overlays by running multi-
ple DHT and Saxons daemons inside each node. How-
ever, this unrealistic setting would result in many artifi-

0

50

100

150

200

250

300

350

400

Results ranked on 100−ping measurements

R
ou

nd
−

tr
ip

 la
te

nc
y

(in
 m

ill
is

ec
on

d)

100−ping results
10−ping results

Figure 19: All-to-all round-trip latency measurements be-
tween 51 PlanetLab sites.

0 200 400 600 800 1000 1200
0%

20%

40%

60%

80%

100%

DHT lookup latency (in milliseconds)

C
um

ul
at

iv
e

pe
rc

en
til

e

Chord
SaxonsDHT
RandomDHT

Figure 20: DHT lookup latency CDFs on 51 PlanetLab
sites.

cial clusters in the Saxons structure, which would put the
measurement results in doubt. In order to compensate the
small size of our testbed, we use a relatively sparse over-
lay structure in our experimentation. For SaxonsDHT, the
Saxons overlay structure is configured with a node degree
range of <2 � 8>. In other words, each node is allowed
to make 2 active links and therefore the average node de-
gree is 4. The settings for routing radii and peer notifica-
tion radii are the same as those in the simulation study. A
typical run shows that the Landmark Hierarchy contains
one level 3 landmark, three level 2 landmarks, and eight
level 1 landmarks. The remaining nodes are at level 0.

We compare the performance of SaxonsDHT against
Chord with a 4-entry finger table at each node. For
the purpose of comparison, we also consider the per-
formance of our proposed DHT service running on a
degree-bounded random overlay structure (denoted by
RandomDHT). In each run of our experiments, 1000 DHT
lookups are initiated at each participating node with ran-
dom hash keys. Figure 20 illustrates the cumulative distri-
bution functions of the 51,000 DHT lookup latency mea-

12

surements taken out of a typical test run. We observe
that the performance of RandomDHT is close to that of
Chord while SaxonsDHT significantly outperforms them
in terms of DHT lookup latency. In average, SaxonsDHT
achieves about 48% latency reduction compared Chord
(335.5ms vs. 643.0ms).

We also examine the DHT load balance on lookup rout-
ing overhead for SaxonsDHT and Chord. Figure 21 shows
the number (normalized to the mean value over all nodes)
of routed lookup queries over each node. Results are in-
creasingly ranked on the lookup routing overhead for each
scheme. Larger markers in the figure represent 8 non-
U.S. sites in the testbed. The results show that Chord ex-
hibits better load balance than SaxonsDHT. We also ob-
serve that SaxonsDHT tends to avoid the non-U.S. sites
in query routing while Chord is oblivious to network dis-
tances between participating sites. Such a behavior helps
SaxonsDHT to achieve better lookup performance at the
expense of load balance.

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Nodes ranked in lookup routing overhead

N
um

be
r

of
 r

ou
te

d
lo

ok
up

 q
ue

rie
s

(n
or

m
al

iz
ed

)

Chord
SaxonsDHT

Figure 21: Load balance of DHT lookup routing overhead
on 51 PlanetLab sites. Larger markers represent non-U.S.
sites.

Overall, our Internet experiments on DHT lookup per-
formance and runtime load balance match the simulation
results presented in Section 4.

6 Related Work

Substrate-aware techniques have been incorporated
into the construction of many Internet overlay services, in-
cluding unicast overlay path selection (e.g., RON [1]) and
measurement-based end-system multicast protocols (e.g.,
Narada [5], Overcast [10], HMTP [33], and NICE [2]).
Substrate-aware techniques in these protocols are opti-
mized for specific service needs. In comparison, we ex-
plore the model of providing a common overlay structure
management layer that can benefit the construction of a
wide range of services.

Previously proposed scalable DHT protocols such as
Chord [28], CAN [20], and Pastry [24] all function
on protocol-specific overlay structures to support DHT
lookups. A recent work [9] suggests that measurement-
based overlay structures often have much lower latency
than structures provided by Chord, CAN, or Pastry. How-
ever, it did not explain how a DHT service can be built
on top of a low-latency measurement-based overlay struc-
ture. A number of recent studies have proposed substrate-
aware techniques to enhance particular DHT protocols.
Zhao et al. proposed to construct a secondary overlay
(called Brocade) on top of existing DHT structures to ex-
ploit unique network resources available at each overlay
node [35]. Ratnasamy et al. introduced a distributed bin-
ning scheme for CAN such that the overlay topology re-
sembles the underlying IP network [21]. In Mithos [30],
Waldvogel and Rinaldi proposed an efficient overlay rout-
ing scheme based on an energy-minimizing node ID as-
signment in a multi-dimensional ID space. Zhang et
al. suggested a random sampling technique is effective
for incrementally reducing lookup latency in DHT sys-
tems [34]. These approaches are valuable in improving
the performance of specifically targeted protocols. How-
ever, substrate-aware techniques built for particular DHT
structures cannot benefit other services.

Kleinrock and Kamoun proposed hierarchical routing
protocols to achieve low routing latency with small rout-
ing table sizes [12]. Landmark Hierarchy was later intro-
duced by Tsuchiya to allow minimal administration over-
head and automatic adaptation to dynamic network en-
vironments [29]. Two recent studies (SCOUT [13] and
L+ [4]) have employed the Landmark Hierarchy-based
routing and location schemes for sensor and wireless net-
works. Our design draws upon results and experience of
these work. New techniques are introduced in our de-
sign to construct a distributed hashtable service and sat-
isfy its performance requirements. For instance, balanced
key placement is a unique performance objective for DHT
and it has not been addressed in previous studies on hier-
archical routing.

Nakao et al. have recently proposed an Internet topol-
ogy probing kernel as a general utility for overlay service
construction [15]. They constructed several end-system
routing services on top of the topology probing kernel,
which acquires AS-level Internet topology and routing in-
formation from nearby BGP routers. By separating the
service construction from overlay structure generation (as
we proposed in this paper for the DHT service), such
topology probing utilities can be incorporated into the
common structure layer such that a large number of over-
lay services can benefit transparently.

13

7 Conclusion

In this paper, we construct a distributed hashtable pro-
tocol that operates on pre-structured overlays, and thus
is able to take advantage of a common structure man-
agement layer such as Saxons [27]. Compared with
Chord [28], simulations and Internet experimentation find
that the proposed scheme can deliver better lookup per-
formance at the cost of less load balance on query rout-
ing overhead. Evaluation results also show that the bal-
ance of key placement and fault tolerance for our ap-
proach are close to those of Chord. In addition, we find
that the proposed scheme is not particularly susceptible
to targeted attacks despite the nature of its hierarchical
design. However, the proposed approach produces more
key reassignments after overlay membership changes, due
to its structure-sensitive DHT mapping scheme. We also
recognize that structured DHT protocols such as Chord,
CAN, and Pastry are able to provide provable perfor-
mance guarantee and overhead bound. In comparison,
performance and overhead of a DHT protocol operat-
ing on pre-structured overlays are highly dependent on
the given overlay structure. For instance, it is not yet
clear how to find optimal landmark routing radii in a pre-
structured overlay such that routing table sizes at all levels
are tightly controlled.

In conclusion, our design of a DHT service on pre-
structured overlays provides a promising alternative to
previously proposed DHT protocols. More importantly,
this effort supports the broader goal of providing a com-
mon overlay structure management layer that can bene-
fit the construction of a wide range of overlay services.
While it is well understood that this model works well
with services like unstructured peer-to-peer search [7, 14]
and unicast/multicast path selections (e.g., RON [1] and
Narada [5]), our work is the first to examine its applica-
bility on the important distributed hashtable service.

Acknowledgment

This work was supported in part by NSF grants CCR-
0306473 and ITR/IIS-0312925.

References

[1] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Proc. of SOSP,
pages 131–145, Banff, Canada, October 2001.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able Application Layer Multicast. In Proc. of SIGCOMM,
pages 205–217, Pittsburgh, PA, August 2002.

[3] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Ex-
ploiting Network Proximity in Peer-to-Peer Overlay Net-
works. In Proc. of the FuDiCo Workshop, Bertinoro, Italy,
June 2002.

[4] B. Chen and R. Morris. L+: Scalable Landmark Rout-
ing and Address Lookup for Multi-hop Wireless Networks.
Technical Report MIT-LCS-TR-837, Laboratory for Com-
puter Science, MIT, 2002.

[5] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End
System Multicast. In Proc. of SIGMETRICS, pages 1–12,
Santa Clara, CA, June 2000.

[6] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F.
Gryniewicz, and Y. Jin. An Architecture for a Global In-
ternet Host Distance Estimation Service. In Proc. of the
IEEE INFOCOM, New York, NY, March 1999.

[7] Gnutella. http://www.gnutella.com.

[8] J. Guyton and M. Schwartz. Locating Nearby Copies of
Replicated Internet Servers. In Proc. of SIGCOMM, pages
288–298, Boston, MA, September 1995.

[9] S. Jain, R. Mahajan, and D. Wetherall. A Study of the
Performance Potential of DHT-based Overlays. In Proc.
of USENIX Symp. on Internet Technologies and Systems,
Seattle, WA, March 2003.

[10] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole Jr. Overcast: Reliable Multicasting with
an Overlay Network. In Proc. of USENIX Symp. on Op-
erating Systems Design and Implementation, San Diego,
CA, October 2000.

[11] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistency hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In Proc. of the ACM Symp. on Theory of
Computing, pages 654–663, El Paso, TX, May 1997.

[12] L. Kleinrock and F. Kamoun. Hierarchical Routing for
Large Networks. Computer Networks, 1:155–174, 1977.

[13] S. Kumar, C. Alaettinoglu, and D. Estrin. SCalable Object-
tracking Through Unattended Techniques (SCOUT). In
Proc. of the Intl. Conf. on Network Protocols, Osaka,
Japan, November 2000.

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In Proc.
of the ACM International Conference on Supercomputing,
pages 84–95, New York, NY, June 2002.

[15] A. Nakao, L. Peterson, and A. Bavier. A Routing Underlay
for Overlay Networks. In Proc. of SIGCOMM, Karlsruhe,
Germany, August 2003.

[16] E. Ng and H. Zhang. Predicting Internet Network Distance
with Coordinates-based Approaches. In Proc. of the IEEE
INFOCOM, New York, NY, June 2002.

[17] National Laboratory for Applied Network Research.
http://moat.nlanr.net/Routing/rawdata.

[18] Active Measurement Project at the National Laboratory for
Applied Network Research. http://amp.nlanr.net.

[19] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into the
Internet. In Proc. of the HotNets Workshop, Princeton, NJ,
October 2002.

14

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proc. of SIGCOMM, pages 161–172, San Diego, CA, Au-
gust 2001.

[21] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server Se-
lection. In Proc. of the IEEE INFOCOM, New York, NY,
June 2002.

[22] R. Rivest. The MD5 Message-Digest Algorithm. Rfc-
1321, Internet Engineering Task Force, April 1992.

[23] University of Oregon Route Views Archive Project.
http://archive.routeviews.org.

[24] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location and Routing for Large-scale Peer-to-
Peer Systems. In Proc. of the IFIP/ACM Middleware, Hei-
delberg, Germany, November 2001.

[25] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Ander-
son. The End-to-End Effects of Internet Path Selection.
In Proc. of SIGCOMM, pages 289–299, Cambridge, MA,
August 1999.

[26] FIPS PUB 180-1: Secure Hash Standard. National Institute
of Standards and Technology, U.S. Dept. of Commerce,
April 1995.

[27] K. Shen. Structure Management for Scalable Overlay Ser-
vice Construction. In Proc. of USENIX/ACM Symp. on
Networked Systems Design and Implementation (to ap-
pear), San Francisco, CA, March 2004.

[28] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proc. of SIGCOMM,
pages 149–160, San Diego, CA, August 2001.

[29] P. F. Tsuchiya. The Landmark Hierarchy: A New Hier-
archy for Routing in Very Large Networks. In Proc. of
SIGCOMM, pages 35–42, Stanford, CA, August 1988.

[30] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware
Overlay Network. In Proc. of the HotNets Workshop,
Princeton, NJ, October 2002.

[31] J. Winick and S. Jamin. Inet-3.0: Internet Topology Gen-
erator. Technical Report CSE-TR-456-02, Dept. of EECS,
University of Michigan, 2002.

[32] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
Model an Internetwork. In Proc. of the IEEE INFOCOM,
San Francisco, CA, March 1996.

[33] B. Zhang, S. Jamin, and L. Zhang. Host Multicast: A
Framework for Delivering Multicast To End Users. In
Proc. of the IEEE INFOCOM, New York, NY, June 2002.

[34] H. Zhang, A. Goel, and R. Govindan. Incrementally Im-
proving Lookup Latency in Distributed Hash Table Sys-
tems. In Proc. of SIGMETRICS, San Diego, CA, June
2003.

[35] B. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. D. Ku-
biatowicz. Brocade: Landmark Routing on Overlay Net-
works. In Proc. of the Workshop on Peer-to-Peer Systems,
Cambridge, MA, March 2002.

15

