
An Evaluation and Comparison of Current Peer-to-Peer
Full-Text Keyword Search Techniques∗

Ming Zhong Justin Moore Kai Shen
Department of Computer Science

University of Rochester
Rochester, NY 14627, USA

{zhong,jmoore,kshen}@cs.rochester.edu

Amy L. Murphy
School of Informatics
University of Lugano

Lugano, CH-6904, Switzerland

amy.murphy@unisi.ch

ABSTRACT
Current peer-to-peer (p2p) full-text keyword search tech-
niques fall into the following categories: document-based
partitioning, keyword-based partitioning, hybrid indexing,
and semantic search. This paper provides a performance
evaluation and comparison of these p2p full-text keyword
search techniques on a dataset with 3.7 million web pages
and 6.8 million search queries. Our evaluation results can
serve as a guide for choosing the most suitable p2p full-text
keyword search technique based on given system parame-
ters, such as network size, the number of documents, and
the number of queries per second.

1. INTRODUCTION
The capability to locate desired documents using full-

text keyword search is essential for large-scale p2p networks.
Centralized search engines can be employed in p2p networks
and provide look-up service. Although these systems may
provide a high level of scalability and availability, a p2p key-
word search system may be preferable due to its robustness,
low maintenance cost, and data freshness.

A large number of p2p keyword search systems have been
proposed, including those using document-based partition-
ing [10, 11], keyword-based partitioning [9, 12, 16, 21], hy-
brid indexing [23], and semantic search [8, 13, 24]. How-
ever, there is still no comprehensive understanding on the
tradeoffs between these four types of techniques under dif-
ferent system environments. In this paper, we provide an
evaluation and comparison of existing p2p keyword search
techniques on 3.7 million web pages and 6.8 million real web
queries. To further project the performance of current p2p
keyword search techniques on very large datasets, we lin-
early scale our evaluation results to 109 web pages. Our
results suggest that there is no absolute best choice among
current p2p keyword search techniques. More importantly,
our results can serve as a guide for a user to make her choice
based on specific system parameters, such as network size,
the number of documents, and the query throughput.

Most current performance evaluation results for p2p key-
word search systems [8, 9, 13, 16, 21, 23, 24] are based
on datasets with less than 530,000 web pages and 100,000
queries, which are an order of magnitude smaller than our
datasets. The only exception we are aware of is Li et al.’s

∗This work was supported in part by NSF grants CCR-
0306473, ITR/IIS-0312925, and NSF CAREER Award
CCF-0448413.

work [12], which uses 1.7 million web pages and 81,000
queries to evaluate the feasibility of keyword-based parti-
tioning. However, they did not give specific evaluation re-
sults on the communication cost and search latency on their
datasets. In addition, there is no previous performance com-
parison for all four types of existing p2p keyword search
techniques on the same dataset.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of our performance evaluation
framework and technical background. Sections 3 to 6 evalu-
ate each of the four types of p2p keyword search techniques
and explore directions to improve the search quality or to
reduce the overhead of current p2p keyword search systems.
Section 7 compares current p2p keyword search techniques
by scaling our simulation results to 109 web pages and Sec-
tion 8 concludes this paper.

2. EVALUATION SETUP
In our evaluation framework, a search finds the page IDs

of several (e.g., 20) most relevant web pages since most users
are only interested in the most relevant web pages. A com-
plete search system may also retrieve the page URLs and
digests based on the page IDs found. This step could be ef-
ficiently supported by using any distributed hash table (e.g.,
Chord [20] or CAN [15]) and we do not examine that in our
performance evaluation.

Our evaluation dataset contains 3.7 million web pages and
6.8 million web queries. The web pages are crawled based on
URL listings of the Open Directory Project [6]. The queries
are from a partial query log at the Ask Jeeves search en-
gine [1] over the week of 01/06/2002–01/12/2002 and there
are an average of 2.54 terms per query. The web pages
are pre-processed by using the stopword list of the SMART
software package [19] and removing the HTML tags. In ad-
dition, we restrict the vocabulary to be the 253,334 words
that appear in our query log. After preprocessing, the aver-
age number of distinct words per page is approximately 114.
In our implementation, each web page is associated with an
8-byte page ID, which is computed by using its URL as a
key to the MD5 hash algorithm. Each page ID in the in-
verted list of term A is associated with its term frequency
of A (the number of occurrences of A in the page), which is
stored as a short integer (2 bytes). Thus each entry of an
inverted list is 10 bytes.

We evaluate the performance of p2p keyword search tech-
niques in terms of four metrics: total storage consumption,
communication cost, search latency, and search quality. Here
communication cost measures the average number of bytes
that needs to be sent over the network in order to return

the top 20 most relevant page IDs for a query. Search la-
tency is the time for a p2p keyword search system to return
the top 20 most relevant results. Search quality is defined
as the overlapping percentage between the search results of
a centralized keyword search and those of a p2p keyword
search. Ideally, p2p keyword search should return exactly
the same result as the centralized keyword search with mod-
erate search latency and communication cost.

In order to estimate search latency based on the com-
munication cost, we make the following assumptions. We
assume that the latency for each link in the p2p overlay is
40ms and the maximum Internet bandwidth consumption
of a p2p keyword search system is 1 Gbps, which is approx-
imately 0.26% of the US Internet backbone bandwidth in
2002 (381.90 Gbps as reported by TeleGeography [25]). We
assume that the maximum available network bandwidth per
query is 1.5 Mbps — the bandwidth of a T1 link.

We use the Vector Space Model (VSM) to rank the rele-
vance of web pages to a query. In VSM [3], the similarity
between two pages is measured by the inner product of their
corresponding page vectors, which is typically computed by
using variants of the TF.IDF term weighting scheme [18].
We are aware that some term weighting schemes, such as
Okapi [17], are reported to have better performance than
the standard term weighting scheme. However, it is not

our goal to explore the performance of centralized keyword
search systems with different term weighting schemes.

3. DOCUMENT-BASED PARTITIONING
In document-based partitioning, the web pages are di-

vided among the nodes, and each node maintains local in-
verted lists of the web pages it has been assigned. A query
is broadcast to all nodes, and each node returns the k most
highly ranked web pages in its local inverted lists.

In our evaluation, the web pages are randomly distributed
among the overlay nodes. Assuming the availability of an
overlay multicast management protocol [2], the query broad-
cast and result aggregation are done through a pre-constructed
broadcast/aggregation tree with depth log n for a network
with n nodes. Only the top 20 most highly ranked pages
from each node are considered. Each node in the aggrega-
tion tree merges its local query result with the results from
its children and returns the top 20 pages to its parent. Thus
the size of the results returned from each node is constant.

According to the VSM page ranking algorithm, the com-
putation of term weights requires some global statistics (e.g.,
the popularity of terms), which can only be estimated locally
based on the partition at each node. Therefore, the query re-
sults of document-based partitioning may be different from
the results of the centralized search, which is based on accu-
rate global statistics. We evaluate the quality degradation
of document-based partitioning using our dataset. Figure
1(A) presents the results on networks with different sizes.

The total storage consumption of document-based par-
titioning is d · W · i, where d is the total number of web
pages, W is the average number of distinct terms per page,
and i is size of an inverted list entry. For our dataset,
d = 3720390, W = 114, i = 10bytes. Therefore, the to-
tal storage requirement of document-based partitioning is
3720390 × 114 × 10 ≈ 4.24 GB.

A message of query results (containing 20 page IDs and
their relevance scores) has 20×10 = 200 bytes. Assume each
message has an additional overhead of 100 bytes. Thus the
total communication cost for a query is 300× (n− 1) bytes,
which grows linearly with the network size.

The search latency of document-based partitioning is dom-
inated by the network broadcast and aggregation time under
the assumption that the local search at each node and the
merging of search results can be done efficiently (otherwise
no efficient p2p keyword search could be possible at all). The
network broadcast and aggregation time is 2 × log n × 0.04
seconds since the tree depth is log n.

4. KEYWORD-BASED PARTITIONING
For keyword-based partitioning, each node maintains the

complete inverted lists of some keywords. A query with
k ≥ 1 keywords needs to contact k nodes and requires that
the inverted lists of k−1 keywords be sent over the network.

The baseline keyword-based partitioning randomly dis-
tributes the inverted lists of keywords over network nodes
and always sends the smallest inverted list over the network
when computing the intersection of inverted lists. Hence a
k-word query visits k nodes sequentially in the ascending
order of the inverted list sizes, which aims to minimize the
network communication overhead of the set intersections.

Unlike document-based partitioning, there is no quality
degradation when using keyword-based partitioning. The
total storage consumption of the baseline keyword-based
partitioning is identical to that of document-based parti-
tioning, though some optimization techniques (e.g. caching,
pre-computation) may lead to extra storage consumption.

In the evaluation of keyword-based partitioning, we use a
Chord [20] ring to organize nodes into an overlay, where the
inverted list of a term x is stored in the overlay by using x as
a hash key. Given a query term A, the inverted list of A can
be found within log n × 0.04 seconds in a Chord ring with
n nodes since the network diameter is log n and the average
latency per link is 40ms in our settings.

For a k-keyword query, the search latency T is as follows.

T = TlinkLatency + Ttransmission (1)

TlinkLatency ≤ (k +1)× log n×0.04 seconds is the total net-
work link latency for a k-keyword query since a k-keyword
query needs to go through k+1 node-to-node trips and each
trip takes at most log n × 0.04 seconds in a Chord with n

nodes. Ttransmission, the time to send the inverted lists over
the network, is C

B
, where C is the communication cost of the

query and B = 1.5 Mbps is the available network bandwidth
per query in our evaluation settings. For very large datasets,
Ttransmission becomes the dominant factor of the search la-
tency of keyword-based partitioning. Note that we do not
consider the local computation time since it is usually small
and negligible compared with TlinkLatency and Ttransmission.

Figure 1(B) shows the distribution of the communication
cost per query for the baseline keyword-based partitioning,
where the average communication cost per query is 96.61 KB
and the maximum cost is 18.65 MB. Given that the average
number of terms per query is 2.54, the average search latency
of the baseline keyword-based partitioning can be computed
based on Equation (1):

T = ((2.54 + 1) × log n × 0.04) +

(

96.61 × 1000 × 8

1.5 × 106

)

= (0.14 × log n) + (0.52) sec.

(2)

The communication cost of the baseline keyword-based
partitioning can be reduced by the following techniques with-
out compromising the quality: Bloom filters, pre-computation,
caching, query log mining, incremental set intersection, and

128 256 512 1024 2048 4096
90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

Network size (in number of nodes)

S
ea

rc
h

Q
ua

lit
y

(A) document−based partitioning

10 20 30 40 50 60 70 80 90100
0%

10%

20%

30%

40%

50%

60%

70%

80%

pr
op

or
tio

n
of

 w
eb

 q
ue

rie
s

The communication cost (in 10 kilobytes)

(B) The baseline keyword−based partitioning

1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

pr
op

or
tio

n
of

 w
eb

 q
ue

rie
s

The communication cost (in 10 kilobytes)

(C) Using Bloom filters

4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

Per−node disk cache size (in megabytes)

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (D) Caching the search results

10 20 40 80 160 320 640
0

0.2

0.4

0.6

0.8

1

% of extra storage needed

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (E) Using pre−computation

128 256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

Network Size (in number of nodes)

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (F) Using query log mining

2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

The number of partitions per keyword

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (G) Using incremental set intersection

10 20 40 80 160 320 640
0

0.01

0.02

0.03

% of extra storage needed

T
he

 c
om

m
un

ic
at

io
n

co
st

 r
at

io
s (H) Combing all techniques together

Figure 1: The evaluation results for document-based partitioning and keyword-based partitioning.

other techniques. We discuss these techniques in the remain-
der of this section. During our discussion, the communica-

tion cost ratio, c, is defined as the average ratio of reduced
communication cost to the communication cost of the base-
line keyword-based partitioning. Hence the new network
transmission time Ttransmission is c times that of the base-
line keyword-based partitioning and TlinkLatency remains al-
most unchanged. Based on Equation(2), we have the new
search latency:

T (c) = (0.14 × log n) + (0.52 × c) sec. (3)

4.1 Bloom Filters
Li et al. [12] and Reynold and Vahdat [16] suggest to use

Bloom filters [4] as a compact representation of sets. By us-
ing Bloom filters, the communication overhead for set inter-
sections is significantly reduced at the cost of a small prob-
ability of false positives. Given two sets A, B with |A| < |B|
and each element in the sets having i bytes. The number
of bits, m, in a Bloom filter that minimizes the communi-
cation cost for computing A

⋂

B can be determined by the
following equation from Reynold and Vahdat [16].

m = |A| · log
0.6185

(

2.081

i
·
|A|

|B|

)

(4)

We implemented Bloom filters on our dataset based on Equa-
tion (4), where i = 64 for our system. Figure 1(C) shows the
distribution of per-query communication cost of our imple-
mentation of Bloom filters, where the communication ratio
is 0.137. Hence the search latency is reduced to (0.14 ×
log n) + (0.137 × 0.52) seconds according to Equation (3).

4.2 Caching
Previous research [12, 16] has suggested that the commu-

nication cost for set intersections can be reduced by caching

the sets or their Bloom filters received at each node. Our
experiments show that it is more helpful for each node to
directly cache its search results. LFU policy is used in our
cache implementation. Figure 1(D) presents the communi-
cation cost ratio of our cache implementation with different

cache sizes. The new search latency can be easily calculated
based on Equation (3).

4.3 Pre-Computation
Gnawali as well as others [9, 12] suggest to use pre-computation,

which computes and stores the intersection results of the in-
verted lists of popular query keywords in advance. Here we
pre-compute the intersections of the most frequently used
keyword pairs, keyword triplets, and keyword quartets in
the query log. Figure 1(E) illustrates how pre-computation
saves communication cost at the expense of extra storage
consumption.

4.4 Query Log Mining
We propose to use query log mining, which explores a

better way to distribute inverted lists over the nodes than
the uniformly random scheme used by the baseline keyword-
based partitioning. Our query log mining clusters keywords
into similar-sized groups based on their correlations. By dis-
tributing each group of keywords to a node, the intersection
of the inverted lists of keywords within the same group does
not incur any network communication.

We represent our query log as a weighted graph, where
each node represents a query term and the weight of an edge
(u, v) is the number of queries that contain both u, v. By us-
ing the chaco [5] package recursively, the graph is partitioned
into groups with nearly balanced storage consumption such
that the words in the same group tend to be highly corre-
lated. A sampled group on a 4096-node network includes
the following words: san ca diego francisco puerto tx austin
rico antonio earthquake jose juan vallarta lucas rican luis
cabo fransisco bernardino.

Figure 1(F) illustrates how our query log mining results
help to reduce the communication cost ratios for networks
with different number of nodes (keyword groups).

4.5 Other Techniques
Based on the assumption that users are only interested

in the most relevant results of a search, incremental set in-

tersection reduces the communication cost by only retriev-
ing the top k most relevant web pages. Variants of Fagin’s

algorithm [7] has been used in some p2p keyword search
systems [21] to achieve incremental set intersection.

Figure 1(G) presents the communication cost ratios when
different values of the number of partitions per keyword, are
used for our dataset.

As suggested by Gnawali and Li et al. [9, 12], other com-
pression methods, such as compressed Bloom filters [14] and
gap compression [26], may also be used to reduce the com-
munication cost. However, these methods only lead to slight
improvement in our experiment.

4.6 Combine Them Together
Figure 1(H) presents the communication cost ratios after

using Bloom filters, pre-computation, caching (256 MB per
node), query log mining, and incremental set intersection
(with 3 partitions per keyword) together on 4096-node net-
works. The ratios in Figure 1(H) are larger than the product
of the ratios in Figure 1(C) to 1(G) since the performances
of these techniques are not completely orthogonal. Given
the communication cost ratios, the search latency can be
easily calculated based on Equation (3).

5. HYBRID INDEXING
Hybrid indexing [23] saves the communication cost of keyword-

based partitioning by associating each page ID in an inverted
list with some metadata of the corresponding web page.

A naive approach is to associate each page ID in an in-
verted list with a complete term list of the corresponding
web page. This way the intersection of the inverted lists for
multiple keyword search can be done locally with no com-
munication needed. Let L be the average size of the term
lists of web pages. Let l be the average size of the entries
in the original inverted lists. The above naive approach re-
quires L

l
+ 1 times the storage consumption of the original

inverted lists, which may be as high as several hundreds and
thus is prohibitive for very large datasets.

10 20 30 40 50 60 70
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

t, the number of search results to be considered

T
he

 o
ve

rla
pp

in
g

pe
rc

en
ta

ge

The search quality of hybrid indexing

With no query expansion
With query expansion

Figure 2: The search quality of hybrid indexing on our

dataset. The quality is measured by the overlapping per-

centage between the top t search results of the hybrid

indexing and those of centralized search.

The hybrid indexing approach proposed by Tang et al. [23]
uses VSM [3] to identify the top k terms (with k highest term
weights) in a document and only publishes the term list of
the document to the inverted lists of these top terms. Briefly
speaking, the inverted list of a term, x, only contains those

page IDs that have x as their top terms. This approach may
degrade the quality of the search results since if the terms
of a query are not among the top terms of a document then
the query cannot find this document. In their approach,
classical IR algorithms and query expansion are used to im-
prove search quality. Query expansion works by expanding
the query with new relevant terms extracted from the best
matched pages to the original query. For the details of query
expansion, please refer to [23].

The total storage consumption of hybrid indexing is 1 +
k
W

·L
l

times that of the standard keyword-based partitioning.
Here L is the average size of the term lists of web pages. l

is the average size of the entries in an inverted list. k is the
number of top terms under which a web page is published.
W is the the average number of distinct terms per page.
Let k = 20 and each entry of a term list consists of a 4-
byte term ID and a 2-byte term frequency. Hence the total
storage consumption of hybrid indexing on our dataset is
1 + k

W
· L

l
= 1 + 20

114
× 6×114

10
= 13 times that of the baseline

keyword-based partitioning.
The communication cost of hybrid indexing on our dataset

is 7.5 KB per query, which is independent of the dataset size.
For hybrid indexing, distributed hash tables (DHT) are

necessary for storing and finding the inverted list of a term
x by using x as a hash key. Let D denote the network
diameter of the underlying DHT. If query expansion is not
used, then a hybrid indexing search contacts the inverted
list of a query term (or all inverted lists of query terms in
parallel) and retrieve the search results. Hence the search
latency of hybrid indexing is 2×D × 0.04 seconds. If query
expansion is used, then a hybrid indexing search consists of
two searches: one for the original query and the other for
the expanded query. Hence the search latency is 4×D×0.04
seconds if query expansion is used.

Figure 2 studies the search quality of hybrid indexing,
where each web page is published under its top 20 terms.
As suggested by Tang et al. [23], the query expansion in
Figure 2 is based on the 10 most relevant terms in the top
10 best matched pages to the original query.

6. SEMANTIC SEARCH
Semantic search [8, 13, 24] use classical IR algorithms

(e.g., Latent Semantic Indexing) to map web pages and
queries to points in a semantic space with reduced dimen-
sionality (typically between 50 and 350). For each query,
semantic search returns the top a few closest points to the
query point in the multi-dimensional semantic space, where
the closeness between points A, B is typically measured by
the dot product of vectors ~A, ~B. As a result, semantic search
can be characterized as nearest neighbor search in multi-
dimensional semantic space.

Here we evaluate the performance of pSearch, the seman-
tic search system proposed by Tang et al. [24] on our dataset.
In our evaluation, we use LSI matrices with dimensionality
200, which are computed by applying the SVDPACK soft-
ware package [22] to a term-document matrix that consists of
38457 web pages uniformly sampled from our dataset. The
LSI matrices fold web pages or queries (253334-dimensional
vectors) into 200-dimensional vectors, which form a seman-
tic space. In our evaluation, the storage consumption of
a web page in the semantic space is 8 + (200 × 4) = 808
bytes since each 200-dimensional vector (200 × 4 bytes) is
associated with its corresponding page ID (8 bytes).

One of the key obstacles to semantic search is the mis-
match between the dimensionality of the semantic space (50

12 45 8 10 20 25 40 50
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p, the number of partitions

T
he

 o
ve

rla
pp

in
g

pe
rc

en
ta

ge

The search quality of pSearch

k=20
k=40
k=80
k=160
k=320

Figure 3: The quality of pSearch on our dataset. The

quality is measured by the overlapping percentage be-

tween the top 20 search results of pSearch and the top

20 results of centralized semantic search.

to 350) and the effective dimensionality of the p2p overlay
hash space, which is at most 2.3 ln n for a CAN network
with n nodes [24]. The dimension reduction technique used
in pSearch is called rolling-index, which partitions a seman-
tic space into p subspaces (each has m dimensions). Hence
p × m is equal to the dimensionality of the semantic space,
which is 200 in our evaluation. Another constraint is that m

has to be less than or equal to the effective dimensionality of
the underlying CAN network. Otherwise a m-dimensional
subspace cannot be efficiently implemented on the CAN net-
work hash space. Given that the maximum effective dimen-
sionality of a CAN network with n nodes is b2.3 ln nc [24],
we have m ≤ b2.3 ln nc and p ≥ d 200

2.3 ln n
e.

In rolling-indexing, each point is stored at p places (one
for each semantic subspace) in the CAN hash space. For
each query, p parallel searches are performed (one for each
subspace) and each of them returns the top k points (and
their page IDs) found in its corresponding semantic sub-
space. The query-initiating node merges the results and
only returns the top 20 page IDs as the final result.

As we can see from Figure 3, the search quality increases
when k (the number of the retrieved points from each se-
mantic subspace) grows. The search quality increases when
p (the number of semantic subspaces) gets smaller since a
small p means that each subspace has high dimensionality
and their closest points to the query are more likely to be
among the global closest points. However, p has a lower
bound of d 200

2.3 ln n
e as we explained before. Specifically, p

must be at least 10 for a 6000-node CAN, which leads to
87.64% search quality if 160 points are retrieved from each
semantic subspace.

Let i denote the number of bytes needed for storing a point
in each semantic subspace. Let d denote the total number of
documents in the system. The total storage consumption of
pSearch is d · p · i. If p = 10 (for 6000-node CAN networks),
then the total storage requirement of pSearch on our dataset
is 3720390 × 10 × 808 ≈ 30.06 GB, which is 7.09 times the
storage requirement of document-based partitioning or the
baseline keyword-based partitioning.

The communication cost of pSearch is p·k·i bytes, which is
independent of the dataset size. If we choose p = 10 and k =
160 (lead to 87.64% search quality), then the communication

cost per query is 10 × 160 × 808 ≈ 1.29 MB.
According to Equation (1), the search latency of pSearch

on a CAN network with n nodes is

T = TlinkLatency+Ttransmission = (2×n
1

d ×0.04)+
p · k · i · 8

1.5 × 106
sec.

where d is b2.3 ln nc, p = d 200

2.3 ln n
e, and i = 808. Note that

k, the number of the retrieved points from each semantic
subspace, is decided based on the desired search quality since
the quality increases as k grows.

7. PERFORMANCE COMPARISON
In order to project the performance of current p2p key-

word search techniques on very large datasets, we scale our
evaluation results to 109 web pages as shown in Table 1.

Table 2 summarizes the advantages and constraints of the
four types of p2p full-text keyword search techniques that
we considered in this paper.

Document-based partitioning is desirable for a large set of
documents since its communication cost is independent of
the dataset size and its storage consumption is small com-
pared with other p2p keyword search techniques. However,
document-based partitioning requires that the network size
and the total number of queries per second must be small.
For example, if we assume that each node can handle up
to 100 queries per second and the assumptions in Section 2
hold, then document-based partitioning can support up to
4167 nodes and 100 queries per second in total. Generally
speaking, the communication cost of document-based parti-
tioning grows linearly with the network size. The number of
queries received by each node per second is exactly the num-
ber of queries going into the whole system each second since
document-based partitioning broadcasts each query to ev-
ery node. Hence the query throughput of document-based
partitioning is bounded by the query throughput of each
node.

Keyword-based partitioning (optimized as described in
Section 4) is the only known p2p keyword search technique
with no quality degradation. Keyword-based partitioning
is suitable for large-sized networks since the communica-
tion cost of keyword-based partitioning is independent of the
network size. However, the communication cost of keyword-
based partitioning grows linearly with the number of docu-
ments in the system. Hence a user should choose keyword-
based partitioning when she prefers no quality degradation
or when the total number of documents in the system is
not too large. Specifically, if we require that the total net-
work bandwidth consumption is bounded by 1 Gbps and the
average search latency is less than 10 seconds, then keyword-
based partitioning can support up to 108 web pages and 1000
queries per second in total.

Hybrid indexing has small communication cost per query
(7.5 KB), which is independent of the total number of docu-
ments and network size. This small per-query communica-
tion cost is also very helpful when a large number of queries
go into the system each second. However, these advantages
are achieved at the cost of 10%–50% quality degradation and
significant extra storage consumption (13 times under our
settings). When quality degradation and extra storage con-
sumption are acceptable, hybrid indexing is a good choice.

Semantic search favors large-sized networks because large-
scale networks have high effective dimensionalities and thus
lead to small dimension mismatch between the semantic
space and the overlay hash space. For instance, for a 6000-
node network, semantic search has 87.64% quality with 1.29 MB

Techniques Total storage C, comm. cost per query Latency Quality

Document-based partitioning 1139.67GB 0.3 × (n − 1)KB 2 × log n × 0.04 seconds 75% to 95% (varies with n)
Keyword-based partitioning 2963.10GB 905.82KB to 1221.78KB (0.14 × log n) + 4.82 seconds 100.00%
(160% extra precomputation storage (varies with n) to
and 256 MB per-node cache are used) (0.14 × log n) + 6.52 seconds
Hybrid Indexing (with query expansion 14815.70 GB 7.5KB 4 × log n × 0.04 seconds 86.05%
and the top 20 results in consideration) (independent of n)
Semantic Search (n = 6000,k = 160) 8080.26GB 1290KB 7.59 seconds 87.64%

Table 1: The scaled performance of p2p full-text keyword search techniques on a n-node network with 10
9 pages.

Techniques Advantages Constraints

Document-based 1. Suitable for a large number of documents 1. Requires small network size
partitioning 2. Relatively small storage consumption 2. Requires small number of queries per second in total

3. Has moderate quality degradation
Keyword-based 1. No quality degradation 1. The communication cost grows linearly
partitioning 2. Suitable for large-sized networks with the total number of documents

2. Relatively high communication cost
3. Requires moderate extra storage consumption

compared with document-based partitioning
Hybrid Indexing 1. Suitable for large-sized networks 1. Has quality degradation

2. Suitable for a large number of documents 2. Requires significant extra storage consumption
3. Suitable for a large number of queries per second than document-based partitioning

Semantic Search 1. Favors large-sized networks 1. Requires moderate extra storage than document-based partitioning
2. Can do concept-based search 2. Has moderate quality degradation

3. Relatively high communication cost
4. Its underlying IR techniques, e.g., LSI, may have scalability problems

Table 2: The advantages and constraints of current p2p full-text keyword search techniques.

communication cost per query and 8080GB total storage
consumption. When the network size grows to 36 million
nodes, semantic search can achieve 91.22% quality with
322.50 KB communication cost per query and 4040GB total
storage consumption. In addition, semantic search can find
those web pages with similar concepts to the query terms,
though they may not have exactly the same term. For exam-
ple, semantic search can retrieve documents containing the
term “automobiles” for queries containing the term “cars”.
In summary, semantic search is suitable for large-scale net-
works or concept-based queries.

8. CONCLUSION
This paper provides a performance evaluation and com-

parison of current p2p full-text keyword search techniques
on a dataset of 3.7 million web pages and 6.8 million queries.
Our dataset is an order of magnitude larger than the datasets
employed in most previous studies (up to 528,543 web pages
and 100,000 queries). To further project the performance of
current p2p keyword search techniques on very large datasets,
we linearly scale our evaluation results to 109 web pages.
Our evaluation results can serve as a guide for a user to
choose p2p keyword search techniques based on specific sys-
tem parameters, such as network size, the number of docu-
ments, and the query throughput.

9. REFERENCES
[1] Ask Jeeves Search. http://www.ask.com.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
Application Layer Multicast. In Proc. of ACM SIGCOMM,
pages 205–217, 2002.

[3] M. Berry, Z. Drmac, and E. R. Jessup. Matrices, Vector Spaces,
and Information Retrieval. SIAM Review, 41(2):335–362, 1999.

[4] B. H. Bloom. Space/time Trade-offs in Hash Coding with
Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[5] http://www.cs.sandia.gov/ bahendr/chaco.html.

[6] The Open Directory Project. http://www.dmoz.com.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. In Proc. of ACM Symp. on
Principles of Database Systems, 2001.

[8] P. Ganesan, B. Yang, and H. Garcia-Molina. One Torus to Rule
Them All: Multidimensional Queries in P2P Systems. In Proc.
of WebDB’04, 2004.

[9] O. D. Gnawali. A Keyword-Set Search System for Peer-to-Peer
Networks. Master’s thesis, Dept. of Computer Science,
Massachusetts Institute of Technology, June 2002.

[10] Gnutella. http://www.gnutella.com.

[11] KaZaA. http://kazaa.com.

[12] J. Li, T. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and
R. Morris. On the Feasibility of Peer-to-Peer Web Indexing and
Search. In Proc. of IPTPS’03, 2003.

[13] M. Li, W. Lee, and A. Sivasubramaniam. Semantic Small
World: An Overlay Network for Peer-to-Peer Search. In Proc.
of IEEE ICNP, 2004.

[14] M. Mitzenmacher. Compressed Bloom Filters. In Proc. of 20th
ACM PODC, 2001.

[15] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server
Selection. In Proc. of IEEE INFOCOM, New York, NY, June
2002.

[16] P. Reynold and A. Vahdat. Efficient Peer-to-Peer Keyword
Searching. In Proc. of Middleware’03, 2003.

[17] S. E. Robertson, S. Walker, S. Jones, M. HancockBeaulieu, and
M. Gatford. Okapi at TREC-3. In TREC-3, 1994.

[18] G. Salton and C. Buckley. Term-weighting Approaches in
Automatic Text Retrieval. Information Processing and
Management, 24(5):513–523, 1988.

[19] SMART. ftp://ftp.cs.cornell.edu/pub/smart.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proc. of ACM
SIGCOMM, pages 149–160, San Diego, CA, Aug. 2001.

[21] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi,
X. Long, and K. Shanmugasunderam. ODISSEA: A
Peer-to-Peer Architecture for Scalable Web Search And
Information Retrieval. In Proc. of WebDB’03, 2003.

[22] SVDPACK. http://www.netlib.org/svdpack/index.html.

[23] C. Tang, S. Dwarkadas, and Z. Xu. Hybrid Global-Local
Indexing for Efficient Peer-to-Peer Information Retrieval. In
Proc. of the First USENIX/ACM NSDI, San Franscisco, CA,
Mar. 2004.

[24] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Information
Retrieval Using Self-Organizing Semantic Overlay Networks. In
Proc. of ACM SIGCOMM, 2003.

[25] Global Internet Geography 2003. TeleGeography, Inc.

[26] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. 1999.

