
 1

Slides on Theorems 1.2, 1.4, 1.7, and 1.14 of
The Complexity Theory Companion

by Hemaspaandra and Ogihara

Slides by Group 1:

Jacob Balazer

Justin Moore

Lior Privman

Leila Seghatoleslami

Arrvindh Shriraman

Wenzhao Tan

 2

Jumping right into the thick of things…1

Theorem 1.2

(∃T . T is a tally set ∧ T is NP-hard) ⇒ P = NP

Corollary 1.3

(∃T . T is a tally set ∧ T is NP-complete) ⇔ P = NP

Basic strategy for proving Theorem 1.2

(1) Assume ∃T . T is a tally set ∧ T is NP-hard

(2) Construct a deterministic poly-time algorithm for some NP-
complete language.

1 These slides contain many unattributed quotes from The Complexity Theory Companion by
Hemaspaandra and Ogihara.

 3

If using SAT was made illegal, then only criminals would use
SAT…

SAT

SAT = {f | f is a satisfiable boolean formula}

Examples of SAT

v1 ∨ v2 ∨ v3 satisfiable with assignment:

[v1 = True, v2 = False, v3 = False]

v1 ∧ 1v unsatisfiable

w.l.o.g., f contains variables v1 … vm, m ≥ 1

 4

Example Execution of the Algorithm…

F[v1 = True] F[v1 = False]

F[v1 = True,
v2 = True]

⊗ F[v1 = False,
v2 = True]

F[v1 = False,
v2 = False]

… … … … … …

 F
Stage 0
C′ = {F}

Stage 1
C = {F[v1 = True], F[v1 = False]}
C′ = {F[v1 = True], F[v1 = False]}

C = {F[v1 = True, v2 = True], F[v1 = True, v2 = False],
 F[v1 = False, v2 = True], F[v1 = False, v2 = False]}

C′ = {F[v1 = True, v2 = True],
 F[v1 = False, v2 = True], F[v1 = False, v2 = False]}

Stage 2

 5

SAT trees grow too fast, so to prove Theorem 1.2, we will use
pruning…

The Algorithm

Stage 0: C′ ← {F}

Stage i: 1 ≤ i ≤ m, given that C′ at the end of Stage i – 1 is the

collection of formulas: {F1, …, F }.

Step 1 Let C be the collection

{F1[vi = True], F2[vi = True] ,…, F [vi = True],

 F1[vi = False], F2[vi = False] ,…, F [vi = False]}

Step 2 C′ ← ∅

Step 3 For each formula f in C

If g(f) ∈ 1* and for no formula h ∈ C′ does g(f) = g(h)
 then add f to C′

Stage m + 1: return “yes”, F is satisfiable, if some (variable-free)
formula f ∈ C′ is satisfiable, otherwise return “no”.

 6

"I find your lack of faith disturbing." –Darth Vader

The Proof of Theorem 1.2

Lemma 1 The algorithm returns “yes” ⇔ input formula F ∈ SAT

After Stage 0, C′ contains a satisfiable formula ⇔ input
formula F ∈ SAT.

 After Stage i, Step 1, C contains a satisfiable formula ⇔ C′
contains a satisfiable formula, by the self-reducibility of SAT.

After Stage i, Step 3, each formula f from Step 1 is kept unless
either:

g(f) ∉ 1*

g many-one reduces SAT to T, so:
g(f) ∉ 1* ⇒ g(f) ∉ T ⇒ f ∉ SAT

g(f) ∈ 1*, but some h ∈ C′ has g(f) = g(h)

[(f ∈ SAT ⇔ g(f) ∈ T)
∧ (h ∈ SAT ⇔ g(h) ∈ T)
∧ g(f) = g(h)]

 ⇒ f ∈ SAT ⇔ g ∈ SAT

 7

…Proof Continued

Lemma 2 The algorithm runs in deterministic poly-time

THE COOL PART!

Let p = |F| be the number of bits in the representation of F.

In Step 3, we are calling g on formulas of various lengths

–each of these formulas has length ≤ p

–g runs for at most pk + k steps for some k

–g will never output a string of length > pk + k

If C′ contains pk + k + 1 + x formulas that under the action of g
produce elements of 1*, then by the pigeonhole principle, the g(f) =
g(h) test will eliminate at least x of those formulas.

Proof of Theorem 1.2
 (∃T . T is a tally set ∧ T is NP-hard)
 ⇒ there is a deterministic poly-time algorithm for SAT
 (by Lemma 1 and Lemma 2)
 ⇒ P = NP

 8

Example Execution of the Algorithm…

…using the h(f) = h(g) test in Part 3.

F

F[v1 = True] F[v1 = False]

F[v1 = True,
v2 = True]

⊗ F[v1 = False,
v2 = True]

F[v1 = False,
v2 = False]

… … … … … …

Stage 0

Stage 1

Stage 2

…
Max width: |F|k + k + 1

(note: this is the max width after pruning)

“I’m too sexy for
my shirt, too sexy
for my
algorithm...” ☺

…

 9

Again! Again!

Theorem 1.4

(∃S . S is a sparse set ∧ S is coNP-hard) ⇒ P = NP

Basic strategy for proving Theorem 1.4

(1) Assume ∃S . S is a sparse set ∧ S is coNP-hard

(2) Construct a deterministic poly-time algorithm for some NP-
complete language.

Definition For any , let p (x) = x +

We know by the definition of g, that
(∃k)(∀x)[|g(x)| ≤ pk(x)]

since g(x) runs in poly-time, its output lengths are
polynomially bounded

 We also know by the definition of spare sets, that

 (∃d)(∀x)[||S≤x|| ≤ pd(x)]
i.e., number of strings in S of length x or less is
polynomially bounded

 10

SAT trees grow too fast, so to prove Theorem 1.2, we will use
pruning…

The Algorithm

Stage 0: C′ ← {F}

Stage i: 1 ≤ i ≤ m, given that C′ at the end of Stage i – 1 is the

collection of formulas: {F1, …, F }.

Step 1 Let C be the collection

{F1[vi = True], F2[vi = True] ,…, F [vi = True],

 F1[vi = False], F2[vi = False] ,…, F [vi = False]}

Step 2 C′ ← ∅

Step 3 For each formula f in C

 If for no formula h ∈ C′ does g(f) = g(h)
 then add f to C′

Step 4 If C′ contains at least pd(pk(|F|))+1 elements, return

 “yes”

Stage m + 1: return “yes”, F is satisfiable, if some (variable-free)
formula f ∈ C′ is satisfiable, otherwise return “no”.

 11

Are we there yet?

The Proof of Theorem 1.4

Lemma 3 The algorithm returns “yes” ⇔ input formula F ∈ SAT

 The only difference from Lemma 1 which we need to
consider is the addition of Step 4…

THE OTHER COOL PART!

Let n represent |F|.

For any formula H in the algorithm, |g(H)| ≤ |g(F)|

|g(F)| ≤ pk(n)

How many strings of length pk(n) or less in S?
 ()kp nS ≤ pd(pk(n))

By the pigeonhole principle,

If C′ contains at least pd(pk(n))+1
⇒ some g(h) ∉ S ⇒ h ∉ SAT

Lemma 4 The algorithm runs in deterministic poly-time
 Clearly the size of C’ is always bounded by the polynomial
pd(pk(n))

Theorem 1.4 follows from Lemma 3 and Lemma 4.

 12

If a sparse, NP-Complete language exists =>

P = NP

Let S be a sparse NP-Complete language

Define C(n) = |S≤n| and Ca(n) = |S≤pa(n)|

Define pℓ(n) = nℓ + ℓ
We know that since S is NP-Complete
The function that reduces, σ, is bounded by pa

Definitions

Mahaney’s Theorem

Since S is sparse, C(n) is bounded by pd

SSAT p
m≤

a.k.a. Hem/Ogi Theorem 1.7
a.k.a. Bov/Cre Theorem 5.7

 13

What did the sparse set say to its complement?
“Why do you have to be so dense?”

What we would want to happen, or
Why this proof isn’t really easy

What if S were in NP?

Since S is NP-Complete,
Since many-one reductions are closed under
complementation,

Thus, S is NP-Complete, S is co-NP-Complete
and Hem/Ogi theorem 1.4 shows that P=NP.

If only the proof were as easy as putting
many-one reductions into a presentation…

SS p
m≤

SS p
m≤

 14

Sorry, not quite so easy…

However, S is not necessarily in NP
Let’s define S in terms of Ca(n):

S={x | ∃y1, y2,…,yCa(|x|) [[(|y1|≤pa(|x|) ^ y1≠x ^ y1∈S]

 ^ [(|y2|≤pa(|x|) ^ y2≠x ^ y2∈S]

 ^ … … …

 ^ [(|yCa(|x|)|≤pa(|x|) ^ yCa(|x|)≠x ^ yCa(|x|)∈S]

 ^ all the y’s are distinct] }

S≤pa(|x|)

y1

y2

y3

y4

y5 x

Hey, what
about me?

S is for
losers

anyway…

 15

If only we had a way to have S be an NP language…

Unfortunately, we cannot find the value of Ca(|x|)

Fix this by parameterizing the number of y’s:

S={<x,m>| ∃y1, y2,…,ym [[(|y1|≤pa(|x|)^y1≠x^y1∈S]

 ^ [(|y2|≤pa(|x|)^y2≠x^y2∈S]

 ^ … … …

 ^ [(|ym|≤pa(|x|) ^ ym≠x ^ ym∈S]

 ^ all the y’s are distinct] }

We will call this the pseudo-complement of S

Note that for any <x,m>, <x,m>∈ S iff:

a) m < Ca(|x|) or

b) m = Ca(|x|) and x∉S

 16

How can this pseudo-complement help?

We can prove that S is in NP by constructing an
algorithm that decides S in non-deterministic
polynomial time.

Here’s a modified version of Bov-Cre’s algorithm:

begin {input: x, m}
 if m > pd(pa(|x|)) then reject;
 guess y1, y2, …, ym in set of m-tuples of
 distinct words, each of which is of
 length, at most, p a(|x|);
 for i = 1 to m do
 if yi = x then reject;
 simulate MS(yi) along all Ms’s paths starting

at i = 1
 if Ms(yi) is going to accept and i < m
 simulate Ms(yi+1) along all M s’s paths;
 if Ms(yi) is going to accept and i = m
 accept along that path;
 accept;
end.
Since S is in NP and S is NP-Complete,

 by some function ψ with bound pgSS p
m≤ˆ

 17

Why is it called recap?
We never capped anything in the first place…

capitulate
\Ca*pit"u*late\, v. t. To surrender or transfer, as an army or a fortress,

on certain conditions. [R.]

So far, we’ve figured out the following:

a) S many-one poly-time reduces to S by ψ with
time bound pg

b) SAT many-one poly-time reduces to S by σ
with time bound pa

c) The sparseness of S, C(n), is assured by pd

d) Bov-Cre is way too algorithmic

e) It is probably going to snow today
--Hey, we all chose Rochester for some reason

Next:

What’s our favorite way to show P=NP?

What’s our favorite way to show that SAT can be
decided in polynomial time?

 18

Get out the hedge trimmers…

We have some formula F

We want to know if it’s in SAT

F

F(v1=true) F(v1=false)

Look familiar?

.

..
.
..

This tree will get way too bushy for our purposes
though, so we need to come up with a way to
prune it

 19

Given a formula, for each m in [1, p d(p a(|F|))]

Create and prune a tree of assignments to
variables just as we did for theorem 1.4 using a
new pruning algorithm. When we get to the end,
check each assignment to see if it’s satisfiable.

What we want to happen:
b) The number of leaves to be bounded by a polynomial

c) The pruning algorithm to be polynomial time

d) If F is satisfiable, then one of the leaves of the tree at
the end is satisfiable

e) The snow to wait at least another 3-4 weeks so it wont
instantly turn into slush and then ice

What’s this? A polynomial number of hedge trimmers?
Only a theorist would think of something like that

What that will get us:
b) A polynomial time algorithm that decides SAT

c) More time to put off getting snow tires for our cars

(this is every possible value of m for F)

 20

This slide is a great example of why I am not a digital art major

F

f

.

..
.
..

.

.. .
.. .

..

For each stage of the tree:
D is the set of all formulas generated

by assigning true and false to the
previous stage’s result

D’ is the set of all formulas that have
not been pruned from D (i.e. D’ ⊆ D)

How do we get to D’ from D?

.

..

for each f in D
 if |D’| ≤ pd(pg(pa(|F|))) and
 for each f’ in D’

 ψ(<σ(f), m>) ≠ ψ(<σ(f’), m>)
 then
 add f to D’

 21

What’s next?

Mappings…

A few comparisons…

Some polynomial bounds…

Tree pruning…

P=NP

When we’re done:

Check each (variable-free) formula in the bottom
layer to see if it’s satisfiable

There are only a polynomial number

If any is satisfiable, we’re done

If for all m’s, no formula in the bottom layer is
satisfiable, F is not satisfiable

 22

Wait… I don’t get it…

How is it so hard to draw nice trees when you are using
presentation software with the “snap-to-grid” feature?

Demystification (why the pruning works):

It is important to note that when we have found
the correct m = Ca(pa(|F|)) that

f is not satisfiable iff ψ(<σ(f), Ca(pa(|F|))>)∈ S

Why, you ask?

Recall that SAT reduces to S

This f ∉ SAT iff σ(f) ∉ S

Remember S?

m=Ca(pa(|F|)) and σ(f)∉S iff <σ(f), Ca(pa(|F|))>∈S

But S reduces to S too!

<σ(f), Ca(pa(|F|))>∈S iff ψ(<σ(f), Ca(pa(|F|))>)∈S

 23

How does this help?

There are a bounded number of unsatisfiable
formulas that are mapped in S.

This is pd (the sparsity of S) composed with pg
(the limit on mappings to S through ψ) composed
with pa (the limit on mappings to S through σ)*

If we have chosen m = Ca(pa(|F|)), and we have
found more than pd(pg(pa(|F|))) values then:

Not all those ψ(<σ(f), m>)’s are in S so at least
one of the f’s is satisfiable

Thus, we can happily prune away all but one
over the bound of these values, leaving a
polynomial number while still guaranteeing one of
them is sure to have a satisfying assignment.

If pa(pq(pr(pl(m+Cn(x))))) = pj(pn(p4(pa(nm – |1|)))), then 2 = 3

At least something is obvious in these slides…

*Since m is constant for each tree, pairing σ(f) with m will not
make the number of possible mappings in S bigger. Thus we
don’t need to worry about the pairing in S changing the bound.

 24

SAT

S

f
f

f

pa(|f|)

r r
r

S

pa(|f|)

<r, m>
<r, m><r, m>

St
t

pg(pa(|f|))

Don’t forget that
I’m sparse!

This complicated diagram makes it much easier to see. Trust me.

t

 25

Wait, if I prove P=NP, I win a million dollars…

In the universe that has a sparse NP-Complete set, I am rich!

Most of you are saying right now:

“Yes, that is true, but how do you know if you
have an m = Ca(pa(|F|))”

An interesting fact:

There are a polynomial number of m’s.

Does it really matter what happens to the tree
with m ≠ Ca(pa(|F|))?

As long as we’re not wasting too much time
pruning trees the wrong way, the other m’s don’t
create too much overhead.

If F is not satisfiable, we’ll never get a satisfying
assignment; if F is satisfiable, maybe we’ll
randomly keep an assignment with m≠Ca(pa(|F|))
but when m = Ca(pa(|F|)) each stage is
guaranteed to have at least one satisfiable
formula.

 26

Wait… did we just do what I think we did?

Since for some value m, there is a tree that
outputs a satisfiable formula iff the formula is
satisfiable

There are at most a polynomial number of leaves

The pruning function runs in a polynomial amount
of time

There are only a polynomial number of trees

We just decided if a formula is satisfiable in a
polynomial amount of time

Thus an NP-Complete language is decidable by
a deterministic polynomial algorithm and P = NP

…now what?

It all comes down to… wait, what were we talking about?

 27

Theorem 1.14 (Hemaspaandra and Ogihara):

If there exists a sparse NP
p
T≤ -complete set, then

NPNP = PNP[O(log n)]

 Recall that NPNP =
p
2∑

.
PNP[O(log n)] is the class of languages recognizable
by some deterministic polynomial-time machine
that may make up to O(log n) queries to an NP
oracle, where n is the length of the input.

Proof Outline:

1. Assume the existence of a sparse NP
p
T≤ -

complete set S.
2. Use this to show that an arbitrary NPNP problem

can be solved with a PNP[O(log n)] machine.

Proof Part 1: Define an NPNP language in

terms of a sparse NP
p
T≤ -complete set:

Let S be a sparse NP
p
T≤ -complete set.

Because S is NP Turing-complete, all NP
languages Turing reduce to S. Let M be a
deterministic polynomial-time machine that
solves SAT using S.

SAT = L(MS)

 28

Because M is a deterministic polynomial-time
machine, its execution time is bounded by a
polynomial function: for input of length n,

pk(n) for some k,
where we define pk(n) = nk + k

This effectively places an upper bound on the
length of strings that M will ever query oracle S
with, since M’s execution time is bounded, and M
can write at most one symbol to its oracle tape
per state transition.

Let L be an arbitrary language in NPNP.

This means that L is recognizable by some
nondeterministic polynomial-time machine N
which uses SAT as an oracle (since SAT is NP-
complete).

L = L(NSAT)

Substituting our earlier solution that SAT =
L(MS)

L = L(NL(MS))

Since N is a polynomial-time nondeterministic
machine, its execution will be bounded by a
polynomial function: for input of length n,

 29

p (n) for some

Note that this effectively places an upper limit on
the length of a string that N can query its SAT
oracle with, since it can write at most one symbol
to its oracle tape per state transition.

For L = L(NL(MS)), since N’s queries to its SAT
oracle are limited to length p (|y|) for input y,
here M can query S for strings of length at most
pk(p (|y|)). A solution to L will only ever need to

query S with strings of length ≤ pk(p (|y|)) for
input y. That is, only a subset of S need be
considered for each query y:

S≤n, where n = pk(p (|y|))

Because S is sparse, the number of strings that
will be in this subset is bounded by a polynomial
function of |y|.

 30

How can we solve L with less than an NPNP
machine?

Observing that L = L(NL(MS)), normally we would
expect that this language could only be
recognized by an NPNP machine. We will exploit
the fact that for each string y for which we want
to determine membership in L, oracle queries to S
are only required for a subset of S that has size
polynomial in |y|.

If the elements of S≤n can somehow be
enumerated, then oracle queries to S can be
simulated by a deterministic polynomial-time
subroutine.

*** If we can know the exact number of elements
in S≤n, then we can in nondeterministic
polynomial time enumerate all the elements in
S≤n. ***

 31

Define V: (this is the NP part of our PNP[O(log n)]
solution to L

V = { 0#1n#1q | ||S≤n|| ≥ q }
 ∪ { 1#x#1n#1q | (∃Z ⊆ S≤n)[||Z|| = q ∧
x ∈ L(NL(MZ))]}

The P part of our solution is a deterministic
polynomial-time algorithm that will make O(log
n) oracle queries to V.

The first set in V is a mechanism by which we
can determine ||S≤n|| for any n. Note that for
||S≤n||=r, the string 0#1n#1z will be in V for all z ≥
r, and not for any z < r.

The second set in V is a mechanism that lets us
test a string x for membership in L, but only if we
tell the machine that accepts V what ||S≤n|| is for a
given n by setting q to ||S≤n||. Observe that if Z ⊆
S≤n and ||Z|| = q = ||S≤n||, then Z = S≤n.

 32

Algorithm: (this is the P part of our PNP[O(log n)]
solution)

1. For input y calculate n as pk(p (|y|)).
2. Repeatedly query V with strings in the form

0#1n#1z, varying z in a binary search fashion until
the exact value of ||S≤n|| is found. Call that value
r. Because S is sparse, ||S≤n|| is bounded by a
polynomial function (remembering that n itself is
also bounded by pk(p (|y|))), and so the binary
search will complete in O(log|y|) time.

3. Query V with a string in the form 1#y#1n#1r, and
accept only if V returns ‘yes’.

 33

How can V be calculated in
nondeterministic polynomial time?

V is the union of two sets, both of which we can
show to be NP separately:

NP algorithm for { 0#1n#1q | ||S≤n|| ≥ q }:

Algorithm idea: Find a size q subset of S≤n.
If one exists, then ||S≤n|| ≥ q.

1. If input is not in the form 0#1n#1q, reject.
2. Nondeterministically guess a subset of

(Σ*)≤n with size q.
3. Sequentially test each element in the

subset for membership in S: simulate the
machine for S on each element in
sequence. If the current path of the
simulation of S accepts, continue. If the
current path rejects, reject. (Since S is NP
and there are only q elements that need to
be tested, the time required to test all the
elements is polynomial in q*n.)

 34

NP algorithm for

{ 1#x#1n#1q | (∃Z ⊆ S≤n)[||Z|| = q ∧ x ∈
L(NL(MZ))]}:

Algorithm summary: enumerate the
elements in Z. Once you have them, oracle
calls to Z can be simulated by a
deterministic polynomial-time subroutine
that compares the query string against the
elements of Z. Simulate N, and use
polynomial deterministic subroutines to
simulate M and Z.

1. If input is not in the form 1#x#1n#1q,

reject.
2. Nondeterministically guess a size q subset

of (Σ*)≤n, call this Z.
3. Sequentially test each element in Z for

membership in S. If the current path for
the simulation of the machine for S
rejects, reject; otherwise continue on to
the next element.

4. Test whether x ∈ L(NL(MZ)): Simulate N on
input x. Oracle calls to L(MZ) can be
simulated by a deterministic polynomial-
time subroutine that tests the query string
against every element in our previously
enumerated set Z.

 35

Further results from NPNP = PNP[O(log n)]

(equivalently
p
2∑ = PNP[O(log n)])

PNP[O(log n)] is closed under complementation, which
implies that

p
2∑ is also closed under complementation,

i.e.
p
2∑ = co

p
2∑ or

p
2∑ =

p
2∏ , which implies that PH

=
p
2∑ . (Recall that PH is the polynomial hierarchy –

the union of
p
i∑ for all i.)

	Assume the existence of a sparse NP -complete set S.
	Use this to show that an arbitrary NPNP problem can be solve
	Algorithm idea: Find a size q subset of S(n. If one exists, then ||S(n|| (q.
	NP algorithm for

