
 1

Slides on Theorems 1.2, 1.4, 1.7, and 1.14 of 
The Complexity Theory Companion 

by Hemaspaandra and Ogihara 
 

 
 
 

Slides by Group 1:  
 

Jacob Balazer 
 

Justin Moore 
 

Lior Privman 
 

Leila Seghatoleslami 
 

Arrvindh Shriraman 
 

Wenzhao Tan 
 
 
 



 2

Jumping right into the thick of things…1 
 

Theorem 1.2 
 

(∃T . T is a tally set ∧ T is NP-hard) ⇒ P = NP 
 
 
 
Corollary 1.3 

(∃T . T is a tally set ∧ T is NP-complete) ⇔ P = NP 
 
 
 
Basic strategy for proving Theorem 1.2 
 
(1) Assume ∃T . T is a tally set ∧ T is NP-hard 
 
 
(2) Construct a deterministic poly-time algorithm for some NP-
complete language. 
 

                                                 
1 These slides contain many unattributed quotes from The Complexity Theory Companion by 
Hemaspaandra and Ogihara. 
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If using SAT was made illegal, then only criminals would use 
SAT… 

 
SAT 

 
SAT = {f | f is a satisfiable boolean formula} 

 
 
 
Examples of SAT 
 
v1 ∨ v2 ∨ v3 satisfiable with assignment: 

[v1 = True, v2 = False, v3 = False] 
 
 
v1 ∧ 1v   unsatisfiable 
 
 
 
w.l.o.g., f contains variables v1 … vm, m ≥ 1 
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Example Execution of the Algorithm… 
 
 

 
 

 

F[v1 = True] F[v1 = False]

F[v1 = True, 
v2 = True] 

⊗ F[v1 = False, 
v2 = True] 

F[v1 = False, 
v2 = False] 

… … … … … …

 F
Stage 0 
C′ = {F} 

Stage 1 
C = {F[v1 = True], F[v1 = False]} 
C′ = {F[v1 = True], F[v1 = False]} 

C = {F[v1 = True, v2 = True], F[v1 = True, v2 = False], 
        F[v1 = False, v2 = True], F[v1 = False, v2 = False]} 
 
C′ = {F[v1 = True, v2 = True], 
        F[v1 = False, v2 = True], F[v1 = False, v2 = False]} 

Stage 2 
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SAT trees grow too fast, so to prove Theorem 1.2, we will use 
pruning… 

 
The Algorithm 

 
 
 
Stage 0: C′ ← {F} 
 
 
Stage i: 1 ≤ i ≤ m, given that C′ at the end of Stage i – 1 is the 

collection of formulas: {F1, …, F }. 
 

Step 1  Let C be the collection 

{F1[vi = True], F2[vi = True] ,…, F [vi = True], 

   F1[vi = False], F2[vi = False] ,…, F [vi = False]} 
 

Step 2  C′ ← ∅ 
 
Step 3  For each formula f in C 

If g(f) ∈ 1* and for no formula h ∈ C′ does g(f) = g(h) 
  then add f to C′ 
 
 

Stage m + 1: return “yes”, F is satisfiable, if some (variable-free) 
formula f ∈ C′ is satisfiable, otherwise return “no”. 
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"I find your lack of faith disturbing." –Darth Vader 
 

The Proof of Theorem 1.2 
 
 
 
Lemma 1 The algorithm returns “yes” ⇔ input formula F ∈ SAT 
 

After Stage 0, C′ contains a satisfiable formula ⇔ input 
formula F ∈ SAT. 
 
 
 After Stage i, Step 1, C contains a satisfiable formula ⇔ C′ 
contains a satisfiable formula, by the self-reducibility of SAT. 
 
 
After Stage i, Step 3, each formula f from Step 1 is kept unless 
either: 
 
g(f) ∉ 1* 

g many-one reduces SAT to T, so: 
g(f) ∉ 1* ⇒ g(f) ∉ T ⇒ f ∉ SAT 

 
g(f) ∈ 1*, but some h ∈ C′ has g(f) = g(h) 

[(f ∈ SAT ⇔ g(f) ∈ T) 
∧ (h ∈ SAT ⇔ g(h) ∈ T) 
∧ g(f) = g(h)] 

 ⇒ f ∈ SAT ⇔ g ∈ SAT 
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…Proof Continued 
 
 

Lemma 2 The algorithm runs in deterministic poly-time 
  
THE COOL PART! 
 
 
Let p = |F| be the number of bits in the representation of F. 
 
 
In Step 3, we are calling g on formulas of various lengths 
 

–each of  these formulas has length ≤ p 
 
–g runs for at most pk + k steps for some k 
 
–g will never output a string of length > pk + k 

 

 

If C′ contains pk + k + 1 + x formulas that under the action of g 
produce elements of 1*, then by the pigeonhole principle, the g(f) = 
g(h) test will eliminate at least x of those formulas. 
 
 
 
Proof of Theorem 1.2  
 (∃T . T is a tally set ∧ T is NP-hard) 
 ⇒ there is a deterministic poly-time algorithm for SAT 
  (by Lemma 1 and Lemma 2) 
 ⇒ P = NP 
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Example Execution of the Algorithm… 
 

…using the h(f) = h(g) test in Part 3. 
 

 

 
 

F

F[v1 = True] F[v1 = False] 

F[v1 = True, 
v2 = True] 

⊗ F[v1 = False, 
v2 = True] 

F[v1 = False, 
v2 = False] 

… … … … … …

Stage 0 

Stage 1 

Stage 2 

…
Max width: |F|k + k + 1 
 
(note: this is the max width after pruning) 

“I’m too sexy for 
my shirt, too sexy 
for my 
algorithm...” ☺ 

…
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Again! Again! 
 

Theorem 1.4 
 

(∃S . S is a sparse set ∧ S is coNP-hard) ⇒ P = NP 
 
 
 
Basic strategy for proving Theorem 1.4 
 
(1) Assume ∃S . S is a sparse set ∧ S is coNP-hard 
  
 
(2) Construct a deterministic poly-time algorithm for some NP-
complete language. 
 
 
 
 
Definition For any , let p (x) = x  +  
 

We know by the definition of g, that 
(∃k)(∀x)[|g(x)| ≤ pk(x)] 

since g(x) runs in poly-time, its output lengths are 
polynomially bounded 

 
 
 We also know by the definition of spare sets, that 

 (∃d)(∀x)[||S≤x|| ≤ pd(x)] 
i.e., number of strings in S of length x or less is 
polynomially bounded 
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SAT trees grow too fast, so to prove Theorem 1.2, we will use 
pruning… 

 
The Algorithm 

 
 
 
Stage 0: C′ ← {F} 
 
 
Stage i: 1 ≤ i ≤ m, given that C′ at the end of Stage i – 1 is the 

collection of formulas: {F1, …, F }. 
 

Step 1  Let C be the collection 

{F1[vi = True], F2[vi = True] ,…, F [vi = True], 

   F1[vi = False], F2[vi = False] ,…, F [vi = False]} 
 

Step 2  C′ ← ∅ 
 
Step 3  For each formula f in C 

  If for no formula h ∈ C′ does g(f) = g(h) 
  then add f to C′ 
 
Step 4  If C′ contains at least pd(pk(|F|))+1 elements, return  

   “yes” 
 
 

Stage m + 1: return “yes”, F is satisfiable, if some (variable-free) 
formula f ∈ C′ is satisfiable, otherwise return “no”. 
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Are we there yet? 
 

The Proof of Theorem 1.4 
 
 

Lemma 3 The algorithm returns “yes” ⇔ input formula F ∈ SAT 
 
 The only difference from Lemma 1 which we need to 
consider is the addition of Step 4… 
 
THE OTHER COOL PART!  
 
Let n represent |F|. 
 
For any formula H in the algorithm, |g(H)| ≤ |g(F)| 
 
|g(F)| ≤ pk(n) 
 
How many strings of length pk(n) or less in S? 
 ( )kp nS  ≤ pd(pk(n)) 
 
By the pigeonhole principle, 

If C′ contains at least pd(pk(n))+1 
⇒ some g(h) ∉ S ⇒ h ∉ SAT  

 
 
 
Lemma 4 The algorithm runs in deterministic poly-time 
 Clearly the size of C’ is always bounded by the polynomial 
pd(pk(n)) 
 
 
Theorem 1.4 follows from Lemma 3 and Lemma 4. 
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If a sparse, NP-Complete language exists =>

P = NP

Let S be a sparse NP-Complete language

Define C(n) = |S≤n| and Ca(n) = |S≤pa(n)|

Define pℓ(n) = nℓ + ℓ
We know that               since S is NP-Complete
The function that reduces, σ, is bounded by pa

Definitions

Mahaney’s Theorem

Since S is sparse, C(n) is bounded by pd

SSAT p
m≤

a.k.a. Hem/Ogi Theorem 1.7
a.k.a. Bov/Cre Theorem 5.7
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What did the sparse set say to its complement?
“Why do you have to be so dense?”

What we would want to happen, or
Why this proof isn’t really easy

What if S were in NP?

Since S is NP-Complete, 
Since many-one reductions are closed under
complementation, 

Thus, S is NP-Complete, S is co-NP-Complete
and Hem/Ogi theorem 1.4 shows that P=NP.

If only the proof were as easy as putting 
many-one reductions into a presentation…

SS p
m≤

SS p
m≤
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Sorry, not quite so easy…

However, S is not necessarily in NP
Let’s define S in terms of Ca(n):

S={x | ∃y1, y2,…,yCa(|x|) [[(|y1|≤pa(|x|) ^ y1≠x ^ y1∈S]

            ^ [(|y2|≤pa(|x|) ^ y2≠x ^ y2∈S]

 ^ … … …

       ^ [(|yCa(|x|)|≤pa(|x|) ^ yCa(|x|)≠x ^ yCa(|x|)∈S]

       ^ all the y’s are distinct ] }

S≤pa(|x|)

y1

y2

y3

y4

y5 x

Hey, what 
about me?

S is for 
losers 

anyway…
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If only we had a way to have S be an NP language…

Unfortunately, we cannot find the value of Ca(|x|)

Fix this by parameterizing the number of y’s: 

S={<x,m>| ∃y1, y2,…,ym [ [(|y1|≤pa(|x|)^y1≠x^y1∈S]

                           ^ [(|y2|≤pa(|x|)^y2≠x^y2∈S]

     ^ … … …

                     ^ [(|ym|≤pa(|x|) ^ ym≠x ^ ym∈S]

                     ^ all the y’s are distinct ] }

We will call this the pseudo-complement of S

Note that for any <x,m>, <x,m>∈ S iff:

a) m < Ca(|x|) or

b) m = Ca(|x|) and x∉S
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How can this pseudo-complement help?

We can prove that S is in NP by constructing an
algorithm that decides S in non-deterministic 
polynomial time.

Here’s a modified version of Bov-Cre’s algorithm:

begin {input: x, m}
   if m > pd(pa(|x|)) then reject;
   guess y1, y2, …, ym in set of m-tuples of
      distinct words, each of which is of    
      length, at most, p a(|x|);
   for i = 1 to m do
      if yi = x then reject;
   simulate MS(yi) along all Ms’s paths starting 

at i = 1
      if Ms(yi) is going to accept and i < m      
         simulate Ms(yi+1) along all M s’s paths;
      if Ms(yi) is going to accept and i = m
         accept along that path;
   accept;
end.
Since S is in NP and S is NP-Complete, 

            by some function ψ with bound pgSS p
m≤ˆ
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Why is it called recap? 
We never capped anything in the first place…

capitulate
\Ca*pit"u*late\, v. t. To surrender or transfer, as an army or a fortress, 

on certain conditions. [R.]

So far, we’ve figured out the following:

a) S many-one poly-time reduces to S by ψ with 
time bound pg

b) SAT many-one poly-time reduces to S by σ 
with time bound pa

c) The sparseness of S, C(n), is assured by pd

d) Bov-Cre is way too algorithmic 

e) It is probably going to snow today
--Hey, we all chose Rochester for some reason

Next:

What’s our favorite way to show P=NP?

What’s our favorite way to show that SAT can be 
decided in polynomial time?  
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Get out the hedge trimmers…

We have some formula F

We want to know if it’s in SAT

F

F(v1=true) F(v1=false)

Look familiar?

.

..
.
..

This tree will get way too bushy for our purposes 
though, so we need to come up with a way to 
prune it
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Given a formula, for each m in [1, p d(p a(|F|))]

Create and prune a tree of assignments to 
variables just as we did for theorem 1.4 using a 
new pruning algorithm.  When we get to the end, 
check each assignment to see if it’s satisfiable.

What we want to happen:
b) The number of leaves to be bounded by a polynomial

c) The pruning algorithm to be polynomial time

d) If F is satisfiable, then one of the leaves of the tree at 
the end is satisfiable

e) The snow to wait at least another 3-4 weeks so it wont 
instantly turn into slush and then ice

What’s this? A polynomial number of hedge trimmers?
Only a theorist would think of something like that

What that will get us:
b) A polynomial time algorithm that decides SAT

c) More time to put off getting snow tires for our cars

(this is every possible value of m for F)
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This slide is a great example of why I am not a digital art major

F

f

.

..
.
..

.

.. .
.. .

..

For each stage of the tree:
D is the set of all formulas generated 

by assigning true and false to the 
previous stage’s result

D’ is the set of all formulas that have 
not been pruned from D (i.e. D’ ⊆ D)

How do we get to D’ from D?

.

..

for each f in D
   if |D’| ≤ pd(pg(pa(|F|))) and 
      for each f’ in D’ 

   ψ(<σ(f), m>) ≠ ψ(<σ(f’), m>)
   then
 add f to D’  
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What’s next?

Mappings…

A few comparisons…

Some polynomial bounds…

Tree pruning…

P=NP

When we’re done:

Check each (variable-free) formula in the bottom 
layer to see if it’s satisfiable

There are only a polynomial number

If any is satisfiable, we’re done

If for all m’s, no formula in the bottom layer is 
satisfiable, F is not satisfiable
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Wait… I don’t get it…

How is it so hard to draw nice trees when you are using 
presentation software with the “snap-to-grid” feature?

Demystification (why the pruning works):

It is important to note that when we have found 
the correct m = Ca(pa(|F|)) that 

f is not satisfiable iff ψ(<σ(f), Ca(pa(|F|))>)∈ S

Why, you ask?

Recall that SAT reduces to S

This f ∉ SAT iff σ(f) ∉ S

Remember S? 

m=Ca(pa(|F|)) and σ(f)∉S iff <σ(f), Ca(pa(|F|))>∈S

But S reduces to S too!

<σ(f), Ca(pa(|F|))>∈S iff ψ(<σ(f), Ca(pa(|F|))>)∈S
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How does this help?

There are a bounded number of unsatisfiable 
formulas that are mapped in S. 

This is pd (the sparsity of S) composed with pg 
(the limit on mappings to S through ψ) composed 
with pa (the limit on mappings to S through σ)*

If we have chosen m = Ca(pa(|F|)), and we have 
found more than pd(pg(pa(|F|))) values then:

Not all those ψ(<σ(f), m>)’s are in S so at least 
one of the f’s is satisfiable

Thus, we can happily prune away all but one 
over the bound of these values, leaving a 
polynomial number while still guaranteeing one of 
them is sure to have a satisfying assignment.

If pa(pq(pr(pl(m+Cn(x))))) = pj(pn(p4(pa(nm – |1|)))), then 2 = 3

At least something is obvious in these slides…

*Since m is constant for each tree, pairing σ(f) with m will not 
make the number of possible mappings in S bigger.  Thus we 
don’t need to worry about the pairing in S changing the bound.  
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SAT

S

f
f

f

pa(|f|)

r r
r

S

pa(|f|)

<r, m>
<r, m><r, m>

St
t

pg(pa(|f|))

Don’t forget that 
I’m sparse!

This complicated diagram makes it much easier to see.  Trust me.

t
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Wait, if I prove P=NP, I win a million dollars…

In the universe that has a sparse NP-Complete set, I am rich!

Most of you are saying right now:

“Yes, that is true, but how do you know if you 
have an m = Ca(pa(|F|))”

An interesting fact:

There are a polynomial number of m’s.

Does it really matter what happens to the tree 
with m ≠ Ca(pa(|F|))?

As long as we’re not wasting too much time 
pruning trees the wrong way, the other m’s don’t 
create too much overhead.

If F is not satisfiable, we’ll never get a satisfying 
assignment; if F is satisfiable, maybe we’ll 
randomly keep an assignment with m≠Ca(pa(|F|)) 
but when m = Ca(pa(|F|)) each stage is 
guaranteed to have at least one satisfiable 
formula.  
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Wait… did we just do what I think we did?

Since for some value m, there is a tree that 
outputs a satisfiable formula iff the formula is 
satisfiable

There are at most a polynomial number of leaves

The pruning function runs in a polynomial amount 
of time

There are only a polynomial number of trees

We just decided if a formula is satisfiable in a 
polynomial amount of time

Thus an NP-Complete language is decidable by 
a deterministic polynomial algorithm and P = NP

…now what?

It all comes down to… wait, what were we talking about?
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Theorem 1.14 (Hemaspaandra and Ogihara): 

If there exists a sparse NP 
p
T≤ -complete set, then 

NPNP = PNP[O(log n)] 

 Recall that NPNP = 
p
2∑

. 
PNP[O(log n)] is the class of languages recognizable 
by some deterministic polynomial-time machine 
that may make up to O(log n) queries to an NP 
oracle, where n is the length of the input. 
 

Proof Outline: 

1. Assume the existence of a sparse NP 
p
T≤ -

complete set S. 
2. Use this to show that an arbitrary NPNP problem 

can be solved with a     PNP[O(log n)] machine. 
 

Proof Part 1: Define an NPNP language in 

terms of a sparse NP 
p
T≤ -complete set: 

Let S be a sparse NP 
p
T≤ -complete set.   

 
Because S is NP Turing-complete, all NP 
languages Turing reduce to S.  Let M be a 
deterministic polynomial-time machine that 
solves SAT using S. 
 

SAT = L(MS) 
 



 28

Because M is a deterministic polynomial-time 
machine, its execution time is bounded by a 
polynomial function: for input of length n, 

 
pk(n) for some k,  
where we define  pk(n)  =  nk + k 
 

This effectively places an upper bound on the 
length of strings that M will ever query oracle S 
with, since M’s execution time is bounded, and M 
can write at most one symbol to its oracle tape 
per state transition. 
 
Let L be an arbitrary language in NPNP.   
 
This means that L is recognizable by some 
nondeterministic polynomial-time machine N 
which uses SAT as an oracle (since SAT is NP-
complete). 
 

L = L(NSAT) 
 

Substituting our earlier solution that SAT = 
L(MS) 
 

L = L(NL(MS)) 
 

Since N is a polynomial-time nondeterministic 
machine, its execution will be bounded by a 
polynomial function: for input of length n, 
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p (n) for some  
 

Note that this effectively places an upper limit on 
the length of a string that N can query its SAT 
oracle with, since it can write at most one symbol 
to its oracle tape per state transition. 
 
For L = L(NL(MS)), since N’s queries to its SAT 
oracle are limited to length p (|y|) for input y, 
here M can query S for strings of length at most  
pk(p (|y|)).  A solution to L will only ever need to 

query S with strings of length ≤ pk(p (|y|)) for 
input y.  That is, only a subset of S need be 
considered for each query y: 
 

S≤n, where n =  pk(p (|y|)) 

 

Because S is sparse, the number of strings that 
will be in this subset is bounded by a polynomial 
function of |y|. 
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How can we solve L with less than an NPNP 
machine? 

 
Observing that L = L(NL(MS)), normally we would 
expect that this language could only be 
recognized by an NPNP machine. We will exploit 
the fact that for each string y for which we want 
to determine membership in L, oracle queries to S 
are only required for a subset of S that has size 
polynomial in |y|. 
 
If the elements of S≤n can somehow be 
enumerated, then oracle queries to S can be 
simulated by a deterministic polynomial-time 
subroutine. 
 
*** If we can know the exact number of elements 
in S≤n, then we can in nondeterministic 
polynomial time enumerate all the elements in 
S≤n. *** 
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Define V: (this is the NP part of our PNP[O(log n)] 
solution to L 
 

V =   { 0#1n#1q | ||S≤n|| ≥ q } 
 ∪ { 1#x#1n#1q | (∃Z ⊆ S≤n )[||Z|| = q   ∧   
x ∈ L(NL(MZ))]} 

 
The P part of our solution is a deterministic 
polynomial-time algorithm that will make O(log 
n) oracle queries to V. 
 
The first set in V is a mechanism by which we 
can determine ||S≤n|| for any n. Note that for 
||S≤n||=r, the string 0#1n#1z will be in V for all z ≥ 
r, and not for any z < r. 
 
The second set in V is a mechanism that lets us 
test a string x for membership in L, but only if we 
tell the machine that accepts V what ||S≤n|| is for a 
given n by setting q to ||S≤n||.  Observe that if Z ⊆ 
S≤n and ||Z|| = q = ||S≤n||, then Z = S≤n. 
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Algorithm:  (this is the P part of our PNP[O(log n)] 
solution) 

 
1. For input y calculate n as pk(p (|y|)). 
2. Repeatedly query V with strings in the form 

0#1n#1z, varying z in a binary search fashion until 
the exact value of ||S≤n|| is found.  Call that value 
r.  Because S is sparse, ||S≤n|| is bounded by a 
polynomial function (remembering that n itself is 
also bounded by pk(p (|y|))), and so the binary 
search will complete in O(log|y|) time. 

3. Query V with a string in the form 1#y#1n#1r, and 
accept only if V returns ‘yes’.   
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How can V be calculated in 
nondeterministic polynomial time? 
 

V is the union of two sets, both of which we can 
show to be NP separately: 
 
NP algorithm for { 0#1n#1q | ||S≤n|| ≥ q }: 

 
Algorithm idea: Find a size q subset of S≤n. 
If one exists, then ||S≤n|| ≥ q. 
 
1. If input is not in the form 0#1n#1q, reject. 
2. Nondeterministically guess a subset of 

(Σ*)≤n with size q. 
3. Sequentially test each element in the 

subset for membership in S: simulate the 
machine for S on each element in 
sequence.  If the current path of the 
simulation of S accepts, continue.  If the 
current path rejects, reject.  (Since S is NP 
and there are only q elements that need to 
be tested, the time required to test all the 
elements is polynomial in q*n.) 
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NP algorithm for  
 

{ 1#x#1n#1q | (∃Z ⊆ S≤n )[||Z|| = q   ∧   x ∈ 
L(NL(MZ))]}: 

 
Algorithm summary:  enumerate the 
elements in Z.  Once you have them, oracle 
calls to Z can be simulated by a 
deterministic polynomial-time subroutine 
that compares the query string against the 
elements of Z.  Simulate N, and use 
polynomial deterministic subroutines to 
simulate M and Z. 
 
1. If input is not in the form 1#x#1n#1q, 

reject. 
2. Nondeterministically guess a size q subset 

of (Σ*)≤n, call this Z. 
3. Sequentially test each element in Z for 

membership in S.  If the current path for 
the simulation of the machine for S 
rejects, reject; otherwise continue on to 
the next element. 

4. Test whether x ∈ L(NL(MZ)): Simulate N on 
input x.  Oracle calls to L(MZ) can be 
simulated by a deterministic polynomial-
time subroutine that tests the query string 
against every element in our previously 
enumerated set Z. 
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Further results from NPNP = PNP[O(log n)] 

(equivalently 
p
2∑  = PNP[O(log n)]) 

 
PNP[O(log n)] is closed under complementation, which 
implies that 

p
2∑ is also closed under complementation, 

i.e. 
p
2∑ = co

p
2∑ or 

p
2∑ = 

p
2∏ , which implies that PH 

= 
p
2∑ .  (Recall that PH is the polynomial hierarchy – 

the union of 
p
i∑ for all i.) 
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