
Hem-Ogi 2.1:
One Way Functions GEM

Group 2:
Benjamin Van Durme
Pin Lu
Ross Messing
Shivashankar Balu
Tanushree Mittal

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definitions

 One Way Functions :
 A function that is easy to compute and hard to invert
 There are no known functions that have been proven to be

one way
 Much like we don’t know if P=NP…

 In general, we want to say that f is one way if :
 f (x) = y
 can be computed in polynomial time, but its inverse:

 g (y) =x
cannot be computed in polynomial time

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definition 2.1 : Honesty

 Honesty :
 We say a function f, is honest if

Honesty says that for each element x where f (x) is defined, the length of
the result, y, is at most polynomially longer than the length of x

Why do we need this?

We are trying to prevent “cheating” by allowing someone to claim that the
inverse is not “easy” because it takes more than polynomial time to write
the output

11/15/2004 CSC 486 : Hem-Ogi 2.1

Example of Honesty

 Consider the function f (x) =

 The output is so short relative to the input that it will take
triple exponential time to write the inverse

 Thus, f is polynomial time computable, but not polynomial
time invertible
 naively, this would seem to be a one way function

 However, the “non-easy” invertibility of f is only due to a
“cheap trick” where we’ve forced the inversion function to
spend all of its time simply writing the result
 That’s not fair!

 We preclude these types of functions by requiring all those
that are “truly” one way to be HONEST

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definition 2.2 : Poly time invertible

 A function f is polynomial-time invertible if
there is a polynomial-time computable
function g such that :

 Which is just to say that f can be “reversed
engineered” in a somewhat similar amount
of time

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definition 2.3 : One way

 A function f is one way if :

 f is polynomial-time computable, and
 f is not polynomial time invertible, and
 f is honest

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definition 2.4 : One to one

 A function f : Σ* ! Σ* is one to one if:
 (8 y 2 Σ*) [||{ x | f (x) = y }|| · 1]

11/15/2004 CSC 486 : Hem-Ogi 2.1

Theorem 2.5

1. One-way functions exist iff P≠NP
2. One-to-one one-way functions exist iff P≠UP

 We will be spending the rest of class proving
these two points. The proof for the second point is
a modification of the first, so pay close attention to
the details, as we’ll be glossing over some things
the second time around.

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : One way functions exist iff P≠NP

 Breaking this up, we get:
 if :

P≠NP) one way functions exist
 only if :

One way functions exist) P≠NP

We will now tackle this in two stages, proving
each direction as a separate sub-proof

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : P≠NP) one way functions exist

 We are going to assume “P is not equal to
NP”

 Now imagine a non-deterministic, polynomial-
time computable Turing machine (NPTM) N,
where L(N) = A

 Let A be in NP-P
 P does not equal NP, so this set exists

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… the function f

 Let h·,·i be our standard pairing function
 For reference, this is polynomial time computable and

invertible
 Now, consider an arbitrary function f that takes as

input the paired values hx,wi

 f is polynomial time computable
 It just has to verify that w is an accepting path for x

 f is also honest
 Why?

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… f is honest

 When w represents an accepting path of an NPTM when run on x, then we know that no path in
such a machine can be longer than some polynomial p(|x|)

 When w does not represent such a path, then we have no a priori knowledge as to the length of
w; indeed, |w| could be super-exponential in the length of x
 This could spell trouble for f’s honesty

 However, all values of w such that | w|> p(|x|) will lead f to output 1x
 Note that since we can only define f if we already have some machine N, then we “get to” set the

polynomial bound used to keep f honest with full knowledge as to the polynomial bound
constraining N
 While both polynomials must be with respect to essentially the same string (x vs 1x), we have the right to

make the honesty bound polynomially larger than the bound on N
 This means that there is at least one value of w that will be “too long” to be an accepting path, but is still

“short enough” to allow f to fulfill the honesty condition
 As we only need at least one honest preimage for every output, then this solves our concern about w
 This is a form of out-flanking

 So, whether or not w is an accepting path, hx,wi is still just a polynomial expansion away from x
·w, which is itself polynomial in length with respect to x (specifically, this is true for at least one w
for each output of f)

 The range of f is : { 0x, 1x }
 |x| + |0| = |x| + 1

 So, given these facts, is it true that |hx,wi|· q(|0x|) ?
 Of course it is

 Therefore, f is honest

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… assume f can be easily inverted

 Now we assume f is polynomial time
invertible via some function g

 Given this function g, we can use it to
construct a Deterministic PTM M, such that
L(M) = A
 Earlier we said that L(N)=A

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… the machine M

 The machine M on arbitrary input x :
 Check if 0x is in the domain of g

 If not, then reject
 Otherwise

 Call g(0x), which will return some value hx,wi
 Test whether w is an accepting path of N(x)

 If yes, then accept

 Otherwise reject

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… what does M buy us?

 With M in hand, we can conclude that A
must belong to P
 because we just gave a DPTM that accepts A

 But wait:
 Earlier we assumed that A was not in P
 We did this by stating that A was in NP-P
 A cannot be in both P and NP-P

 Contradiction

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… what went wrong?

 The existence of M was entirely based on
our assumption that g exists

 Therefore f must actually not be polynomial
time invertible

 This makes f a one way function by our
definition

 Therefore:

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof: One way functions exist) P≠NP

 We now prove the other direction.
 Consider the following language:

L=
 { h z, pre i | (9 y) [|y|+| pre| · p(|z|) Æ f(pre · y) = z] }

 We claim that L is clearly in NP.
 Why ?

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… L 2 NP

 Imagine a NPTM N, such that on arbitrary
input h z, pre i :
 For each string y 2 Σ*, where |y| + | pre| · p(|z|)

 Check if f (pre ·y) = z Polynomial time

Non-deterministic poly time

2p (|z|) number of y ’s,
but can be “guessed”
in parallel

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… assume L 2 P

 Now that we’ve shown L to be in NP, we are going
to assume that L 2 P

 Obviously we are setting ourselves up for a contradiction
 We are going to use this assumption to construct

a machine that will allow us to “easily” invert f, via
a prefix search

 First, let M be a DPTM that accepts L
 Note that we don’t care how it actually works, we just

need to know that it exists
 Using M , we can construct a new machine M’ that, on

arbitrary input z, does the following…

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… the machine M’

 Simulate M on hz,εi :
 if M rejects, then M’ rejects
 if f (ε) = z, then M’ accepts

 Otherwise, let x = ε
 Simulate M on hz,x0i :

 if it accepts
 let x = x0
 if f(x) = z then M’ accepts
 else repeat 3

 else goto 4
 Simulate M on hz,x1i :

 if it accepts
 let x = x1
 if f(x) = z then M’ accepts
 else goto 3

 else goto 3

Note that we do not actually
need to simulate M at this
step, nor will we ever
encounter the final goto

(Can you tell why?)

11/15/2004 CSC 486 : Hem-Ogi 2.1

0 1

1

0

0

1

Lets say f (011) = z

 and f (110) = z

Example

Accept

1

0

0

1

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… we find a contradiction

 With the machine M’ in hand, we can “easily” invert f
 M’ will find one bit of information with each step
 Because f is honest, the inverse of f(z) has to be

polynomial with respect to z
 Therefore, M’ will find the inverse of f(z) in polynomial time,

bit by bit
 However, if we can easily invert f, then f can’t

possibly be one-way
 f being a one-way function was one of our basic

assumptions
 CONTRADICTION

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… the fallout

 As f has to remain one-way, M’ must not
really exist

 M’ existed by virtue of M
 M existed because we assumed L 2 P
 Therefore, as L is in NP, but now cannot be

in P, then it must be in NP-P

 We have achieved our goal:

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : One way functions exist iff P≠NP





 Thus, we have just proven part 1 of Thm 2.5

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof of Second Point: One-to-one one
way functions exist iff P≠UP

 Before we tackle this proof, what is UP ?

11/15/2004 CSC 486 : Hem-Ogi 2.1

UP

 It is the class of problems that have a unique
witness.

 A language L is in UP if
 If an NP machine N accepts an input x in language L
 And, for all such input x, the computation N(x) has at most

one accepting path
 Formally:

UP = {L | there is a NPTM N such that L = L(N) and,
 for all x, N(x) has at most one accepting path}

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… break up the bi-conditional

 As before, we will tackle each direction
separately
 if :

P≠UP) one-to-one one way functions exist
 only if :

One-to-one one way functions exist) P≠UP

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : P≠UP) one-to-one one way
functions exist

 Let A be a language in UP-P
 Imagine a NPTM N, where L(N) = A
 Consider the revised function f :

Note how we’ve changed f

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof…

 Our revised f is now clearly one-to-one
 Since the non-accepting witnesses give unique results
 There is only one accepting path, thus we do not need to

“rig” 0x to make it unique

 Just as in the last proof, we can again try to assume
there is a polynomial time inverse function g

 Using g, we can construct a similar DPTM M
 The one-to-one-ness of f does not change the character

of the machine

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… the machine M

 The machine M on arbitrary input x :
 Check if 0x is in the domain of g

 If not, then reject
 Otherwise

 Call g(0x), which will return some value hx,wi
 Test whether w is an accepting path of N(x)

 If yes, then accept

 Otherwise reject

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… what does M buy us?

 With M in hand, we can conclude that A
must belong to P
 because we just gave a DPTM that accepts A

 But wait:
 Earlier we assumed that A was not in P
 We did this by stating that A was in UP-P
 A cannot be in both P and UP-P

 Contradiction

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : One-to-one one way functions
exist) P≠UP
 Recall what we did for P≠NP
 Consider the language:

L=
 { h z, pre i | (9 y) [|y|+| pre| · p(|z|) Æ f(pre · y) = z] }

 L is obviously in UP if f is one-to-one
 We can try to claim that it is in P
 But this will fail to the same prefix search technique that we

explained earlier for P≠NP
 One distinction: there will never be a case where both x0 and x1

could be accepted at the same level, as the prefix at every
intermediate length must be unique since f is one-to-one

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… contradiction

 As L is in UP, but cannot be in P, then it must
be the case that P≠UP

 This gives us our result:
One-to-one one way functions exist) P≠UP

 We have (quickly) shown both directions of
the bi-conditional

 Thus we’ve proven point 2 of Thm. 2.5

11/15/2004 CSC 486 : Hem-Ogi 2.1

Conclusion

 We have provided an introduction to the notion of
(one-to-one), one way functions

 Key points to take away:
 There are no known one-way functions
 Their existence is tied to whether P=NP
 In the case of 1-to-one one way functions, their existence

is tied to a more strongly regulated version of NP, the class
UP

 In the next lecture we will expand this last
statement to cover a constant bounded version of
UP

Hem-Ogi 2.2 :
Unambiguous One Way Functions exist
, bounded ambiguity one way
functions exist

Group 2:
Benjamin Van Durme
Pin Lu
Ross Messing
Shivashankar Balu
Tanushree Mittal

11/15/2004 CSC 486 : Hem-Ogi 2.1

Last lecture

 One Way Functions
 One way functions exist , P ≠ NP
 One-to-one one-way functions exist , P ≠ UP

11/15/2004 CSC 486 : Hem-Ogi 2.1

Today’s lecture

 We will be expanding our last claim made
previously dealing with one-to-one, one way
functions and the class UP
 Extend this statement to handle a slightly broader class

 First need cover new definitions:
 k -to-one / bounded ambiguity
 UP·k

 Then onto an inductive proof
 Any time left will be spent going over definitions

required for the final section of Chapter 2
 If we *still* have time left, I will speak on the issues

raised by Lane from Monday’s lecture

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definition 2.6: k-to-one functions

 A function f is k-to-one :

(8 y 2 range(f)) [k {x | f (x) = y } k · k]

 If there is a k 2{1,2,3,…} such that f is k –to-
one, then we say that f is of bounded ambiguity
 Special case: when k = 1 then f is said to be

unambiguous

11/15/2004 CSC 486 : Hem-Ogi 2.1

Thm 2.7: Unambiguous one way functions
exist , bounded ambiguity one way functions
exist
 Breaking this up, we get:

 if:
 Bounded ambiguity one way functions exist)

Unambiguous one way functions exist

 only if:
 Unambiguous one way functions exist) Bounded

ambiguity one way functions exist

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof: Unambiguous one way functions exist
) Bounded ambiguity one way functions exist

 This turns out to be trivial
 Unambiguous one way functions are simply a

special case of bounded ambiguity one way
functions :

(8 y) 2 range(f) k [{x | f (x) = y } · k]

 When k=1, then f is a one-to-one (unambiguous) function

 Thus we’ve (quickly) shown the “only if” direction

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof: Bounded ambiguity function exist)
Unambiguous one way functions exist

 Before beginning with the other half of the
bi-conditional, we should make sure we
understand the class of languages UP·k

11/15/2004 CSC 486 : Hem-Ogi 2.1

UP·k

 A language L is in UP· k if there is a NPTM
N such that:

 (8 x 2 L) [N (x) has at least one and at most k
accepting paths]

 (8 x 2 Lc) [N (x) has no accepting paths]
 Similar to UP, only rather than the

associated machine being restricted to
having a unique accepting path, in this
case there may be up to some constant
number of such paths

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… strategy for indirect proof
 Proving the “if” will be done using an indirect path
 Observe the following diagram:

 We implicitly use the second point of Thm 2.5
 The bounded version of this point is analogous, and we thus will rely on it

as a “Fact”
 From there we will use an inductive proof to show that P=UP)P=UP· k

 At this point we rely on the contrapositive of this statement to complete the
indirect attack

Bounded ambiguity
one way function exists

Unambiguous one
way function exists

P ≠ UP· kP ≠ UP
m

(
m

(

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof…

 Fact 2.9

 For each k ¸ 2, k -to-one one-way
functions exist , P ≠ UP· k

 This proof runs as that used for the second
point of Theorem 2.5 (last class)

11/15/2004 CSC 486 : Hem-Ogi 2.1

0 1

1

0

0

1

Lets say f (011) = z

 and f (110) = z

Recall from Monday’s lecture that one-to-one
(unambiguous) one-way functions exist , P ≠ UP

Accept

1

0

0

1

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof…

 We will now prove by induction that, 8k 2 { 1,
2, 3 …} :

 P = UP) P = UP· k

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… base case

 Our base case is when k = 1
 When k = 1, then UP·k = UP·1

 Because UP·1 = UP

 Therefore:
 P = UP) P = UP· 1

 Now to handle larger values of k …

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… frame the inductive step

 First assume that we have:
 P = UP) P = UP · k’

 Now use this to show that:
 P = UP) P = UP· k’+1

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof: P = UP) P = UP· k’+1

 Assume P = UP
 Let L be a arbitrary member of UP· k’ + 1

 This means there is a NPTM N where:
 L = L(N)
 N has at most k’ + 1 accepting paths

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof…

 Consider the following language:
 B = { x | N (x) has exactly k’ + 1 accepting paths }

 Perhaps not so clearly, B 2 UP
 Why?

11/15/2004 CSC 486 : Hem-Ogi 2.1

B 2 UP
 Let NB be a NPTM such that L(NB)= B
 NB(x) is going to guess various paths N (x) might take

 Each guess will each contain exactly k’+ 1 paths of N (x)
 Just because that is how we are defining the machine: a guess contains k’+ 1 elements

 The paths contained in each guess will be arranged lexicographically (“uniquely
sorted”)
 This means that no two guesses will contain exactly the same set of paths

 For each guess, NB(x) verifies whether each of the k’+ 1 paths are accepting paths
 Only if all k’+ 1 paths in a given guess “check out” will NB(x) accept

 As we said, no two guesses by NB(x) will consider exactly the same set of
paths

 As the guesses contain exactly k’+ 1 paths, and there are only k’+ 1 accepting
paths in N (x) , then there will be at most one guess that leads NB(x) to
accept

 Note that in the cases where there are not k’+ 1 accepting paths in N (x), then it
can only be the case that there are strictly less than this many accepting
paths
 In these cases NB(x) will reject, as the guess is hard-coded at k’+ 1 and every

path in the guess must be an accepting one for NB(x) to accept
 This means that B 2 UP

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof…

 We assumed that P = UP

 Therefore, as B 2 UP then B 2 P

 This means that there must be a
deterministic algorithm for deciding
membership in B

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof…

 Consider the language:
 D = {x | x 62B Æ x 2 L(N) }

 ND (x) :
 Simulate MB (x)

 If MB (x) accepts, then ND (x) rejects (ie there are exactly k’+ 1
accepting paths)

 Otherwise
 Simulate N (x)
 Accept if a given path of N (x) accepts
 Otherwise reject

Note that this exists as B 2 P

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof…

 ND (x) has k ’ or less accepting paths
 Therefore D 2 UP· k’

 As we assumed:
 P = UP) P = UP· k’

 And since D 2 UP· k’

 Then it must be the case that D 2 P

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… P is closed under union

 At this point we have:
 B 2 P
 D 2 P

 Now recall that P is closed under union

 This means that B [D 2 P

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… B [D = L

 B [D contains all those x ’s such that, for a
given x :
 N (x) has exactly k’ + 1 accepting paths, or
 N (x) has at least one and at most k’ accepting

paths
 But this means that B [D = L

 L was our arbitrarily chosen language from UP· k’+ 1

 As both B and D are in P, then the following
must hold:
 B [D = L 2 P

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… inductive proof completed

 If L 2 P under our assumptions then :
P = UP) P = UP· k’ + 1

 This was our inductive step

 Which means we can conclude:
P = UP) P = UP· k

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… recalling our mission

 We are trying to show that the existence of unambiguous one
way functions is explicitly tied to the existence of bounded
ambiguity one-to-one functions

 We broke up the if-and-only-if to see that one direction was
trivial, while the other direction involved a round-about path:

Bounded ambiguity
one way function exists

Unambiguous one
way function exists

P ≠ UP· kP ≠ UP
m

(
m

,

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof… we are done

 This means that we have finished the
proof:

 Theorem 2.7
 Unambiguous one way functions exist ,

bounded ambiguity one way functions exist

11/15/2004 CSC 486 : Hem-Ogi 2.1

Summary

 Key take aways:
 On Monday we showed that:

 The existence of one-to-one one way functions are tied to
whether the language class P equals UP

 Today we showed a stronger version:
 k-to-one one way functions exist iff P≠UP·k

 In addition, we showed that 1-to-one one way functions
exist iff k-to-one one way functions exist
 Certainly an interesting fact!

 At this point we will move on to section 2.3 of the
textbook, in order to provide a first glimpse of the
required definitions

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definition 2.10: Honesty

 A 2-ary function f : Σ* £ Σ* ! Σ* is honest if
(9 polynomial q) (8y 2 range(f))

(9 x , x’) [| x | + | x’ | · q (|y |) Æ f (x, x’) = y]

 Informally:
 A 2-ary function f is honest if there's a

polynomial p such that p (| f ’s output |) is greater
than the sum of the length of both inputs

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn 2.11: polynomial time invertible

 A 2-ary function f : Σ* £ Σ* ! Σ* is polynomial time invertible if
there is a polynomial time computable function g such that,
for every y 2 range(f) :
 y 2 domain(g) Æ

 (first(g(y)),second(g(y))) 2 domain(f) Æ
 f (first(g(y)),second(g(y))) = y,

 where the project functions first(z) and second(z) denote,
respectively, the first and second components of the unique
ordered pair of strings that, when paired, give z

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn 2.12: One way function

 A 2-ary function f : Σ* £ Σ* ! Σ* is one-way if
 f is polynomial time computable

 f is not polynomial time invertible and

 f is honest

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn 2.13: s-honest

 A 2-ary function f : Σ* £ Σ* ! Σ* is s-honest if
 (9 polynomial q) (8y, a : (9b)[f (a , b) =y])
 (9 b ’) [|b ’| · q (|y | + | a |) Æ f (a , b’) = y].

 (9 polynomial q) (8y, b : (9 a)[f (a , b) =y])
 (9 a ’) [| a ’| · q (|y | + | b |) Æ f (a ’, b) = y].

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn: 2.14 strongly non invertible

 A 2-ary function f : Σ* £ Σ* ! Σ* is strongly-noninvertible if it is
s-honest and yet neither of the following conditions holds:
 There is a polynomial-time computable function g : Σ* £ Σ*

! Σ* such that (8y 2 range(f)) (8x 1 ,x 2 :(x 1 , x 2) 2 domain(f) Æ
f (x 1, x 2) = y) [(y , x 1) 2 domain(g) Æ f (x 1 , g (y , x 1)) = y]

 There is a polynomial-time computable function g : Σ* £ Σ*

! Σ* such that (8y 2 range(f)) (8x 1, x 2 : (x 1, x 2) 2 domain(f)
Æ f (x 1, x 2) = y) [(y , x 2) 2 domain(g) Æ f (g (y , x 2), x 1) = y]

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn: 2.14 strongly non invertible contd…

 A 2-ary function is strongly non-invertible if,
even given one of it's inputs and it's output,
the other input cannot be computed in
polynomial time.

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn: 2.15: Associativity & commutativity

 A total, 2-ary function f: Σ* £ Σ* ! Σ* is associative if:
(8x, y ,z) [f (f(x , y), z) = f(x ,f(y , z))]

 A total, 2-ary function f: Σ* £ Σ* ! Σ* is commutative
if:

(8x , y) [f(x , y) = f(y , x)]

11/15/2004 CSC 486 : Hem-Ogi 2.1

Theorem 2.16:

 One-way functions exist if and only if
strongly noninvertible, total, commutative,
associative, 2-ary one way functions exist

Hem-Ogi 2.3 :
One-way functions exist , strongly
noninvertible, total, commutative,
associative, 2-ary one-way functions exist

Group 2:
Ben Van Durme
Pin Lu
Ross Messing
Shiva Shankar Balu
Tanushree Mittal

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definition 2.10: Honesty

 A 2-ary function f : Σ* £ Σ* ! Σ* is honest if
(9 polynomial q) (8y 2 range(f))

(9 x , x’) [| x | + | x’ | · q (|y |) Æ f (x, x’) = y]

 Informally:
 A 2-ary function f is honest if there's a

polynomial p such that p (| f ’s output |) is greater
than the sum of the length of two arguments
which give that output

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn 2.11: polynomial time invertible

 A 2-ary function f : Σ* £ Σ* ! Σ* is polynomial time invertible if
there is a polynomial time computable function g such that,
for every y 2 range(f) :
 y 2 domain(g) Æ

 (first(g(y)),second(g(y))) 2 domain(f) Æ
 f (first(g(y)),second(g(y))) = y,

 where the functions first(z) and second(z) denote,
respectively, the first and second components of the ordered
pair of strings that can be paired to form z

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn 2.12: One way function

 A 2-ary function f : Σ* £ Σ* ! Σ* is one-way if
 f is polynomial time computable

 f is not polynomial time invertible and

 f is honest

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn 2.13: s-honest

 A 2-ary function f : Σ* £ Σ* ! Σ* is s-honest if
 (9 polynomial q) (8y, a : (9b)[f (a , b) =y])
 (9 b ’) [|b ’| · q (|y | + | a |) Æ f (a , b’) = y].

 (9 polynomial q) (8y, b : (9 a)[f (a , b) =y])
 (9 a ’) [| a ’| · q (|y | + | b |) Æ f (a ’, b) = y].

 For any y 2 f ’s range, there exists an a and b such
that f (a,b) = y. We say that f is s-honest if there

exists a bounding polynomial q , and an argument b’
such that q(|y|+|a|) ¸ |b’|, and f(a,b’) = f(a,b) = y.

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn: 2.14 strongly noninvertible

 A 2-ary function f : Σ* £ Σ* ! Σ* is strongly noninvertible if it is
s-honest but neither of the following conditions hold:
 There is a polynomial-time computable function g : Σ* £ Σ*

! Σ* such that (8y 2 range(f)) (8x 1 ,x 2 :(x 1 , x 2) 2 domain(f) Æ
f (x 1, x 2) = y) [(y , x 1) 2 domain(g) Æ f (x 1 , g (y , x 1)) = y]

 There is a polynomial-time computable function g : Σ* £ Σ*

! Σ* such that (8y 2 range(f)) (8x 1, x 2 : (x 1, x 2) 2 domain(f)
Æ f (x 1, x 2) = y) [(y , x 2) 2 domain(g) Æ f (g (y , x 2), x 1) = y]

 A 2-ary function is strongly noninvertible if, even given one of
it's inputs and it's output, the other input cannot be computed
in polynomial time.

11/15/2004 CSC 486 : Hem-Ogi 2.1

Defn: 2.15: Associativity & commutativity

 A total, 2-ary function f: Σ* £ Σ* ! Σ* is associative if:
(8x, y ,z) [f (f(x , y), z) = f(x ,f(y , z))]

 A total, 2-ary function f: Σ* £ Σ* ! Σ* is commutative
if:

(8x , y) [f(x , y) = f(y , x)]

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proposition 2.17

 The following are equivalent
 One-way functions exist
 2-ary one-way functions exist
 P ≠ NP

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof of Proposition 2.17

 One-way functions exist , P ≠ NP
 See Theorem 2.5 in section 2.1

 One-way functions exist , 2-ary one-way
functions exist
 One-way functions exist (2-ary one-way

functions exist
 One-way functions exist) 2-ary one-way

functions exist

11/15/2004 CSC 486 : Hem-Ogi 2.1

One-way functions exist (2-ary one-way
functions exist
 One-way functions exist if 2-ary one-way functions

exist
 Let f be any 2-ary one-way function, and define g as

 g(x) = f(first(x), second(x))
where first(x) and second(x) respectively denote the first and
second component of the unique pair mapping to x by the
pairing function

 Clearly, g is one-way function.

x = hfirst(x), second(x)i

One to One

11/15/2004 CSC 486 : Hem-Ogi 2.1

One-way functions exist) 2-ary one-way
functions exist
 One-way functions exist only if 2-ary one-

way functions exist
 Let h be any one-way function. Define h’:

 h’(x , y) = hh(x), yi. Then h’ is an obvious 2-ary one-way
function

 Or h’’(x , y) = hh(x), h(y) i. Then h’’ is also a 2-ary one-way
function, but with strong noninvertibility (see Definition
2.14)

11/15/2004 CSC 486 : Hem-Ogi 2.1

Theorem 2.16

 One-way functions exist , strongly
noninvertible, total, commutative,
associative, 2-ary one-way functions exist.

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : if direction of Theorem 2.16

 If
 By Proposition 2.17, one-way functions exist , 2-ary one-

way functions exist
 Strongly noninvertible, total, commutative, associative, 2-

ary one-way functions exist) 2-ary one-way functions
exist

 Therefore, strongly noninvertible, total, commutative,
associative, 2-ary one-way functions exist) One-way
functions exist

Strongly noninvertible, total,
commutative, associative,

2-ary one-way functions2-ary one-way functions

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : only if direction of Theorem 2.16

 only if
 By proposition 2.17, we have

 P ≠ NP , One-way functions exist , 2-ary one-way
functions exist

 To prove the goal that One-way functions exist)
strongly noninvertible, total, commutative,
associative, 2-ary one-way functions exist, we
can equivalently show
 P ≠ NP) strongly noninvertible, total, commutative,

associative, 2-ary one-way functions exist

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : only if direction of Theorem 2.16

 P ≠ NP) strongly noninvertible, total,
commutative, associative, 2-ary one-way functions
exist
 By the premise that P ≠ NP, then there exists a NPTM N’

such that L(N’) 2 NP - P

 By a Standard Machine Manipulation, there exists a
polynomial p and a NPTM N such that L(N) = L(N’) and 8x
the computation paths of N(x) have exactly p(|x|) bits

How do we do this Standard Machine Manipulation?

11/15/2004 CSC 486 : Hem-Ogi 2.1

Standard Machine Manipulation

 Standard Machine Manipulation
 We construct N as follows:

 First, we construct a polynomial q, such that q(x)=Max(p’(x), x+1),
where p’ where p’ refers to the polynomial time bound for N’.

 As N’(x) runs, we count the number of nondeterministic guesses it
makes, and call that m . At the end of each computation path of N’(x)
, we make q(|x|) - m additional nondeterministic dummy guesses.

 Therefore, for each input x , the length of any computation path
of N(x) is exactly q(|x|) .

 Obviously, it is guaranteed that the length of each computation
path is greater than the length of the input

 So we have built a new NPTM N from N ’ . N accepts the same
language as N ’ and for each input x, the length of all
computation paths of N(x) are exactly of length q(|x|) , which is
greater than |x|

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definition of Witness

 Definition
 All computation paths are viewed as potential witnesses

for x 2 L(N).
 We call a path a witness for x 2 L(N) if it is an accepting

path of N(x).
 We define W(x) as the set of all witnesses for x 2 L(N).
 Note that no string can be the witness of itself for the

previously defined NPTM N , because our machine
manipulation requires that the length of any computation
path is greater than the length of the input.

11/15/2004 CSC 486 : Hem-Ogi 2.1

Definition of the function f

 Now we define a function f, which we will prove to
be a strongly noninvertible, total, commutative,
associative, 2-ary one-way function.

f(u, v) =

t is any fixed string that is not in L(N)

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is total and polynomial-time
computable
 f is defined over 8(x 1, x 2) 2 Σ* £ Σ*, thus f is total
 f is polynomial-time computable

 Pairing function is polynomial-time computable
 We get two pairs for two arguments of f , respectively

 The string comparison is poly-time computable
 Test if the first elements of both arguments match

 Test the second element of each pair to check if it is the
witness on NPTM N of the first element of the pair.

 N(x) is checkable in deterministic polynomial time

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is commutative

 If the input (u, v) falls into the first case,

 The commutativity of f holds, because function lexmin
itself is commutative. No matter which order it’s in, the
output is always hx, qi, where q is the lexicographically
less of u’s and v ’s second components

f(u, v) =

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is commutative

 If the input (u, v) falls into the last two cases of f,
then f(u, v) = f(v, u) holds
 Case 2: If one of the arguments is the pair x 2 L(N). , and

its witness w, and the other is the pair hx, xi

 Case 3:
 Since the first two cases are commutative, if an input

pair (x, y) does not fall into the first two cases, (y, x) also
cannot, which means f(x, y) = f(y, x) = ht, t1i

Note that this is a set, so the order of
the two arguments does not matter

11/15/2004 CSC 486 : Hem-Ogi 2.1

f is s-honest

 f is s-honest
 Witnesses for NPTM N are of length bounded

polynomially in the length of their input string

 Therefore, for the first two cases of f , when we
fix one argument, the length trick cannot succeed
on the other argument, since two arguments with
the same first element must be no more than
polynomially longer or shorter than each other.

11/15/2004 CSC 486 : Hem-Ogi 2.1

f is s-honest

 f is s-honest
 For the third case of f , given the output ht, t1i and

one fixed argument, we can always find another
argument ha, b i whose length falls within a
polynomial bound, and we can ensure that it
produces the correct output by ensuring that a
isn’t the same as the first element of the other
argument

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is strongly noninvertible

 Assume f is not strongly noninvertible
 Since we have proven that f is s-honest, strong

noninvertibility must fail because at least one of
the two conditions in the definition of strong
noninvertibility holds. This means that given the
output and one argument, the other argument
can be computed in polynomial-time

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is strongly noninvertible

 Then, there exists a polynomial-time function g
such that, when we consider Case 2,
 If x 2 L(N), g(hx, x i, hx, x i) should output hx , wi,where w 2 W(x)

 This gives us a deterministic polynomial-time
algorithm to test input x ’s membership in L(N)
 On input x , first compute g(hx, x i, hx, x i) , reject if the output

is not of the form hx, w i
 Then simulate N(x) on computation path w, accept x if N(x)

accepts

One argument and the output The other argument

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is strongly noninvertible

 But we’ve revealed a contradiction!
 Remember, we’ve assumed that L(N) 2 NP-P

 But now we have a deterministic polynomial-time
algorithm to test membership in L(N)

 Therefore, the assumption that f is not strongly
noninvertible must be wrong

 So, f satisfies the definition of strong
noninvertibility

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is honest

 It is easy to verify f is honest in Case 1 and 2
 The pairing function is polynomial-time computable and

invertible

 The witnesses of all strings in L(N) are length-bounded by
N ‘s polynomial time bounding polynomial. Furthermore,
as required by our machine manipulation, 8x 2 L(N), |w|
= q(|x|) , which is still polynomial

 Thus, f cannot dramatically distort the length of input

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is honest

 For Case 3, we expand the honesty
polynomial to cover the shortest input
mapping to ht, t1i. By the definition of
honesty, we only need to guarantee there
exists one input for each output whose
length is polynomially bounded by each
output

 How does it work?

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is honest

 Suppose xm = hxm’, xm”i is the shortest input on
which f outputs ht, t1i

Honest polynomial

Length

11/15/2004 CSC 486 : Hem-Ogi 2.1

Proof : f is associative

 f is associative , For each z, z’, z” 2 Σ*,

 f (f (z, z’) , z”) = f (z, f (z’, z”))

11/15/2004 CSC 486 : Hem-Ogi 2.1

Some definitions

 As previously defined, first(z) and second(z) are
the first and second elements of the pair z
created by our pairing function

 A string a is Legal if

11/15/2004 CSC 486 : Hem-Ogi 2.1

Discuss over all cases

 Case 1: At least two of z, z’, z” are not legal
 Then, f (f (z, z’) , z”) = f (z, f (z’, z”)) = ht, t1i

 Case 2: If it is not the case that
first(z) = first(z’) = first(z”)

 Again, f (f (z, z’) , z”) = f (z, f (z’, z”)) = ht, t1i

 Case 3: if first(z) = first(z’) = first(z”) and exactly one of
z, z’, z” is not legal and the one that is not legal is not
of the form hfirst(z), first(z) i
 Still, f (f (z, z’) , z”) = f (z, f (z’, z”)) = ht, t1i

11/15/2004 CSC 486 : Hem-Ogi 2.1

Discuss over all cases

 Case 4: if first(z) = first(z’) = first(z”) and exactly one of
z, z’, z” is not legal and the one that is not legal is of
the form hfirst(z), first(z) i
 f (f (z, z’) , z”) = f (z, f (z’, z”)) = hfirst(z), first(z) i

 Case 5: if first(z) = first(z’) = first(z”) = x and all of z, z’,
z” are legal

 f (f (z, z’) , z”) = f (z, f (z’, z”)) = hfirst(z), q i, where q is the
lexicographically least of second(z), second(z’), second(z”) . This
works because lexicographic minimum is associative.

11/15/2004 CSC 486 : Hem-Ogi 2.1

Conclusion

 We have shown that P ≠ NP) f is a
strongly noninvertible, total, commutative,
associative, 2-ary one-way function

 Therefore, P ≠ NP) strongly noninvertible,
total, commutative, associative, 2-ary one-
way functions exist

 Theorem 2.16 is proved

