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 P – the class of feasible problems
 A nice class, but lacks many interesting languages...perhaps

semi-feasible algorithms are also useful?
 Let us consider languages that may not have polynomial-time

algorithms, but for which it is possible to efficiently decide which
of the two strings given is more likely to be in the language

 One such decision does not give a definite answer as to
whether a chosen string is in a language, but perhaps a series
of them leads to a solution (of some nice problem)

Semi-feasible Problems



 Def.
Set B is P-selective if there exists a function f,

f: Σ* x Σ* → Σ*

such that:
 f is polynomial-time computable
 f(x,y) ∈ {x,y}
 {x,y} ∩ B ≠ ∅  ⇒ f(x,y) ∈ B

In other words: f always picks one of its inputs, and
if it can pick a one that is in B then it does so.
“Function f picks the input that is no less likely to
be in the set.”

Such a function f is called a selector function

P-sel • Definition



 Def.
 P-sel is the set of of all P-selective languages

 P ⊆ P-sel
 The selector function can simply test membership

of both of its arguments
 Let A ∈ P. We define the selector function f to be:

 f(x,y) = x  if x ∈ A
 f(x,y) = y  otherwise

 Is P a proper subset of P-sel?
 Yes! That is exactly your homework!
 Don’t worry, we will help 

P-sel • Definition (cont’d)



 So what sets might be in P-sel, but outside of P?
 Consider the language:

LΩ = { x | x ≥ Ω }
Where:
 Ω is some real number
 the second occurrence of x is treated as a real number whose

binary representation is x
 Why is this language P-selective?

 f(x,y) = max(x,y)
 What is so special about it?

P-sel • Example



 Def.
HP = { x | x ∈ L(Mx) }

 As we all remember, HP is in RE–RECURSIVE
 Can we use that to our advantage?

Recall the Halting Problem...



 Gregory Chaitin from IBM found a really nice Ω…

   
 Note: the first occurence of p is treated as a string, but

the second as an integer
 If           were recursive then RECURSIVE=RE

 But you still need to prove that!

P-sel • Example (Cont’d)



 P-sel contains sets that are not even
decidable!

 It stands to reason that there is some NP-
complete language that is P-selective!
  Um... Er... Well not likely, actually...

 Theorem
If there exists an NP-hard language A such that A is

P-selective then P=NP

The opposite direction is clearly true. We have P ⊆ P-sel so
If P=NP then all NP-complete sets are in P-selective. NP-

complete sets are NP-hard.

P-sel • NP-hard sets in P-sel?



Assumptions:
 A – an NP-hard

language
 A ∈ P-sel
 g – a selector

function for A
 f – a polynomial-time

computable function
many-one reducing
SAT to A

P-sel • Proof of the previous theorem

Proof technique:
Show a polynomial-time
algorithm for SAT by
pruning the tree of
possible truth assignments

Let F be the input formula. How do we use f
and g to find a satisfying truth assignment?

g is a selector function—it has to return the
string that is no less likely to be in the set.

Since f is a reduction, g gives us the path
in the tree to follow! After n steps the
ground formula is guaranteed to be
satisfiable iff F is satisfiable.

 g( f( F[v=True]) ,  f( F[v=False] ) )

F[v=True] F[v=False]

F

g picks the best path!



 A set is P-selective if given two strings we can
decide in polynomial time which of them is no less
likely to be in the set

 P-selective sets may be undecidable
 Yet, unless P=NP, none of them can be NP-hard

P-sel • Conclusion



 Recall tally languages
 L is tally if L ⊆ 1*

 What does it take to decide a tally language?
 L could be undecidable!
 To decide whether a string of length n is in a tally

language you just need to know whether 1n is in
the language...

 With 1 bit of advice for every length we could
decide any tally language...

P/poly • Introduction



 What about sparse languages?
 L is sparse if there is a polynomial p such that:

 |L=n| ≤ p(n)

 How much advice per length do we need to decide sparse
languages?
 There are at most polynomially many strings of length n
 Each string is n symbols long
 If, as a piece of advice, someone gave us all the strings of the

given length then we could simply compare each with the input
 The advice would only be polynomial in size

P/poly • Introduction (Cont’d)



 P/poly is the class of all languages that can
be decided given a polynomial amount of
advice

 A P/poly advice interpreter has to work in
polynomal time, but for every string length it
is given polynomially many advice bits

 Advice is anything the P/poly algorithm
designer wants; it does not even have to be
computable…

 ...but it must only depend on the input length
and not on the input content

P/poly • Definition (Informal)



 Theorem
All tally sets are in P/poly

 Theorem
All sparse languages are in P/poly

 In fact, P/poly is exactly the class of all sets
Turing-reducible to sparse sets.
 Unfortunately, we do not have time to prove this

P/poly • P/poly and sparse sets



 What do the symbols mean?
 A – some language
 f: N → N – some function

 A/f is the class of all languages L such that for some
function h it holds that:
 (∀n)[ |h(n)| = f(n) ]
 L = { x | <x, h(|x|)> ∈ A }

 Intuitions:
 Function f measures the amount of advice available
 Language A is the advice interpreter
 Function h provides the advice

P/poly • Definition of A/f



 What do the symbols mean?
 C – a class of languages
 F – a set of functions from integers to integers

 C/F is the class of all languages L such that :
 (∃ A ∈ C) (∃ f ∈ F) [ L ∈ A/f  ]

 Where is P/poly?
 Take C to be the class P, and make F the set of all

polynomials

P/poly • Definition of C/F



 Let us formally prove that all tally languages are in P/poly
 Let T be some tally language
 First, select the advice function:

 We only need 1 bit of advice; f(n) = 1
 h(n) = 1 if 1n ∈ T
 h(n) = 0 otherwise

 Advice interpreter:
 A = {<x,y> | x ∈ 1* and y=1}

 A ∈ P, f is a polynomial ⇒ T ∈ P/poly

P/poly • Example



 Piotr defined for us:
 P-sel
 P/poly

 Here’s what I’m going to do
 Explain k-tournaments
 Prove that P-sel ⊆ P/poly

Outline



 What is a k-tournament?
 a graph with k nodes, and exactly one directed

edge between every pair of vertices
 Why is it called a “tournament”?

 think of each edge as a game played, with the
arrow pointing at the winner

Thm 3.1 • k-tournaments
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4

Our k-tournament (k=8)

• arrows point to
the winners
• each node is
also considered
to defeat itself



 Properties of a k-tournament
 G = a k-tournament graph

H ⊆ G
1)

2) for each v ∈ VG–H, there is some g ∈ H such
that (g,v) ∈ EG

 in other words, there is a subset H of G whose
cardinality is O(log n) in the number of nodes in
G, and every node in G defeats one of the
nodes in H

 we call H the superloser set

Thm 3.1 • the superloser set



 At least one person loses half or more of her games
(why?)

 Proof procedure: Take that player and remove her
from the graph, G, as well as everyone who defeated
her.  Add the player to the loser set, H
 there are between 0 and                   nodes left

 Repeat this process on the remaining graph, G’, until
there are no nodes left.

Proof 3.1 • process



 At each stage we have a full k-tournament
graph, with k shrinking through successive
stages

 Eventually there will be no nodes to consider
 The recurrence relation for this is

Proof of Thm 3.1 (cont’d)



 As Piotr explained:
 the class P-sel…

 “semi-feasible” sets: the class of sets that have a
selector function that takes two arguments, and returns
the one more likely (not less likely) to be in the set

 the class P/poly
 sets that can be solved with advice that is the same for

all strings of the same length

 As I explained
 k-tournaments

Review so far



 Proof idea: turn a semi-feasible set into a
P/poly set using a k-tournament

 Potential point of confusion: the text talks
about showing “that semi-feasible sets have
small circuits”
 having small circuits is another characteristic of

P/poly; just ignore for now

Hem-Ogi Thm 3.2 • P-sel ⊆ P/poly



 Let L be our semi-feasible (P-sel) set
 To show that it’s in P/poly, we need to

show two things
1.

– A will be the advice interpreter set from the definition
of P/poly

2.

– q is the polynomial bound on the advice size

Proof 3.2 • goal



 We’ll begin by making a k-tournament from
the elements of L=n.

 How?
 remember that a k-tournament is a property of

any fully-connected directed graph
 we can consider each string in L=n to be a node,

so all we need is a way to decide which of two
strings is the “winner”

 Any ideas?

Proof 3.2 • k-tournament at L=n



 L is a semi-feasible set, so there is a selector
function f

 Let f’(x,y) = f(min(x,y), max(x,y))
 f’ is a selector function for the same language
 f’ is commutative

 The commutativity of f’ allows us to construct
a k-tournament from the strings in L=n

 call this graph G such that for any
(a,b ∈ L=n ∧ a ≠ b) ⇒ ((a,b) ∈ EG ⇔ f’(a,b) = b)

Proof 3.2 • selector function



 Because of the k-tournament, we know that
we have a superloser set Hn ⊆ L=n where:

1)

2)  for every element in L=n, there exists an
h ∈ Hn such that f(h,x) = x

(remember that every superloser beats itself)

Proof 3.2 • Properties of L=n



Proof 3.2 • map of the world

a map
of the world



 So far we have used the selector function to
produce a k-tournament: Now we’ll show our
set L is in P/poly by providing
 an advice function, g, and
 an advice interpreter, the set A

 Remember that advice on a set is the same
for all strings of the same length

 Any guesses what advice g gives for L on
strings of length n?

Proof 3.2 • what advice?



 The advice is Hn: g(n) provides the
superloser set at length n

 The advice interpreter set is:
A = {<x,y> | y is a (possibly empty)

list of elements v1, v2, … ,vz and for 
some j it holds that f(vj,x) = x.

 Clearly, A ∈ P.  Proof:
 On input <x,y>

FOR j FROM 1 TO z DO
IF f(x,vj) == x ACCEPT

REJECT

Proof 3.2 • good advice



 Are the requirements met?
 A ∈ P
 on the next slide we’ll show that x is in L if and

only if <x,g(|x|)> is in the advice interpreter set A
(i.e., that we’ve met the requirement for a set in
P/poly)

Proof 3.2 • correctness



 Verification of MA: three cases


 x is a superloser, so the test for some hj is whether f(x,x)
= x, which is always true



 x is not a superloser, but since it is in L it will defeat one
of the superlosers, so we accept



 x is not a superloser and does not defeat one, so we
reject

Proof 3.2 • verification



 The class P/poly allows a polynomial number
of advice bits.  How many did we just use,
and what does that do for us?

One for the road
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P-sel
 Set B is P-selective iff ∃ function f

 f is polynomial-time computable
 f(x,y) ∈ {x,y}
 {x,y} ∩ B ≠ ∅ ⇒ f(x,y) ∈B

 B has a polynomial-time 2-ary selector
function which always chooses the input
more likely to be in B



P/poly
 The class of all languages that can be

decided in polynomial time with a polynomial
amount of advice
 The advice is polynomial with regard to the length

of the string whose membership is being tested
 Advice is dependent only on input length, not

input content
 The advice doesn’t even have to be

computable



k-Tournaments
 A graph with k nodes, and exactly one

directed edge between every pair of vertices
 No self loops

 Each arrow represents a game played, with
an arrow pointing to the winner

 There is a superloser set of size ≤
⎣log(k+1)⎦



P-sel ⊆ P/poly
 If we treat the members of our P-sel

language as a tournament, then we can use
the superloser set as advice

 We can check the membership of an
arbitrary string x by applying the selector
function on every pair (x,y), where y is a
string in the superloser set



Limited Advice
 Did we really only show P-sel ⊆ P/poly?

 We only used a quadratic amount of advice!
 Can we do better (perhaps by using some

nondeterminism?)



The Class PP
 It can be shown that P-sel ⊆ PP/linear
 But PP ⊇ NP



The Class NP
 P/poly ⊆ NP/poly
 P/quadratic ⊆ NP/quadratic
 Can nondeterminism reduce the advice

needed to determine membership in
polynomial time?



k-Tournaments
Background
 The “l” nodes are a

superloser set
 Every node in column

x defeats node lx
 There are ⎣log(k+1)⎦

superlosers
 l1 beat l2 (otherwise, l2

would be in l1’s column)
 Likewise, l2 beat l3, l3

beat l4 …

a1
a2
a3
a4
…

b1
b2
b3
b4
…

c1
c2
c3
c4
…

d1
d2
d3
d4
…

h1
h2
h3
h4
…

g1
g2
g3
g4
…

f1
f2
f3
f4
…

e1
e2
e3
e4
…

l1 l2 l3 l4 l5 l6 l7 l8

How much advice is
needed?

● No more than the number
of superlosers

● When x ∈ L, x defeats at
least one superloser

● When x ∉  L, x does not
defeat any superloser

Tournament



The King Loser
 Look at l8 more closely
 Every superloser beat l8

 If not, l8 would be in
another loser’s
column

 Everyone else beat a
superloser

 Everyone in the
tournament is “2 hops”
from l8

 l8 is the KING LOSER

l1 l2 l3 l4 l5 l6 l7 l8

a1
a2
a3
a4
…

b1
b2
b3
b4
…

c1
c2
c3
c4
…

d1
d2
d3
d4
…

h1
h2
h3
h4
…

g1
g2
g3
g4
…

f1
f2
f3
f4
…

e1
e2
e3
e4
…



The King Loser Theorem
 If G is a k-tournament, then there is a v ∈ VG

such that VG = R2,G(v)
 In every k-tournament, there exists a node

from which all nodes can be reached via
paths of length 2 or less



Proof of the King Loser Theorem
 Proof by induction
 Base case:  for k-tournaments whose size ≤ 3, it is

obviously true

 Node a is always a King Loser
 Some graphs have several King Losers
 Disclaimer:  The k=1 base case would suffice for

the following proof

a

b

c

a

b

c

a

b

a

k=1 k=2 k=3



Proof of the King Loser Theorem
 When k > 3, we use induction
 Recall when k=3

 For any k-tournament, we can classify every node
as follows:
1. x is the king loser
2. x beat the king loser
3. x beat someone who beat the king loser

 (this implies that the king loser beat x)!

 This classification into sets is clear in our k=3
example above
 (a is in set 1, b is in set 2, c is in set 3)

a

b

c



Proof of the King Loser Theorem
 What happens when we add a new node?

 Case 1:  The new node (d)
beats the king loser (a)

 Case 2:  The new node (d)
beats someone who
beats the king loser
(that is, some node in set B)

 Either way, the King Loser doesn’t change

a

B

C

d

a

B

C

d

(B and C are sets and may
contain multiple nodes



Proof of the King Loser Theorem
 Case 3:  If cases 1 and 2 do not hold, then

the new node becomes the king loser

a

B

C

d

 The king loser (a) beat the new
node (d)
 otherwise case 1

 Everyone who beat the king loser
(everyone in set B) beat the new
node (d)
 otherwise case 2

 Everyone else (all nodes in set C) is
no farther from the new node (d)
than from the old superloser (a)!
 c beat b, b beat d, and b beat a

(B and C are sets and may
contain multiple nodes



Using the King Loser
 Let A ∈ P-sel via commutative selector function f.

Consider using f to build a tournament on the nodes in
A=n (we’ll be vague on uniformity but it isn’t a problem
here)

 If we knew the King Loser, we could use the following
algorithm to determine the membership of x in A=n:

If x = King Loser, accept
ElseIf f(x, King Loser)=x, accept

Else
Nondeterministically guess a string

y of the same length as x
On each path, if f(x,y)=x and

f(y,King Loser)=y, accept
Reject



Encoding the King Loser
 We want to show that P-sel ⊆ NP/linear
 The King Loser looks like sufficient advice
 How do we encode the King Loser?

 There is a distinct King Loser for each length n
 What if L=n = ∅ ?



Using n+1 Bits
 Let us define the advice function g(x) as

follows:

 where wn is the King Loser for strings of
length n



Using n+1 Bits
 Let us define the advice interpreter

A = {〈x, 0w〉｜there is a path of length at
most two, in the tournament induced on L=n

by f, from w to x}
 We hard-code the case of ε ∈ L
 Since the selector function f is deterministic

and takes polynomial time, we can construct
a NPTM to decide A.



Using n+1 Bits
 Recall this algorithm from before
If x = King Loser, accept

ElseIf f(x, King Loser)=x, accept

Else

Nondeterministically guess a string

y of the same length as x

On each path, if f(x,y)=x and

f(y,King Loser)=y, accept

Reject

 Since f is a deterministic polynomial-time function,
this is clearly a nondeterministic polynomial-time
algorithm



Conclusions
 P-sel ⊆ NP/linear
 Since P-sel is closed under complementation

 P-sel ⊆ coNP/linear
 P-sel ⊆ NP/linear ∩ coNP/linear

 P-sel ⊆ NP/n+1
 Can we do better?

 NO (see the book for details)



Collapsing the Polynomial Hierarchy
 Using the techniques we’ve covered so far,

we can learn the more subtle properties of
the polynomial hierarchy

 But what is the polynomial hierarchy?



The Polynomial Hierarchy
 A time-bounded analog of the arithmetical

hierarchy
 We can think of it iteratively…

 Q, R are poly-time predicates; p’, p’’ are polynomials
       swaps the         quantifiers

 … or inductively



The Polynomial Hierarchy
(bounded by PSPACE)



FP – Deterministic Functions
 A function is in FP iff:

 It is single valued
 It is computed by a deterministic, polynomial time

TM
 It does not have to be total



Nondeterministic Functions
 NPMV – nondeterministic, polynomial time,

multi-valued
 A function f belongs to NPMV if there exists a

NPTM N such that on input x, f’s outputs are
exactly the outputs of N

y1 y2 y3 y2 y4 y2 y5



Nondeterministic Functions
 On input x, set-f(x) is the set of all possible

outputs of NPMV function f
 set-f(x) = {a｜a is an output of f(x)}
 On inputs where f(x) is undefined, set-f(x) = ∅
 We don’t care if an item in set-f(x) occurs on

multiple paths

y1 y2 y3 y2 y4 y2 y5

set-f(x) = {y1, y2, y3, y4, y5}



Nondeterministic Functions
 NPSV – nondeterministic, polynomial time,

single-valued
 A subset of NPMV where ∀ x, ||set-f(x)|| ≤ 1

y1 y1 y1 y1 y1 y1 y1

set-f(x) = {y1}



NPMV Selector Functions
 A set L is NPMV-selective if

 ∀ x,y. set-f(x,y) ⊆ {x,y}
 ∀ x,y. x ∈ L ∨ y ∈ L ⇒ ∅  ≠ set-f(x,y) ⊆ L

 In other words, NPMV-selector functions can
return multiple values, but only if both
arguments are in L or both arguments are
not in L

 The selector function can return ∅  when both
arguments are not in L

 NPSV-selective sets exist as well



Refinement
 NPMV function f is a refinement of NPMV

function g if
 ∀ x. set-f(x) = ∅  ⇔ set-g(x) = ∅
 ∀ x. set-f(x) ⊆ set-g(x)

 A refinement has fewer outputs, but remains
defined whenever the original function was
defined

 A refinement may be NPSV



Next Time
 Section 3.3:  Unique Solutions Collapse the

Polynomial Hierarchy
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 FP, NPMV, NPSV
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 NPMV-sel, NPSV-sel
 NP/poly, coNP/poly etc.

 Goal
 If all NPMV functions have NPSV refinements

then PH collapses to its second level...
 ... and even further



FP – Deterministic Functions
 A function is in FP iff:

 It is single-valued
 It is computed by a deterministic, polynomial-time

TM
 It does not have to be total



Nondeterministic Functions
 NPMV – nondeterministic, polynomial-time,

multivalued
 A function f belongs to NPMV if there exists a

NPTM N such that on input x, f’s outputs are
exactly the outputs of N

y1 y2 y3 y2 y4 y2 y5



Nondeterministic Functions
 On input x, set-f(x) is the set of all outputs of

NPMV function f
 set-f(x) = {aa is an output of f(x)}
 On inputs where f(x) is undefined, set-f(x) = ∅
 We don’t care if an item in set-f(x) occurs on

multiple paths

y1 y2 y3 y2 y4 y2 y5

set-f(x) = {y1, y2, y3, y4, y5}



Nondeterministic Functions
 NPSV – nondeterministic, polynomial-time,

single-valued
 A subset of NPMV where ∀ x, ||set-f(x)|| ≤ 1

y1 y1 y1 y1 y1 y1 y1

set-f(x) = {y1}



NPMV Selector Functions
 A set L is NPMV-selective if

 ∀ x,y. set-f(x,y) ⊆ {x,y}
 ∀ x,y (x ∈ L ∨ y ∈ L) ⇒ ∅  ≠ set-f(x,y) ⊆ L

 In other words, NPMV-selector functions can
return multiple values, but only if both
arguments are in L or both arguments are
not in L

 The selector function can return ∅  when both
arguments are not in L

 NPSV-selective sets exist as well



Refinement
 NPMV function f is a refinement of NPMV

function g if
 ∀x. set-f(x) = ∅  ⇔ set-g(x) = ∅
 ∀x. set-f(x) ⊆ set-g(x)

 A refinement has fewer outputs, but remains
defined whenever the original function was
defined

 A refinement may be NPSV



Goal
 Theorem

If all NPMV functions have NPSV refinements then PH
collapses to its second level, NPNP.

 We need the following intermediate results:
 NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly
 NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

 Proof outline
 Create an NPMV selector for SAT
 Refine it to be an NPSV selector
 Conclude NP ⊆ NPSV-sel ∩ NP
 NP ⊆ NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP
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Roadmap
 Assume all NPMV functions have NPSV

refinements
 Prove: SAT has an NPMV selector function
 If: SAT has an NPSV selector function
 Then:  NP ⊆ NP ∩ NPSV-sel
 Prove: NP ∩ NPSV-sel ⊆ (NP ∩ coNP)/poly
 Prove:  NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP



NPMV selector for SAT
 NPMV selector for SAT:

 fSAT(x,y) = {x,y} ∩ SAT
 Clearly, fSAT is a selector
 Is it in NPMV?

 Nondeterministically choose x or y
 Guess a satisfying truth assignment for the string chosen
 Check if it indeed is satisfying, and output the chosen

string if so

 SAT ∈ NPMV-sel



NPSV selector for SAT
 Assumptions

 All NPMV functions have NPSV refinements
 fSAT is an NPMV selector for SAT

 We can refine it to be an NPSV selector!



Roadmap
 Assume all NPMV functions have NPSV

refinements
 Prove: SAT has an NPMV selector function
 If: SAT has an NPSV selector function
 Then:  NP ⊆ NP ∩ NPSV-sel
 Prove: NP ∩ NPSV-sel ⊆ (NP ∩ coNP)/poly
 Prove:  NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP



NP ⊆ NP ∩ NPSV-sel
 Assumptions

 All NPMV functions have NPSV refinements
 Under these assumptions SAT is in NPSV-

sel (it has an NPSV selector function)
 If NPSV-sel was closed under polynomial-

time many-one reductions then we would be
done



NPSV-sel
 Theorem

NPSV-sel is closed under many-one
polynomial-time reductions

 Proof
 A polynomial-time many-one reduces to B
 B ∈ NPSV-sel
 fB – NPSV selector for B
 g – FP function many-one reducing A to B
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NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly
 Assumptions

 L ∈ NPSV-sel ∩ NP
 NL – an NPTM accepting L
 f – an NPSV selector for L
 set-f(x,y) = set-f(y,x)

 Goal
 Show that L ∈ (NP ∩ coNP)/poly
 Proof is essentially the same as in section 3.1,

but with a more carefully chosen advice string.
 We need to provide:

 An advice interpreter that belongs to NP ∩ coNP
 Advice of at most polynomial size



NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly
 Advice interpreter:

 Input: <x,d>
 Interpret d as <<a1,…,am>,<w1,…,wm>>

 List of strings a1, …, am, each of length |x|
 List of strings w1, …, wm

 Output:
 Accept if for every i, wi is an accepting computation path of NL

on ai, and set-f(x,aj) = {x} for at least one j
 Reject otherwise

 Clearly, it is an NP algorithm
 It is also a coNP algorithm

 Discussed during lecture
 The advice

 ai – superloser set for a tournament induced by f on L=n

 wi – accepting computation paths for ai’s.
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 Prove:  NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP



Relativization
 Theorem X

If A ∈ P/poly then Ā ∈ P/poly
 Proof

 Advice interpreter for Ā simulates the advice
interpreter for A, and flips its answer

 Advice is the same
 Relativized version Theorem X

If A ∈ PB/poly then Ā ∈ PB/poly
 The same proof works!
 We say that Theorem X relativizes



Relativization (Cont’d)
 Most of theorems relevant to complexity

theory relativize
 There are some exceptions, though.
 Nonrelativizing theorems are usually very hard to

prove
 A theorem resolving the P vs. NP problem

cannot relativize
 There is a set A such that PA = NPA

 There is a set B such that PB ≠ NPB



NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

 The Karp-Lipton Theorem
 NP ⊆ P/poly ⇒ PH=NPNP

 This theorem relativizes
 Let A be some language
 NPA ⊆ PA/poly ⇒ PHA=NPNPA

 Assumptions
 NP ⊆ (NP ∩ coNP)/poly
 SAT in (NP ∩ coNP)/poly via NP ∩ coNP set B

 Proof
 NPB ⊆ PB/poly ⇒ PHB = NPNPB

 NPB = NP because NPNP ∩ coNP = NP,  PHB = PH
 NP ⊆ PB/poly ⇒ PH=NPNP

 NP is a subset of PB/poly because
 SAT in PB/poly
 PB/poly closed under many-one reductions



Conclusion
 We have reached our goal!

 We proved all intermediate results
 It holds that if all NPMV functions have an NPSV refinement

then PH collapses to its second level

 Interpretation
 What does it mean for an NPMV function to have an NPSV

refinement?
 It means that an NPTM can isolate a single solution from

possibly exponentially many
 Isolating a unique solution for every NPMV function

collapses the polynomial hierarchy to its second level


