
Semi-feasible Algorithms
Hem-Ogi Chapter 3

CSC 286/486
Fall 2004

University of Rochester

Anustup Choudhury, Ding Liu, Eric Hughes, Matt Post, Mike
Spear, Piotr Faliszewski

Note for digital viewers
 This presentation was put together using

Microsoft Powerpoint, from the Office 2004
Suite for the Apple Macintosh. It was then
converted to PDF format using the PDF
converter built in to Mac OS X’s (version
10.3) printing interface

 PDF display was tested under Linux using
acroread 5.0.5; xpdf did not work

Semi-feasible Algorithms
Hem-Ogi Chapter 3

Section 3.1

Brought to you by:
Anustup Choudhury, Ding Liu, Eric Hughes,

Matt Post, Mike Spear, Piotr Faliszewski

 Introduction
 Definitions

 P-sel
 P/poly

 Tools
 Tournaments
 Superloser Theorem

 Main Result
 P-sel ⊆ P/poly
 P-sel ⊆ P/quadratic

Outline

 P – the class of feasible problems
 A nice class, but lacks many interesting languages...perhaps

semi-feasible algorithms are also useful?
 Let us consider languages that may not have polynomial-time

algorithms, but for which it is possible to efficiently decide which
of the two strings given is more likely to be in the language

 One such decision does not give a definite answer as to
whether a chosen string is in a language, but perhaps a series
of them leads to a solution (of some nice problem)

Semi-feasible Problems

 Def.
Set B is P-selective if there exists a function f,

f: Σ* x Σ* → Σ*

such that:
 f is polynomial-time computable
 f(x,y) ∈ {x,y}
 {x,y} ∩ B ≠ ∅ ⇒ f(x,y) ∈ B

In other words: f always picks one of its inputs, and
if it can pick a one that is in B then it does so.
“Function f picks the input that is no less likely to
be in the set.”

Such a function f is called a selector function

P-sel • Definition

 Def.
 P-sel is the set of of all P-selective languages

 P ⊆ P-sel
 The selector function can simply test membership

of both of its arguments
 Let A ∈ P. We define the selector function f to be:

 f(x,y) = x if x ∈ A
 f(x,y) = y otherwise

 Is P a proper subset of P-sel?
 Yes! That is exactly your homework!
 Don’t worry, we will help 

P-sel • Definition (cont’d)

 So what sets might be in P-sel, but outside of P?
 Consider the language:

LΩ = { x | x ≥ Ω }
Where:
 Ω is some real number
 the second occurrence of x is treated as a real number whose

binary representation is x
 Why is this language P-selective?

 f(x,y) = max(x,y)
 What is so special about it?

P-sel • Example

 Def.
HP = { x | x ∈ L(Mx) }

 As we all remember, HP is in RE–RECURSIVE
 Can we use that to our advantage?

Recall the Halting Problem...

 Gregory Chaitin from IBM found a really nice Ω…

 Note: the first occurence of p is treated as a string, but

the second as an integer
 If were recursive then RECURSIVE=RE

 But you still need to prove that!

P-sel • Example (Cont’d)

 P-sel contains sets that are not even
decidable!

 It stands to reason that there is some NP-
complete language that is P-selective!
 Um... Er... Well not likely, actually...

 Theorem
If there exists an NP-hard language A such that A is

P-selective then P=NP

The opposite direction is clearly true. We have P ⊆ P-sel so
If P=NP then all NP-complete sets are in P-selective. NP-

complete sets are NP-hard.

P-sel • NP-hard sets in P-sel?

Assumptions:
 A – an NP-hard

language
 A ∈ P-sel
 g – a selector

function for A
 f – a polynomial-time

computable function
many-one reducing
SAT to A

P-sel • Proof of the previous theorem

Proof technique:
Show a polynomial-time
algorithm for SAT by
pruning the tree of
possible truth assignments

Let F be the input formula. How do we use f
and g to find a satisfying truth assignment?

g is a selector function—it has to return the
string that is no less likely to be in the set.

Since f is a reduction, g gives us the path
in the tree to follow! After n steps the
ground formula is guaranteed to be
satisfiable iff F is satisfiable.

 g(f(F[v=True]) , f(F[v=False]))

F[v=True] F[v=False]

F

g picks the best path!

 A set is P-selective if given two strings we can
decide in polynomial time which of them is no less
likely to be in the set

 P-selective sets may be undecidable
 Yet, unless P=NP, none of them can be NP-hard

P-sel • Conclusion

 Recall tally languages
 L is tally if L ⊆ 1*

 What does it take to decide a tally language?
 L could be undecidable!
 To decide whether a string of length n is in a tally

language you just need to know whether 1n is in
the language...

 With 1 bit of advice for every length we could
decide any tally language...

P/poly • Introduction

 What about sparse languages?
 L is sparse if there is a polynomial p such that:

 |L=n| ≤ p(n)

 How much advice per length do we need to decide sparse
languages?
 There are at most polynomially many strings of length n
 Each string is n symbols long
 If, as a piece of advice, someone gave us all the strings of the

given length then we could simply compare each with the input
 The advice would only be polynomial in size

P/poly • Introduction (Cont’d)

 P/poly is the class of all languages that can
be decided given a polynomial amount of
advice

 A P/poly advice interpreter has to work in
polynomal time, but for every string length it
is given polynomially many advice bits

 Advice is anything the P/poly algorithm
designer wants; it does not even have to be
computable…

 ...but it must only depend on the input length
and not on the input content

P/poly • Definition (Informal)

 Theorem
All tally sets are in P/poly

 Theorem
All sparse languages are in P/poly

 In fact, P/poly is exactly the class of all sets
Turing-reducible to sparse sets.
 Unfortunately, we do not have time to prove this

P/poly • P/poly and sparse sets

 What do the symbols mean?
 A – some language
 f: N → N – some function

 A/f is the class of all languages L such that for some
function h it holds that:
 (∀n)[|h(n)| = f(n)]
 L = { x | <x, h(|x|)> ∈ A }

 Intuitions:
 Function f measures the amount of advice available
 Language A is the advice interpreter
 Function h provides the advice

P/poly • Definition of A/f

 What do the symbols mean?
 C – a class of languages
 F – a set of functions from integers to integers

 C/F is the class of all languages L such that :
 (∃ A ∈ C) (∃ f ∈ F) [L ∈ A/f]

 Where is P/poly?
 Take C to be the class P, and make F the set of all

polynomials

P/poly • Definition of C/F

 Let us formally prove that all tally languages are in P/poly
 Let T be some tally language
 First, select the advice function:

 We only need 1 bit of advice; f(n) = 1
 h(n) = 1 if 1n ∈ T
 h(n) = 0 otherwise

 Advice interpreter:
 A = {<x,y> | x ∈ 1* and y=1}

 A ∈ P, f is a polynomial ⇒ T ∈ P/poly

P/poly • Example

 Piotr defined for us:
 P-sel
 P/poly

 Here’s what I’m going to do
 Explain k-tournaments
 Prove that P-sel ⊆ P/poly

Outline

 What is a k-tournament?
 a graph with k nodes, and exactly one directed

edge between every pair of vertices
 Why is it called a “tournament”?

 think of each edge as a game played, with the
arrow pointing at the winner

Thm 3.1 • k-tournaments

3

1

8

7 6

2

5

4

Our k-tournament (k=8)

• arrows point to
the winners
• each node is
also considered
to defeat itself

 Properties of a k-tournament
 G = a k-tournament graph

H ⊆ G
1)

2) for each v ∈ VG–H, there is some g ∈ H such
that (g,v) ∈ EG

 in other words, there is a subset H of G whose
cardinality is O(log n) in the number of nodes in
G, and every node in G defeats one of the
nodes in H

 we call H the superloser set

Thm 3.1 • the superloser set

 At least one person loses half or more of her games
(why?)

 Proof procedure: Take that player and remove her
from the graph, G, as well as everyone who defeated
her. Add the player to the loser set, H
 there are between 0 and nodes left

 Repeat this process on the remaining graph, G’, until
there are no nodes left.

Proof 3.1 • process

 At each stage we have a full k-tournament
graph, with k shrinking through successive
stages

 Eventually there will be no nodes to consider
 The recurrence relation for this is

Proof of Thm 3.1 (cont’d)

 As Piotr explained:
 the class P-sel…

 “semi-feasible” sets: the class of sets that have a
selector function that takes two arguments, and returns
the one more likely (not less likely) to be in the set

 the class P/poly
 sets that can be solved with advice that is the same for

all strings of the same length

 As I explained
 k-tournaments

Review so far

 Proof idea: turn a semi-feasible set into a
P/poly set using a k-tournament

 Potential point of confusion: the text talks
about showing “that semi-feasible sets have
small circuits”
 having small circuits is another characteristic of

P/poly; just ignore for now

Hem-Ogi Thm 3.2 • P-sel ⊆ P/poly

 Let L be our semi-feasible (P-sel) set
 To show that it’s in P/poly, we need to

show two things
1.

– A will be the advice interpreter set from the definition
of P/poly

2.

– q is the polynomial bound on the advice size

Proof 3.2 • goal

 We’ll begin by making a k-tournament from
the elements of L=n.

 How?
 remember that a k-tournament is a property of

any fully-connected directed graph
 we can consider each string in L=n to be a node,

so all we need is a way to decide which of two
strings is the “winner”

 Any ideas?

Proof 3.2 • k-tournament at L=n

 L is a semi-feasible set, so there is a selector
function f

 Let f’(x,y) = f(min(x,y), max(x,y))
 f’ is a selector function for the same language
 f’ is commutative

 The commutativity of f’ allows us to construct
a k-tournament from the strings in L=n

 call this graph G such that for any
(a,b ∈ L=n ∧ a ≠ b) ⇒ ((a,b) ∈ EG ⇔ f’(a,b) = b)

Proof 3.2 • selector function

 Because of the k-tournament, we know that
we have a superloser set Hn ⊆ L=n where:

1)

2) for every element in L=n, there exists an
h ∈ Hn such that f(h,x) = x

(remember that every superloser beats itself)

Proof 3.2 • Properties of L=n

Proof 3.2 • map of the world

a map
of the world

 So far we have used the selector function to
produce a k-tournament: Now we’ll show our
set L is in P/poly by providing
 an advice function, g, and
 an advice interpreter, the set A

 Remember that advice on a set is the same
for all strings of the same length

 Any guesses what advice g gives for L on
strings of length n?

Proof 3.2 • what advice?

 The advice is Hn: g(n) provides the
superloser set at length n

 The advice interpreter set is:
A = {<x,y> | y is a (possibly empty)

list of elements v1, v2, … ,vz and for
some j it holds that f(vj,x) = x.

 Clearly, A ∈ P. Proof:
 On input <x,y>

FOR j FROM 1 TO z DO
IF f(x,vj) == x ACCEPT

REJECT

Proof 3.2 • good advice

 Are the requirements met?
 A ∈ P
 on the next slide we’ll show that x is in L if and

only if <x,g(|x|)> is in the advice interpreter set A
(i.e., that we’ve met the requirement for a set in
P/poly)

Proof 3.2 • correctness

 Verification of MA: three cases


 x is a superloser, so the test for some hj is whether f(x,x)
= x, which is always true



 x is not a superloser, but since it is in L it will defeat one
of the superlosers, so we accept



 x is not a superloser and does not defeat one, so we
reject

Proof 3.2 • verification

 The class P/poly allows a polynomial number
of advice bits. How many did we just use,
and what does that do for us?

One for the road

Semi-feasible Algorithms
Hem-Ogi Chapter 3

Section 3.2

Brought to you by:
Anustup Choudhury, Ding Liu, Eric Hughes,

Matt Post, Mike Spear, Piotr Faliszewski

Outline
 Review

 P-sel, P/poly
 P-sel ⊆ P/poly
 k-Tournaments

 Limited Advice
 k-Tournament properties

 P-sel ⊆ NP/linear
 Setting the stage for a Polynomial Hierarchy

collapse

P-sel
 Set B is P-selective iff ∃ function f

 f is polynomial-time computable
 f(x,y) ∈ {x,y}
 {x,y} ∩ B ≠ ∅ ⇒ f(x,y) ∈B

 B has a polynomial-time 2-ary selector
function which always chooses the input
more likely to be in B

P/poly
 The class of all languages that can be

decided in polynomial time with a polynomial
amount of advice
 The advice is polynomial with regard to the length

of the string whose membership is being tested
 Advice is dependent only on input length, not

input content
 The advice doesn’t even have to be

computable

k-Tournaments
 A graph with k nodes, and exactly one

directed edge between every pair of vertices
 No self loops

 Each arrow represents a game played, with
an arrow pointing to the winner

 There is a superloser set of size ≤
⎣log(k+1)⎦

P-sel ⊆ P/poly
 If we treat the members of our P-sel

language as a tournament, then we can use
the superloser set as advice

 We can check the membership of an
arbitrary string x by applying the selector
function on every pair (x,y), where y is a
string in the superloser set

Limited Advice
 Did we really only show P-sel ⊆ P/poly?

 We only used a quadratic amount of advice!
 Can we do better (perhaps by using some

nondeterminism?)

The Class PP
 It can be shown that P-sel ⊆ PP/linear
 But PP ⊇ NP

The Class NP
 P/poly ⊆ NP/poly
 P/quadratic ⊆ NP/quadratic
 Can nondeterminism reduce the advice

needed to determine membership in
polynomial time?

k-Tournaments
Background
 The “l” nodes are a

superloser set
 Every node in column

x defeats node lx
 There are ⎣log(k+1)⎦

superlosers
 l1 beat l2 (otherwise, l2

would be in l1’s column)
 Likewise, l2 beat l3, l3

beat l4 …

a1
a2
a3
a4
…

b1
b2
b3
b4
…

c1
c2
c3
c4
…

d1
d2
d3
d4
…

h1
h2
h3
h4
…

g1
g2
g3
g4
…

f1
f2
f3
f4
…

e1
e2
e3
e4
…

l1 l2 l3 l4 l5 l6 l7 l8

How much advice is
needed?

● No more than the number
of superlosers

● When x ∈ L, x defeats at
least one superloser

● When x ∉ L, x does not
defeat any superloser

Tournament

The King Loser
 Look at l8 more closely
 Every superloser beat l8

 If not, l8 would be in
another loser’s
column

 Everyone else beat a
superloser

 Everyone in the
tournament is “2 hops”
from l8

 l8 is the KING LOSER

l1 l2 l3 l4 l5 l6 l7 l8

a1
a2
a3
a4
…

b1
b2
b3
b4
…

c1
c2
c3
c4
…

d1
d2
d3
d4
…

h1
h2
h3
h4
…

g1
g2
g3
g4
…

f1
f2
f3
f4
…

e1
e2
e3
e4
…

The King Loser Theorem
 If G is a k-tournament, then there is a v ∈ VG

such that VG = R2,G(v)
 In every k-tournament, there exists a node

from which all nodes can be reached via
paths of length 2 or less

Proof of the King Loser Theorem
 Proof by induction
 Base case: for k-tournaments whose size ≤ 3, it is

obviously true

 Node a is always a King Loser
 Some graphs have several King Losers
 Disclaimer: The k=1 base case would suffice for

the following proof

a

b

c

a

b

c

a

b

a

k=1 k=2 k=3

Proof of the King Loser Theorem
 When k > 3, we use induction
 Recall when k=3

 For any k-tournament, we can classify every node
as follows:
1. x is the king loser
2. x beat the king loser
3. x beat someone who beat the king loser

 (this implies that the king loser beat x)!

 This classification into sets is clear in our k=3
example above
 (a is in set 1, b is in set 2, c is in set 3)

a

b

c

Proof of the King Loser Theorem
 What happens when we add a new node?

 Case 1: The new node (d)
beats the king loser (a)

 Case 2: The new node (d)
beats someone who
beats the king loser
(that is, some node in set B)

 Either way, the King Loser doesn’t change

a

B

C

d

a

B

C

d

(B and C are sets and may
contain multiple nodes

Proof of the King Loser Theorem
 Case 3: If cases 1 and 2 do not hold, then

the new node becomes the king loser

a

B

C

d

 The king loser (a) beat the new
node (d)
 otherwise case 1

 Everyone who beat the king loser
(everyone in set B) beat the new
node (d)
 otherwise case 2

 Everyone else (all nodes in set C) is
no farther from the new node (d)
than from the old superloser (a)!
 c beat b, b beat d, and b beat a

(B and C are sets and may
contain multiple nodes

Using the King Loser
 Let A ∈ P-sel via commutative selector function f.

Consider using f to build a tournament on the nodes in
A=n (we’ll be vague on uniformity but it isn’t a problem
here)

 If we knew the King Loser, we could use the following
algorithm to determine the membership of x in A=n:

If x = King Loser, accept
ElseIf f(x, King Loser)=x, accept

Else
Nondeterministically guess a string

y of the same length as x
On each path, if f(x,y)=x and

f(y,King Loser)=y, accept
Reject

Encoding the King Loser
 We want to show that P-sel ⊆ NP/linear
 The King Loser looks like sufficient advice
 How do we encode the King Loser?

 There is a distinct King Loser for each length n
 What if L=n = ∅ ?

Using n+1 Bits
 Let us define the advice function g(x) as

follows:

 where wn is the King Loser for strings of
length n

Using n+1 Bits
 Let us define the advice interpreter

A = {〈x, 0w〉｜there is a path of length at
most two, in the tournament induced on L=n

by f, from w to x}
 We hard-code the case of ε ∈ L
 Since the selector function f is deterministic

and takes polynomial time, we can construct
a NPTM to decide A.

Using n+1 Bits
 Recall this algorithm from before
If x = King Loser, accept

ElseIf f(x, King Loser)=x, accept

Else

Nondeterministically guess a string

y of the same length as x

On each path, if f(x,y)=x and

f(y,King Loser)=y, accept

Reject

 Since f is a deterministic polynomial-time function,
this is clearly a nondeterministic polynomial-time
algorithm

Conclusions
 P-sel ⊆ NP/linear
 Since P-sel is closed under complementation

 P-sel ⊆ coNP/linear
 P-sel ⊆ NP/linear ∩ coNP/linear

 P-sel ⊆ NP/n+1
 Can we do better?

 NO (see the book for details)

Collapsing the Polynomial Hierarchy
 Using the techniques we’ve covered so far,

we can learn the more subtle properties of
the polynomial hierarchy

 But what is the polynomial hierarchy?

The Polynomial Hierarchy
 A time-bounded analog of the arithmetical

hierarchy
 We can think of it iteratively…

 Q, R are poly-time predicates; p’, p’’ are polynomials
 swaps the quantifiers

 … or inductively

The Polynomial Hierarchy
(bounded by PSPACE)

FP – Deterministic Functions
 A function is in FP iff:

 It is single valued
 It is computed by a deterministic, polynomial time

TM
 It does not have to be total

Nondeterministic Functions
 NPMV – nondeterministic, polynomial time,

multi-valued
 A function f belongs to NPMV if there exists a

NPTM N such that on input x, f’s outputs are
exactly the outputs of N

y1 y2 y3 y2 y4 y2 y5

Nondeterministic Functions
 On input x, set-f(x) is the set of all possible

outputs of NPMV function f
 set-f(x) = {a｜a is an output of f(x)}
 On inputs where f(x) is undefined, set-f(x) = ∅
 We don’t care if an item in set-f(x) occurs on

multiple paths

y1 y2 y3 y2 y4 y2 y5

set-f(x) = {y1, y2, y3, y4, y5}

Nondeterministic Functions
 NPSV – nondeterministic, polynomial time,

single-valued
 A subset of NPMV where ∀ x, ||set-f(x)|| ≤ 1

y1 y1 y1 y1 y1 y1 y1

set-f(x) = {y1}

NPMV Selector Functions
 A set L is NPMV-selective if

 ∀ x,y. set-f(x,y) ⊆ {x,y}
 ∀ x,y. x ∈ L ∨ y ∈ L ⇒ ∅ ≠ set-f(x,y) ⊆ L

 In other words, NPMV-selector functions can
return multiple values, but only if both
arguments are in L or both arguments are
not in L

 The selector function can return ∅ when both
arguments are not in L

 NPSV-selective sets exist as well

Refinement
 NPMV function f is a refinement of NPMV

function g if
 ∀ x. set-f(x) = ∅ ⇔ set-g(x) = ∅
 ∀ x. set-f(x) ⊆ set-g(x)

 A refinement has fewer outputs, but remains
defined whenever the original function was
defined

 A refinement may be NPSV

Next Time
 Section 3.3: Unique Solutions Collapse the

Polynomial Hierarchy

Semi-feasible Algorithms
Hem-Ogi Chapter 3

Section 3.3

Brought to you by:
Anustup Choudhury, Ding Liu, Eric Hughes,

Matt Post, Mike Spear, Piotr Faliszewski

Outline
 Review

 FP, NPMV, NPSV
 refinements
 NPMV-sel, NPSV-sel
 NP/poly, coNP/poly etc.

 Goal
 If all NPMV functions have NPSV refinements

then PH collapses to its second level...
 ... and even further

FP – Deterministic Functions
 A function is in FP iff:

 It is single-valued
 It is computed by a deterministic, polynomial-time

TM
 It does not have to be total

Nondeterministic Functions
 NPMV – nondeterministic, polynomial-time,

multivalued
 A function f belongs to NPMV if there exists a

NPTM N such that on input x, f’s outputs are
exactly the outputs of N

y1 y2 y3 y2 y4 y2 y5

Nondeterministic Functions
 On input x, set-f(x) is the set of all outputs of

NPMV function f
 set-f(x) = {aa is an output of f(x)}
 On inputs where f(x) is undefined, set-f(x) = ∅
 We don’t care if an item in set-f(x) occurs on

multiple paths

y1 y2 y3 y2 y4 y2 y5

set-f(x) = {y1, y2, y3, y4, y5}

Nondeterministic Functions
 NPSV – nondeterministic, polynomial-time,

single-valued
 A subset of NPMV where ∀ x, ||set-f(x)|| ≤ 1

y1 y1 y1 y1 y1 y1 y1

set-f(x) = {y1}

NPMV Selector Functions
 A set L is NPMV-selective if

 ∀ x,y. set-f(x,y) ⊆ {x,y}
 ∀ x,y (x ∈ L ∨ y ∈ L) ⇒ ∅ ≠ set-f(x,y) ⊆ L

 In other words, NPMV-selector functions can
return multiple values, but only if both
arguments are in L or both arguments are
not in L

 The selector function can return ∅ when both
arguments are not in L

 NPSV-selective sets exist as well

Refinement
 NPMV function f is a refinement of NPMV

function g if
 ∀x. set-f(x) = ∅ ⇔ set-g(x) = ∅
 ∀x. set-f(x) ⊆ set-g(x)

 A refinement has fewer outputs, but remains
defined whenever the original function was
defined

 A refinement may be NPSV

Goal
 Theorem

If all NPMV functions have NPSV refinements then PH
collapses to its second level, NPNP.

 We need the following intermediate results:
 NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly
 NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

 Proof outline
 Create an NPMV selector for SAT
 Refine it to be an NPSV selector
 Conclude NP ⊆ NPSV-sel ∩ NP
 NP ⊆ NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP

Goal
 Theorem

If all NPMV functions have NPSV refinements then PH
collapses to its second level, NPNP.

 We need the following intermediate results:
 NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly
 NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

 Proof outline
 Create an NPMV selector for SAT
 Refine it to be an NPSV selector
 Conclude NP ⊆ NPSV-sel ∩ NP
 NP ⊆ NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP

Goal
 Theorem

If all NPMV functions have NPSV refinements then PH
collapses to its second level, NPNP.

 We need the following intermediate results:
 NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly
 NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

 Proof outline
 Create an NPMV selector for SAT
 Refine it to be an NPSV selector
 Conclude NP ⊆ NPSV-sel ∩ NP
 NP ⊆ NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP

Roadmap
 Assume all NPMV functions have NPSV

refinements
 Prove: SAT has an NPMV selector function
 If: SAT has an NPSV selector function
 Then: NP ⊆ NP ∩ NPSV-sel
 Prove: NP ∩ NPSV-sel ⊆ (NP ∩ coNP)/poly
 Prove: NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

NPMV selector for SAT
 NPMV selector for SAT:

 fSAT(x,y) = {x,y} ∩ SAT
 Clearly, fSAT is a selector
 Is it in NPMV?

 Nondeterministically choose x or y
 Guess a satisfying truth assignment for the string chosen
 Check if it indeed is satisfying, and output the chosen

string if so

 SAT ∈ NPMV-sel

NPSV selector for SAT
 Assumptions

 All NPMV functions have NPSV refinements
 fSAT is an NPMV selector for SAT

 We can refine it to be an NPSV selector!

Roadmap
 Assume all NPMV functions have NPSV

refinements
 Prove: SAT has an NPMV selector function
 If: SAT has an NPSV selector function
 Then: NP ⊆ NP ∩ NPSV-sel
 Prove: NP ∩ NPSV-sel ⊆ (NP ∩ coNP)/poly
 Prove: NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

NP ⊆ NP ∩ NPSV-sel
 Assumptions

 All NPMV functions have NPSV refinements
 Under these assumptions SAT is in NPSV-

sel (it has an NPSV selector function)
 If NPSV-sel was closed under polynomial-

time many-one reductions then we would be
done

NPSV-sel
 Theorem

NPSV-sel is closed under many-one
polynomial-time reductions

 Proof
 A polynomial-time many-one reduces to B
 B ∈ NPSV-sel
 fB – NPSV selector for B
 g – FP function many-one reducing A to B

Roadmap
 Assume all NPMV functions have NPSV

refinements
 Prove: SAT has an NPMV selector function
 If: SAT has an NPSV selector function
 Then: NP ⊆ NP ∩ NPSV-sel
 Prove: NP ∩ NPSV-sel ⊆ (NP ∩ coNP)/poly
 Prove: NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly
 Assumptions

 L ∈ NPSV-sel ∩ NP
 NL – an NPTM accepting L
 f – an NPSV selector for L
 set-f(x,y) = set-f(y,x)

 Goal
 Show that L ∈ (NP ∩ coNP)/poly
 Proof is essentially the same as in section 3.1,

but with a more carefully chosen advice string.
 We need to provide:

 An advice interpreter that belongs to NP ∩ coNP
 Advice of at most polynomial size

NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly
 Advice interpreter:

 Input: <x,d>
 Interpret d as <<a1,…,am>,<w1,…,wm>>

 List of strings a1, …, am, each of length |x|
 List of strings w1, …, wm

 Output:
 Accept if for every i, wi is an accepting computation path of NL

on ai, and set-f(x,aj) = {x} for at least one j
 Reject otherwise

 Clearly, it is an NP algorithm
 It is also a coNP algorithm

 Discussed during lecture
 The advice

 ai – superloser set for a tournament induced by f on L=n

 wi – accepting computation paths for ai’s.

Roadmap
 Assume all NPMV functions have NPSV

refinements
 Prove: SAT has an NPMV selector function
 If: SAT has an NPSV selector function
 Then: NP ⊆ NP ∩ NPSV-sel
 Prove: NP ∩ NPSV-sel ⊆ (NP ∩ coNP)/poly
 Prove: NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

Relativization
 Theorem X

If A ∈ P/poly then Ā ∈ P/poly
 Proof

 Advice interpreter for Ā simulates the advice
interpreter for A, and flips its answer

 Advice is the same
 Relativized version Theorem X

If A ∈ PB/poly then Ā ∈ PB/poly
 The same proof works!
 We say that Theorem X relativizes

Relativization (Cont’d)
 Most of theorems relevant to complexity

theory relativize
 There are some exceptions, though.
 Nonrelativizing theorems are usually very hard to

prove
 A theorem resolving the P vs. NP problem

cannot relativize
 There is a set A such that PA = NPA

 There is a set B such that PB ≠ NPB

NP ⊆ (NP ∩ coNP)/poly ⇒ PH=NPNP

 The Karp-Lipton Theorem
 NP ⊆ P/poly ⇒ PH=NPNP

 This theorem relativizes
 Let A be some language
 NPA ⊆ PA/poly ⇒ PHA=NPNPA

 Assumptions
 NP ⊆ (NP ∩ coNP)/poly
 SAT in (NP ∩ coNP)/poly via NP ∩ coNP set B

 Proof
 NPB ⊆ PB/poly ⇒ PHB = NPNPB

 NPB = NP because NPNP ∩ coNP = NP, PHB = PH
 NP ⊆ PB/poly ⇒ PH=NPNP

 NP is a subset of PB/poly because
 SAT in PB/poly
 PB/poly closed under many-one reductions

Conclusion
 We have reached our goal!

 We proved all intermediate results
 It holds that if all NPMV functions have an NPSV refinement

then PH collapses to its second level

 Interpretation
 What does it mean for an NPMV function to have an NPSV

refinement?
 It means that an NPTM can isolate a single solution from

possibly exponentially many
 Isolating a unique solution for every NPMV function

collapses the polynomial hierarchy to its second level

