

The Self-Reducibility Technique

Qi Ge Xiaoming Gu

Department of Computer Science University of Rochester

November 9, 2006

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

3

Outline

Summary

(日本) (日本) (日本)

Ξ 9Q@

Motivation

- Is there a sparse coNP-complete language?
- Is there a sparse NP-complete language?
- Is there a sparse language in NP-P?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sac

Self-Reducibility

Definition

A language *L* is said to be self-reducible, if there is a deterministic polynomial-time TM *M* such that $L = L(M^L)$ and, for each input of length *n*, $M^L(x)$ queries the oracle for words of length, at most, n - 1.

Example

SAT:

- $SAT = \{F | F \text{ is satisfiable.}\}$
- A formula *F* with variables $v_1, v_2, ..., v_n$ is satisfiable iff either $F[v_i = True]$ or $F[v_i = False]$ is satisfiable, for each $1 \le i \le n$.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sparse Sets

Definition

A set S is sparse if there is some polynomial p such that $|S^{\leq n}| = |\{x|x \in S \land |x| \leq n\}| \leq p(n).$

Example

Tally set:

- *T* ⊆ {1}*
- p(n) = n + 1
- There is some tally set which is even undecidable, e.g., $T_{HP} = \{1^{(1x)_{binary}} | x \in HP\}.$

イロト イポト イヨト イヨト

3

Sar

Tally NP-complete Languages

- An easier problem: is there any tally NP-complete language?
- Tally set: $T \subseteq \{1\}^*$.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

<ロト < 部 ト < き ト < き ト ・</p>

3

Sac

Tally NP-complete Languages (Cont.)

Theorem

If there is a tally set that is \leq_m^p -hard for NP, then P=NP.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

<ロト < 回 > < 回 > < 回 > .

3

Sac

Tally NP-complete Languages (Cont.)

How to prove?

- $SAT \leq_m^p T$, that is there is a polynomial-time deterministic function g many-one reducing SAT to T.
- $T \subseteq \{1\}^*$.
- SAT is 2-disjunctive-self-reducible.

・ロト ・四ト ・ヨト・

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tally NP-complete Languages (Cont.)

Algorithm

Input: *F* with v_1, v_2, \ldots, v_n as its variables

- Initialization: $C = \{F\};$
- 2 Do *i* = 1 to *n*
- Expand C;
- Prune C;
- Pass C to the next phase;
- *F* is satisfiable iff there is some formula $f \in C$ which evaluates to True;

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ -

Tally NP-complete Languages (Cont.)

Correctness and time complexity of the algorithm:

- At the beginning of each stage, there is some satisfiable formula in *C* iff at the end of this stage, there is some satisfiable formula in *C*.
- The size of *C* at the beginning of each stage is at most $p_g(|F|) + 1$.

・ロト ・ 四ト ・ ヨト ・ ヨト

-

Sparse coNP-complete Language

- Is there any sparse coNP-complete language?
- Sparse set *S*: there is a polynomial *p* such that for all *n*, $|S^{\leq n}| \leq p(n)$.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< 日 > < 回 > < 回 > < 回 > < 回 > <

Sparse coNP-complete Language (Cont.)

Theorem

If there is a sparse set that is \leq_{m}^{p} -hard for coNP, then P=NP.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

ヘロア 人間 アメヨア 人間 アー

Sparse coNP-complete Language (Cont.)

How to prove? Can we generalize the above method?

- $SAT \leq_m^p S^c$, that is there is a polynomial-time deterministic function *g* many-one reducing *SAT* to S^c .
- S is a sparse set.
- SAT is 2-disjunctive-self-reducible.

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ -

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

◆□▶ ◆舂▶ ◆き▶ ◆き▶ ・ きー

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

Sparse coNP-complete Language (Cont.)

Algorithm

Input: F with v_1, v_2, \ldots, v_n as its variables

- 1 Initialization: $C = \{F\};$
- 2 Do i = 1 to n
- Expand C;
- Prune C;
- If *C* contains at least $p_d(p_k(|F|)) + 1$ elements, stop and declare $F \in SAT$;
- Pass C to next phase;
- *F* is satisfiable iff there is some formula $f \in C$ which evaluates to True;

Sparse coNP-complete Languages (Cont.)

Correctness and time complexity of the algorithm:

- At the beginning of each stage, there is some satisfiable formula in *C* iff at the end of this stage, there is some satisfiable formula in *C*.
- The size of *C* at the beginning of each stage is at most $p_d(p_k(|F|)) + 1$.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

-

Sparse NP-complete Language

Is there a sparse NP-complete language?

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

ヘロア 人間 アメヨア 人間 アー

1

Sparse NP-complete Language (Cont.)

Theorem

If there is a sparse set that is \leq_m^p -complete for NP, then P=NP.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

ヘロア 人間 アメヨア 人間 アー

Sparse NP-complete Language (Cont.)

What do we have now?

- S is a sparse set.
- SAT ≤^p_m S, that is there is a polynomial-time deterministic function g many-one reducing SAT to S.
- SAT is 2-disjunctive-self-reducible.

What's the problem?

- Is $SAT \leq_m^p S$ enough to get the result?
- Can we find a relationship between S^c and S, e.g., $S^c \leq_m^p S$?

(日)

Sac

Sparse NP-complete Language (Cont.)

Definition

The census function c_S of set S is defined to be $c_S(n) = |\{x | x \in S \land |x| \le n\}|.$

For each sparse set S, we have that the census function of S is bounded by some polynomial.

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ -

Sparse NP-complete Language (Cont.)

Why we choose polynomial-time computable census function?

- If the census function of some sparse NP-complete language S is polynomial-time computable, then S^c ∈ NP.
- $SAT \leq_m^p S$ and $S^c \leq_m^p S \Rightarrow SAT^c \leq_m^p S$.
- Then we have P=NP (by our previous result about sparse coNP-hard sets).

(日)

Sparse NP-complete Language (Cont.)

Theorem

If an NP-complete sparse language exists such that its census function c_S is computable in polynomial time, then P=NP.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ -

Sparse NP-complete Language (Cont.)

NP Algorithm for S^c

Input: x

• Let
$$n = |x|, k = c_S(n)$$
.

- Guess k distinct strings of length at most n.
- Nondeterministicly test to make sure that all these k strings are in S, and if they all are then accept iff x is not one of these strings.

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ -

Sparse NP-complete Language (Cont.)

Next, we will prove the theorem that if $SAT^c \leq_m^p S$ for some sparse set *S* then P=NP via depth-first search and this approach will be useful in the later proof.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ -

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 日 ・

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 日 ・

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 日 ・

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

Sparse NP-complete Language (Cont.)

Algorithm for SAT

Input: formula F

- Use a set L to keep the images of unsatisfiable formula under f, initialize L to be {f(False)};
- If F has no variables and evaluates to True, then F is satisfiable;
- **3** If f(F) is in *L*, then *F* is unsatisfiable;
- Otherwise recursively test $F[v_i = True]$ and $F[v_i = False]$;
- If neither of the two formula is satisfiable then F is unsatisfiable and add f(F) to L.
- Otherwise *F* is satisfiable.

Sparse NP-complete Language (Cont.)

Correctness and time complexity of the algorithm:

- Tree pruning.
- The size of *L* is at most p(q(|F|)).
- Visit at most np(q(|F|)) + n 1 inner nodes.

・ロト ・四ト ・ヨト・

Sparse NP-complete Language (Cont.)

- What is the situation if the census function cannot be computed in polynomial time?
- Just "guess" a value for census function.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

(日)

Sparse NP-complete Language (Cont.)

- Define pseudo-complement of *S* to be $PC(S) = \{\langle x, k, 0^n \rangle || x | \le n \land k \le p(n) \land (k < c_S(n) \lor (k = c_S(n) \land x \in S^c))\}.$
- If S is a sparse NP language, then PC(S) is in NP.

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

Sparse NP-complete Language (Cont.)

NP Algorithm for PC(S)

Input: $\langle x, k, 0^n \rangle$

- Check if $|x| \le n \land k \le p(n)$, if not, reject.
- Guess k distinct strings of length at most n.
- Nondeterministicly test to make sure that all these k strings are in S, and if they all are then accept iff x is not one of these strings.

ヘロト 人間 ト 人間 ト 人間 ト

Sparse NP-complete Language (Cont.)

What do we have now?

- $SAT^{c} \leq_{m}^{p} S^{c}$
- $PC(S) \leq_m^p S$
- S is sparse.
- SAT is 2-disjunctive-self-reducible.

・ロト ・四ト ・ヨト ・ヨト

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< ロ > < 部 > < き > < き > <</p>

∃ 990

Sparse NP-complete Language (Cont.)

- If k = c_S(p_h(|F|)), |⟨h(F), k, 0^{p_h(|F|)}⟩| is bounded by some polynomial.
- If k = c_S(p_h(|F|)), in the tree-traversal algorithm, at most some polynomial number of inner nodes will be visited.

(日)

Sparse NP-complete Language (Cont.)

Algorithm for SAT

Input: formula F

• For k = 0 to $p(p_h(|F|))$

- Use f_{|F|,k} as pruning function to execute the tree-traversal algorithm and visit at most |F|p(p_g(3|F|)) + |F| 1 inner nodes;
- If the algorithm accepts then accepts;
- reject;

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sparse NP-complete Languages (Cont.)

Correctness and time complexity of the algorithm:

- The algorithm accepts a formula *F* iff for some *k*, there is a tree-traversal path to reach a leaf node which evaluates to True.
- The algorithm never rejects a formula which is satisfiable.
- The number of visited tree nodes is bounded by some polynomial.

・ロト ・ 同ト ・ ヨト・

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 日 ・

590

E and NE

- $E = \bigcup_{c>0} DTIME[2^{cn}]$
- NE= $\bigcup_{c>0}$ NTIME[2^{cn}]

Motivation Definitions **Tally NP-complete Languages** Sparse coNP-complete Language Sparse NP-complete Language Sparse languages in NP-P

F and NF Theorem Summary

Theorem

E and NE Theorem Summary

Theorem The following statements are equivalent 1. E=NE 2. NP-P contains no sparse sets 3. NP-P contains no tally sets

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sac

E and NE Theorem Summary

If NP-P contains no tally sets then E=NE.

Sub-Theorem($3 \Rightarrow 1$)

If NP-P contains no tally sets then E=NE.

What we have:

- A. NP-P contains no tally sets
- B. P⊆NP
- C. E⊆NE

・ロト ・四ト ・ヨト ・ヨト

E and NE Theorem Summary

If NP-P contains no tally sets then E=NE.

Proof for $NE \subseteq E$

Start Point

 $L \in NE \Rightarrow$ there exists a nondeterministic exponential-time TM N_L and $L(N_L) = L$

Construct a tally set

$$T = \{1^k | (\exists x \in L) [k = (1x)_{bin}]\}$$

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

E and NE Theorem Summary

If NP-P contains no tally sets then E=NE.

 $T \in NP? - YES.$

Algorithm for T

- Input string y
- Reject if y is not of the form 1^k (k > 0)
- Simulate $N_L(x)$ $(k = (1x)_{bin})$ if y is of the form 1^k (k > 0)

The algorithm is nondeterministic and polynomial-time. $T \in NP \Rightarrow T \in P \Rightarrow$ there exists a deterministic polynomial-time TM M_T and $L(M_T) = T$

(日)

-

E and NE Theorem Summary

If NP-P contains no tally sets then E=NE.

Algorithm for *L*

- Input string y
- Get string $x = 1^{(1y)_{bin}}$
- Simulate $M_T(x)$ and accept if and only if $M_T(x)$ accepts

The algorithm is deterministic and exponential-time. So $L \in E$ and NE $\subseteq E$. The claim is proved.

・ロト ・四ト ・ヨト ・ヨト

E and NE Theorem Summary

If E=NE then NP-P contains no tally sets.

Warm Up for Sub-Theorem $(1 \Rightarrow 2)$

If E=NE then NP-P contains no sparse sets.

Sub-Theorem(1 \Rightarrow 3)

If E=NE then NP-P contains no tally sets.

What we have:

- A. E=NE
- B. P⊆NP

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

・ロト ・四ト ・ヨト ・ヨト

E and NE Theorem Summary

If E=NE then NP-P contains no tally sets.

Proof for tally set $T \in P$ if $T \in NP$

Start Point Tally set $T \in NP \Rightarrow$ there exists a nondeterministic polynomial-time TM N_T and $L(N_T) = T$

Construct an NE language

 $L = \{x | (x = 0 \lor x \text{ is a binary string of nonzero length with no leading zeros}) \land 1^{(x)_{bin}} \in T\}$

・ロト ・四ト ・ヨト ・ヨト

E and NE Theorem Summary

If E=NE then NP-P contains no tally sets.

$L \in NE? - YES.$

Algorithm for L

- Input string y
- Reject if $x \neq 0$ and x is a binary string with leading zeros.
- Otherwise,
 - Get string $x = 1^{(y)_{bin}}$.
 - Simulate $N_T(x)$ and accept if and only if $N_T(x)$ accepts.

The algorithm is nondeterministic and exponential-time. $L \in NE \Rightarrow L \in E \Rightarrow$ there exists a deterministic exponential-time TM M_L and $L(M_L) = L$

・ロト ・四ト ・ヨト ・ ヨト

-

Sac

E and NE Theorem Summary

If E=NE then NP-P contains no tally sets.

Algorithm for T

- Input string y
- Reject if y is not of the form 1^k ($k \ge 0$)
- Otherwise, simulate M_L(x) (k = (x)_{bin}) if y is of the form 1^k (k ≥ 0)

The algorithm is deterministic and polynomial-time. So $T \in P$ and no tally sets in NP-P. The claim is proved.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

E and NE Theorem Summary

If E=NE then NP-P contains no sparse sets.

Sub-Theorem(1⇒2)

If E=NE then NP-P contains no sparse sets.

What we have:

- A. NE=E
- B. P⊆NP

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

・ロト ・四ト ・ヨト・

E and NE Theorem Summary

If E=NE then NP-P contains no sparse sets.

Proof for sparse sets $S \in P$ if $S \in NP$

Start Point

Sparse set $S \in NP(\forall n)[||S^{=n}|| \le q(n)] \Rightarrow$ there exists a nondeterministic polynomial-time TM N_S and $L(N_S) = S$

Difference from Warm Up

How to construct an NE language *L* from *S* that a string in *S* can be checked by *L* easily?

・ロト ・ 一日 ト ・ 日 ト

E and NE Theorem Summary

If E=NE then NP-P contains no sparse sets.

Construct an NE language (HIS encoding set)

 $\begin{array}{l} L = \{0\#n\#k \mid ||S^{=n}|| \geq k\} \bigcup \\ \{1\#n\#c\#i\#j \mid (\exists z_1, z_2, ..., z_c \in S^{=n})[z_1 <_{lex} z_2 <_{lex} <_{lex} \\ z_c \land \text{ the } j\text{th bit of } z_i \text{ is } 1]\} \end{array}$

Qi Ge and Xiaoming Gu The Self-Reducibility Technique

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

E and NE Theorem Summary

If E=NE then NP-P contains no sparse sets.

 $L \in NE? - YES.$

Algorithm for *L*

- Input string y
- Reject if y is syntactically illegal
- Check the first bit of y
 - The first bit of y is 0.
 - Get binary value of *n* and *k*.
 - Guess k distinct strings that are n bits long. If there is such a strings set that each string can be accepted by N_S then accept. Otherwise, reject.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Sar

- The first bit of y is 1.
 - ...

E and NE Theorem Summary

If E=NE then NP-P contains no sparse sets.

Algorithm for *L* (Cont.)

- Input string y
- Reject if the string is not either form of L
- Check the first bit of y
 - The first bit of y is 0.
 - ...
 - The first bit of y is 1.
 - Get binary value of *n*, *c*, *i* and *j*.
 - Guess *c* distinct strings that are *n* bits long. Then make them in lexical order. If there is such a set that each string is accepted by *N_S* and the *j*th bit of *i*th string is 1 then accept. Otherwise, reject.

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ -

3

Sar

E and NE Theorem Summary

If E=NE then NP-P contains no sparse sets.

The algorithm is nondeterministic and exponential-time. $L \in NE \Rightarrow L \in E \Rightarrow$ there exists a deterministic exponential-time TM M_L and $L(M_L) = L$

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ -

E and NE Theorem Summary

If E=NE then NP-P contains no sparse sets.

Algorithm for S

- Input string y
- Let n = |y| and simulate $M_L(0\#n\#0)$, $M_L(0\#n\#1)$, $M_L(0\#n\#2)$, ..., $M_L(0\#n\#q(n))$. Then get $c = Max\{k|0 \le k \le q(n) \land 0\#n\#k \in L\} = ||S^{=n}||$.

・ロト ・ 同ト ・ ヨト ・ ヨト

E and NE Theorem Summary

If E=NE then NP-P contains no sparse sets.

Algorithm for S (Cont.)

Simulate

$$\begin{split} &M_L(1\#n\#c\#1\#1),\,...,\,M_L(1\#n\#c\#1\#n),\\ &M_L(1\#n\#c\#2\#1),\,...,\,M_L(1\#n\#c\#2\#n), \end{split}$$

....,

 $M_L(1\#n\#c\#c\#1), ..., M_L(1\#n\#c\#c\#n).$ Then we can get all strings in *L* that are *n* bits long by checking each bit of them. So *y* is accepted if and only if *y* belongs to this set.

The algorithm is deterministic and polynomial-time. So $S \in P$ and no sparse sets in NP-P. The claim is proved.

Sac

Summary

E and NE Theorem Summary

- Two classes: E and NE.
- Theorem 1.18 of Hem-Ogi: The three statements are equivalent.
 - E=NE
 - NP-P contains no sparse set
 - NP-P contains no tally sets

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

1

Sar

E and NE Theorem Summary

Thanks!

Qi Ge and Xiaoming Gu The Self-Reducibility Technique