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Chapter Objectives

I Divide and conquer
Binary search
Tournament theory result

I Tournament theory result is an upper bound on the
nonuniform complexity of semi-feasible sets (Sec. 3.1)

I NP machines cannot find unique satisfying assignments to
satisfiable formulas unless the polynomial hierarchy collapses
(Sec. 3.3)
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Semi-feasible Problems: Motivation

I P – the class of feasible problems; the class of sets with
polytime membership algorithms

I Consider a language which may not have polytime algorithms,
but for which one can efficiently decide which of the two
strings given is more likely (or no less likely) to be in the
language

I P-sel – the class of sets with polytime semi-membership
algorithms
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P-sel – Semi-feasible Computation

Def: A set L is P-selective if there exists a function
f : Σ∗xΣ∗ → Σ∗ such that
1. f is polynomial-time computable
2. ∀x , y ∈ Σ∗, f (x , y) ∈ {x , y}
3. ∀x , y ∈ Σ∗, {x , y} ∩ L 6= ∅ =⇒ f (x , y) ∈ L

f is a selector function for set L.

Given two inputs, f always chooses one that is no less likely to be
in the set L.
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P-sel – Semi-feasible Computation

Def: P-sel is the class of all P-selective sets.

Example: LΩ = {x | x ≥ Ω}, where

I Ω is a real number

I the first occurrence of x is a binary string

I the second occurrence of x is treated as a real number whose
binary representation is the first occurrence of x

Why is LΩ P-selective?
Answer: f (x , y) = max(x , y)
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P ⊆ P-sel

Theorem: P ⊆ P-sel.
Proof:

I Let L ∈ P.

I Define the selector function f to be such that
f (x , y) = x if x ∈ L
f (x , y) = y otherwise

In fact, P ( P-sel, as we will soon find out!
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P ( P-sel

Recall the halting problem, HP = {x | x ∈ L(Mx)}, is R.E. but not
recursive.

Chaitin constant / halting probability (due to Gregory Chaitin):
probability that a randomly generated program for a given model
of computation or programming language will halt
ΩChaitin = Σp∈HP2−|p|

Theorem: If LΩChaitin
were recursive, then R.E . = RECURSIVE .

Proof: Homework.
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NP-hard sets in P-sel?

As we have seen, P-sel contains some undecidable sets!

Does P-sel contain any NP-complete language?
....

Theorem: There exists an NP-hard and P-selective language if
and only if P = NP.
Proof: Homework.
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P/poly: Motivation

Consider a language which may not be decided in polynomial time,
but with the “small, appropriate advice” for interesting lengths of
input, may be decided in polynomial time.

P/poly is the class of all languages that can be decided by a
polytime machine using a polynomial amount of advice. Such a
polytime machine is called a P/poly advice interpreter, given
polynomially many advice bits for every input string length.

Advice can be anything desired by the P/poly algorithm designer.
It may be terribly hard to compute, but must depend only on the
length of the input.
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P/poly - Formal Definition

Def: Class P/poly denotes {L|(∃A ∈ P)(∃ polynomial
f )[L ∈ A/f ]}, where A/f denotes the class of all languages such
that for some function h satisfying (∀n)[|h(n)| ≤ f (n)], it holds
that L = {x | 〈x , h(|x |)〉 ∈ A}.

Notes:

I Language A is the advice interpreter

I Function f specifies the amount of advice available

I Function h gives the advice
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TALLY ⊆ P/poly

Theorem: TALLY ⊆ P/poly.
Proof:

I Let L ∈ TALLY.

I Select the advice function: only 1 advice bit needed so
f (n) = 1
h(n) = 1 if 1n ∈ L
h(n) = 0 otherwise

I Define advice interpreter A = {〈x , y〉 | x ∈ 1∗ and y = 1}
I A ∈ P and f is a polynomial =⇒ L ∈ P/poly.
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SPARSE ⊆ P/poly

Let SPARSE denote the set of all sparse languages.
Theorem: SPARSE ⊆ P/poly.

Proof sketch:
Let L ∈ SPARSE. Then a polynomial p exists such that
|L=n| ≤ p(n).
What advice? How much advice?

I There are at most polynomially many strings of length n

I If someone gave us all the strings in L=n as a piece of advice,
we could decide in polynomial time whether a given input x of
length n is in L

I The advice for each possible input length is polynomial in size
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P ( P/poly

Theorem: P ( P/poly.

Proof idea:

I Show any P language is also a P/poly language

I Show P is a proper subset of P/poly as the latter contains
some undecidable sets
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K-tournaments

Def: A k-tournament is a graph with k nodes, no self-loops, and
exactly one directed edge between each distinct pair of nodes.

Intuitions:

I Each directed edge represents a game played between two
players

I Each directed edge points towards the winner (no ties are
allowed)
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Example: 4-tournament

2 3

1

4− Tournament Graph

4

Comments:

I Arrows point towards the winners

I Each node is considered to defeat itself
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Theorem 3.1

Let G be a k-tournament on nodes VG = {1, 2, ..., k} with edges
EG . There exists a set H ⊆ VG such that
1. ||H|| ≤ blog(k + 1)c
2. for each v ∈ (VG − H), there exists some g ∈ H such that
(g , v) ∈ EG

In other words, there is a superloser subset H (of VG ) whose
cardinality is logarithmic in the number of nodes in G , and each
node in VG defeats at least one of the nodes in H.
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Proof 3.1

Consider a tournament involving k players, each playing (k − 1)
games. Some player must lose at least dk−1

2 e of its games. (Why?)

Take the player and add it to H, removing it and all other players
defeating it from G . Now there remain at most dk

2 e − 1 nodes in
G . Repeat this on G until no nodes remain.

||H|| is bounded by the recurrence relation:
S(0) = 0
S(k) ≤ 1 + S(dk

2 e − 1), for each k ≥ 1

This implies that S(k) ≤ blog(k + 1)c.
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Connection between P-sel and Tournament

Let L be a P-selective set.

We can construct a tournament for L=n from L’s P-selector f .

I Represent each element in L=n as a node

I f is a 2-ary function defined for all possible inputs x and y .

I For each pair of distinct vertices x and y in the tournament,
taking f (x , y) as the winner, create a directed edge from the
loser node of the two to the winner node f (x , y).

We can construct such a tournament for L=n ⊆ L for each n.
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Theorem 3.2

P-sel ⊆ P/poly.

Proof idea:
At each length n in a P-selective set L, there will always exist, by
Thm 3.1, a small set H of nodes in L such that every node in L=n

defeats one of these nodes, and H will function as a “small advice
set” for L.

Aditi Goswami Daphne Liu Chapter 3:The Tournament Divide and Conquer Technique



Lecture 1
Lecture 2
Lecture 3

Proof 3.2: Objective

Consider any P-sel set L.

To show L ∈ P/poly, it suffices to show:
1. (∀x)[x ∈ L iff 〈x , g(|x |)〉 ∈ A], where A is the advice interpreter
set from the definition of P/poly
2. (∃q)(∀n)[|g(n)| ≤ q(n)], where q is the polynomial bound on
the advice size
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Proof 3.2: K -tournament at L=n

Consider the length-n strings in L, L=n.

Construct a k-tournament from L=n.
Taking each string in L=n to be a node, we need a way to decide
which string is the “winner” for each pair of distinct strings in L=n.
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Proof 3.2: Selector Function

The P-sel set L has a selector function f .

Define f ′ to be such that f ′(x , y) = f (min(x , y),max(x , y)).

I f ′ is commutative; i.e. f ′(x , y) = f ′(y , x)

I f ′ is also a selector function for L

The commutativity of f ′ induces a tournament on L=n. We
construct a simple graph G such that for any a, b ∈ L=n, a 6= b, it
holds that (a, b) ∈ EG iff f ′(a, b) = b.
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Proof 3.2: Properties of L=n

G corresponding to L=n is a tournament.

By Thm 3.1, we have that there is set Hn ⊆ L=n such that
1. ||H|| ≤ blog(||L=n||+ 1)c ≤ (n + 1)
2. for each v ∈ L=n, there exists some h ∈ Hn such that
f ′(h, v) = v
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Proof 3.2: Advice

To show L ∈ P/poly, we need to specify an advice function g and
an advice interpreter set A.

The advice function g(n) outputs Hn.
The advice interpreter set is
A = {〈x , y〉 | y is a (possibly empty) list of elements v1, ..., vz , and
for some j it holds that f ′(vj , x) = x}.

Proof of A ∈ P:
On input 〈x , y〉,
FOR j ∈ [1, z ]

ACCEPT IF f ′(vj , x) == x .
REJECT.

Aditi Goswami Daphne Liu Chapter 3:The Tournament Divide and Conquer Technique



Lecture 1
Lecture 2
Lecture 3

Proof 3.2: Correctness

On the previous slide, we provided a deterministic polytime
algorithm deciding A.

We need to verify (∀x)[x ∈ L iff 〈x , g(|x |)〉 ∈ A].

1. Suppose x ∈ L where |x | = n. Then 〈x , g(|x |)〉 ∈ A by our
choice of g and A.

2. Suppose 〈x , g(|x |)〉 ∈ A where |x | = n. Then for some
h ∈ Hn, it must be that f ′(h, x) = x . But since Hn ⊆ L=n and
f ′ is a selector function for L, the fact that x defeats an
element of L implies that x ∈ L.
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Remarks

We have proved that P-sel ⊆ P/poly.

Could we be a bit more precise about the number of advice bits?
Do O(n2) bits suffice?

I ||Hn|| ≤ blog(||L=n||+ 1)c ≤ (n + 1)

I |h| = n for each each h ∈ Hn

I Thanks to the precise definition we used for advice, for each
n ≥ 1, it holds that the total number of advice bits in Hn is
upper-bounded by n(n + 1)

In fact, P-sel ⊆ P/quadratic.
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Outline: Lecture 2

1. Introduction

2. Definitions
Deterministic functions
Nondeterministic functions

3. Aids
Cook’s Theorem
F-selective

4. Main Result
Lemma 3.25: NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly
Theorem 3.20: If all NPMV functions have NPSV
refinements, then PH = ZPPNP.
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Unique Solutions Collapse the Polynomial Hierarchy :
Motivation

I Consider an NPTM N deciding SAT.

I N can nondeterministically find all satisfying assignments of
the input formula φ.

I Is it easy to find the lexicographically smallest assignment of a
given formula φ?

I An individual path of the computation tree of N has no
information about other paths.

I Thus, culling a single solution may be harder than finding all
solutions. We will try to give evidence for this.
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Deterministic Functions

Def: FP denotes the class of all functions computed by
deterministic polynomial-time Turing machines.

I FP functions are single-valued.

I These functions can be partial.

Aditi Goswami Daphne Liu Chapter 3:The Tournament Divide and Conquer Technique



Lecture 1
Lecture 2
Lecture 3

Nondeterministic Functions

Def: NPMV denotes the class of all multi-valued functions
computed by nondeterministic polynomial-time Turing machines.

I A function f is in NPMV if there is an NPTM N such that on
every input x, f’s outputs are exactly the outputs of N.
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Nondeterministic Functions

Def: set-f(x) is defined as the set of all outputs of an NPMV
function f on input x.

I set-f(x)= {a | a is an output of f(x)}
I If the function f is undefined on x, set-f(x)= ∅.
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Nondeterministic Functions

Def: NPSV denotes the class of all single-valued functions
computed by nondeterministic polynomial-time Turing machines.

I A function f ∈ NPSV if (∀x) [||set-f(x)|| ≤ 1].

I NPSV ⊂ NPMV
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Refinement

I Given multivalued functions f and g, g is a refinement of f if

1. (∀x) [set-g(x) = ∅ ⇐⇒ set-f(x) = ∅], and
2. (∀x) [set-g(x) ⊆ set-f(x)]

I Function g is defined on precisely the same inputs that f is
defined on.

I Function g has at most as many outputs as f, and no new
ones.

I Refinement captures the notion of “thinning” a multi-valued
function.

Aditi Goswami Daphne Liu Chapter 3:The Tournament Divide and Conquer Technique



Lecture 1
Lecture 2
Lecture 3

Cook’s Theorem

Theorem: Let Ni be a standard enumeration of NPTMs such that
Ni runs in time ni + i . There is a function fcook ∈ FP mapping
from strings to encoding of boolean formulas, such that

1. (∀i)(∀x) [Ni (x) accepts ⇐⇒ fcook(Ni , x , 0|x |
i+i ) ∈ SAT ]

2. (∃gcook ∈ FP)(∀i)(∀x)[gcook(fcook(Ni , x , 0|x |
i+i )) = 〈Ni , x〉]

3. (∃hcook ∈ FP)(∀i)(∀x)(∀a)[if a is a satisfying assignment of

fcook(Ni , x , 0|x |
i+i ), then hcook(Ni , x , a, 0|x |

i+i ) outputs an
accepting computation path of Ni (x)]
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Cook’s Theorem

We now prove an important lemma which connects the notion of
refinement of NPMV functions to that of NPTMs that can
generate unique solutions.
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Lemma 3.23

Lemma: Every NPMV function has an NPSV refinement iff
(∃f ∈ NPSV )(∀F ∈ SAT ) [f(F) is a satisfying assignment of F]

Consider an NPMV function h defined by set-h(F) = {a | a is a
satisfying assignment of F}.
Clearly, the only-if direction of proof holds.
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Lemma 3.23 Proof

Lemma: Every NPMV function has an NPSV refinement iff
(∃f ∈ NPSV )(∀F ∈ SAT ) [f(F) is a satisfying assignment of F]

Now, we show the if direction.
Let f̂ be a function in NPSV such that (∀F ∈ SAT ) [f̂ (F) is a
satisfying assignment of F].
Let g be a function in NPMV computed via a function-computing
NPTM Ni . Functions fcook and gcook are the same as described
earlier.
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Lemma 3.23 Proof Cont’d.

We give an NPTM N which computes an NPSV refinement of g.

On input x,

I N nondeterministically computes fcook(Ni , x , 0|x |
i+i ) and then

nondeterministically guesses a path of NPSV function f̂ .

I If along our guessed path, f̂ has no output then we will have
no output along the current path.

I Otherwise we go along the current path and check whether
the output (say, α) is a satisfying assignment of

fcook(Ni , x , 0|x |
i+i ).
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Lemma 3.23 Proof Cont’d.

I If α is not a satisfying assignment of fcook(Ni , x , 0|x |
i+i ) then

we have no output along the current path.

I Otherwise we deterministically compute hcook(Ni , x , α, 0|x |
i+i )

(call the output p). We then deterministically compute what
value is output along the computation path p of Ni (x) and
output that value along our current path.
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F-Selective

Def: A set L is F-selective if there is a multi-valued selector
function f ∈ F such that

1. (∀x , y) [set-f(x,y) ⊆ {x,y}], and

2. (∀x , y) [(x ∈ L ∨ y ∈ L) =⇒ ∅ 6= set-f(x,y) ⊆ L].

This definition extends the notion of semi-feasible computation to
the class of partial nondeterministic functions.
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Theorem: NPSV-sel is closed under ≤p
m reduction

Proof:
Given: A ≤p

m B
B ∈ NPSV-sel
fB - NPSV selector for B
g - Function ∈ FP many-one reducing A to B

set-fA(x,y) =


{x} if fB(g(x),g(y)) = g(x)
{y} else if fB(g(x),g(y)) = g(y)
∅ otherwise

I fA is the NPSV-selector function for A

I A ∈ NPSV-sel
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ZPP

Def: ZPP is defined as the class of all problems for which a
probabilistic Turing machine exists with the following properties:

1. It always returns the correct YES or NO answer.

2. The running time is unbounded, but is polynomial on average
for any input.
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ZPP Cont’d.

Notes:

I ZPP - zero error, probablistic, polynomial time.

I The algorithm is allowed to flip a truly random coin while it is
running and it only returns correct answers.

I Such algorithm are called as Las Vegas algorithms.
Example: Randomized quicksort.

I ZPP ⊆ NP.
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Important Lemmas

Lemma 3.25: NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly

We will formally prove lemma 3.25 in the next lecture.

Lemma 3.26: NP ⊆ (NP ∩ coNP)/poly =⇒ PH = NPNP

Lemma 3.27: NP ⊆ (NP ∩ coNP)/poly =⇒ PH = ZPPNP
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Collapse Of Polynomial Hierarchy

Theorem 3.20: If all NPMV functions have NPSV refinements,
then PH = ZPPNP.

Proof Idea: We construct an NPMV-selector function for SAT
and show that its NPSV refinement is the NPSV-selector function
for SAT. And, hence we show that NP ⊆ NPSV-sel ∩ NP. By
Lemma 3.25 NP ⊆ (NP ∩ coNP)/poly. And by Lemma 3.27, PH
=ZPPNP.

Aditi Goswami Daphne Liu Chapter 3:The Tournament Divide and Conquer Technique



Lecture 1
Lecture 2
Lecture 3

Proof 3.20

Theorem 3.20: If all NPMV functions have NPSV refinements,
then PH = ZPPNP.

Consider a total, multi-valued function fSAT defined as
set-fSAT (x,y) = {x,y} ∩ SAT.
Clearly, fSAT ∈ NPMV.

Proof:
On input (x,y),
Nondeterministically choose x or y.
Guess a satisfying assignment for the chosen formula.
If the guessed assignment satisfies the formula, output the
satisfying assignment.
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Proof 3.20: NPSV-selector Function for SAT

Theorem 3.20: If all NPMV functions have NPSV refinements,
then PH =ZPPNP.

Let gSAT be the NPSV refinement of the function fSAT .

I gSAT is defined if at least one of its arguments is in SAT.

I if at least one of the gSAT arguments is in SAT then gSAT

outputs some argument ∈ SAT.

gSAT is an NPSV-selector function for SAT.
SAT ∈ NPSV-sel.
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Proof 3.20 Cont’d.

Recall the theorem: NPSV-sel Is Closed Under ≤p
m Reduction.

As each NP set ≤p
m reduces to SAT, NP ⊆ NPSV-sel ∩ NP.

But we know that NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly by
Lemma 3.25.
Thus, NP ⊆ (NP ∩ coNP)/poly.

We also know that if NP ⊆ (NP ∩ coNP)/poly, PH = ZPPNP by
Lemma 3.27.
Hence, if all NPMV functions have NPSV refinements, then PH =
ZPPNP.
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Remarks

We proved that if all NPMV functions have NPSV refinements,
then PH =ZPPNP.

Corollary 3.21: If all NPMV functions have NPSV refinements,
then PH = NPNP.

What does it mean for a NPMV funtion to have an NPSV
refinement?

We can cull out unique solutions of the nondeterministic functions.
Thus, unique solutions collapse the polynomial hierarchy!!!
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Outline: Lecture 3

1. Review
K-tournaments
Theorem 3.1

2. Main Result
Lemma 3.25: NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly.

3. Conclusion
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K-tournaments

Def: A k-tournament is a graph with k nodes, no self-loops, and
exactly one directed edge between each distinct pair of nodes.

Intuitions:

I Each directed edge represents a game played between two
players

I Each directed edge points towards the winner (no ties are
allowed)
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Example: 4-tournament

2 3

1

4− Tournament Graph

4

Comments:

I Arrows point towards the winners

I Each node is considered to defeat itself
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Theorem 3.1

Theorem: Let G be a k-tournament on nodes VG = {1, 2, ..., k}
with edges EG . There exists a set H ⊆ VG such that
1. ||H|| ≤ blog(k + 1)c,
2. for each v ∈ (VG \H), there exists at least one g ∈ H such that
(g , v) ∈ EG .

In other words, there is a superloser subset H (of VG ) whose
cardinality is logarithmic in the number of nodes in G , and each
node in VG defeats at least one of the nodes in H.

Aditi Goswami Daphne Liu Chapter 3:The Tournament Divide and Conquer Technique



Lecture 1
Lecture 2
Lecture 3

Lemma 3.25

Lemma: NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly.

Proof idea:
For a set L ∈ NPSV-sel ∩ NP, at each length n, there will always
exist, by Thm 3.1, a small set H of nodes in L such that every
node in L=n defeats one of these nodes, and H will be a part of
our “small advice set” for L.
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Proof 3.25: Objective

Consider any set L ∈ NPSV-sel ∩ NP.

To show L ∈ (NP ∩ coNP)/poly , it suffices to show:
1. (∀x)[x ∈ L iff 〈x , g(|x |)〉 ∈ A], where A is the NP ∩ coNP
advice interpreter set for L.
2. (∃q)(∀n)[|g(n)| ≤ q(n)], where q is the polynomial bound on
the advice size.
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Proof 3.25: K -tournament at L=n

Consider the length-n strings in L, L=n.

Construct a k-tournament from L=n.
Taking each string in L=n to be a node, we need a way to decide
which string is the “winner” for each pair of distinct strings in L=n.
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Proof 3.25: Selector Function

The function f is the NPSV-selector for set L.

WLOG, (∀x , y)[set-f (x,y) = set-f (y,x)].

The NPSV-selector function f induces a tournament on L=n. We
construct a simple graph G such that for any a, b ∈ L=n, a 6= b, it
holds that (a, b) ∈ EG iff set-f (a, b) = {b}.
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Proof 3.25: Properties of L=n

G corresponding to L=n is a tournament.
By Thm 3.1, we have that there is set Hn ⊆ L=n such that
1. ||Hn|| ≤ blog(||L=n||+ 1)c ≤ n
2. for each v ∈ L=n, there exists at least one h ∈ Hn such that
set-f (v, h) = {v}
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Proof 3.25: Advice

To show L ∈ (NP ∩ coNP)/poly, we need to specify an advice
function g and an advice interpreter set A.

Let NPTM NL accepts the set L.
The advice function g(n) outputs
〈〈h1, h2, ..., hz〉, 〈w1,w2, ...,wz〉〉, where 〈h1, h2, ..., hz〉 = H and
each wi is an accepting path of NL(hi ).
The advice function is polynomially length-bounded.

The membership proofs are required to be a part of advice.
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Proof 3.25: Advice interpreter

The advice interpreter set is
A = {〈x , 〈〈a1, a2, ..., az〉, 〈w1,w2, ...,wz ′ 〉〉〉 |
z = z ′ and
(∀i : 1 ≤ i ≤ z)[wi is an accepting path of NL(ai )] and
(∃i : 1 ≤ i ≤ z) [x ∈ set-f(x,ai )]}.

We now show that A ∈ NP ∩ coNP.
Clearly, A ∈ NP.
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Proof 3.25: The Set A

The set A is defined as:
A = {〈x , 〈〈a1, a2, ..., az〉, 〈w1,w2, ...,wz ′ 〉〉〉 |
z 6= z ′ or
(∃i : 1 ≤ i ≤ z)[wi is not an accepting path of NL(ai )] or
(∀i : 1 ≤ i ≤ z) [x /∈ set-f(x,ai )]}.

We now prove that A ∈ NP.

Aditi Goswami Daphne Liu Chapter 3:The Tournament Divide and Conquer Technique



Lecture 1
Lecture 2
Lecture 3

Proof 3.25: A ∈ coNP

We give an NPTM N which accepts A

I If the input is syntactically ill-formed or z 6= z ′, then N
accepts immediately.

I Otherwise, N deterministically checks if (∀i : 1 ≤ i ≤ z) [wi is
an accepting path of NL(ai )].

I If the check fails, N accepts. Otherwise, N rejects if
x ∈ {a1, a2, ..., az}.

I Else, N nondeterministically guesses and checks the unique
value of set-f (ai ,x) for all i. The nondeterministic path(s)
that correctly guess and check for all i which of x and ai is the
unique element in set-f (ai ,x) accept iff (∀i) set-f (ai ,x)= {ai}.
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Lemma 3.25: Correctness

On the previous slides, we proved that A ∈ NP ∩ coNP.

We need to verify (∀x)[x ∈ L iff 〈x , g(|x |)〉 ∈ A].

1. Suppose x ∈ L. Then 〈x , g(|x |)〉 ∈ A by our choice of g and
A.

2. Suppose 〈x , g(|x |)〉 ∈ A where |x | = n. Interpreter A will,
when its second argument is the true advice accept only those
strings that are in Hn or that defeat a string in Hn, which is
exactly L =n by Thm 3.1 and the properties of NPSV-selector
functions.
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Conclusion

I Tournament theory result is an upper bound on the
nonuniform complexity of semi-feasible sets.

I NP cannot find unique satisfying assignments to satisfiable
formula unless the polynomial hierarchy collapses.
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