Outline

Chapter 5 The Witness Reduction Technique

Luke Dalessandro Rahul Krishna

December 6, 2006

→ 3 → 4 3

Outline

Part I: Background Material Part II: Chapter 5

2 Complexity Soup

- NP
- UP
- PP
- ⊕P
- #P

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

-

Outline

Part I: Background Material Part II: Chapter 5

Outline of Part II

3 Closure Properties

- 4 The Witness Reduction Technique
- 5 Theorem 5.6
- 6 Theorem 5.7
- **7** Theorem 5.9

8 Conclusions

< ≣ > <

Part I

Background Material

Luke Dalessandro, Rahul Krishna Chapter 5 The Witness Reduction Technique

2

A ►

< E ► < E

NP Machines

Our previous NP machine model (informally)

- Polynomially bounded runtime
 q(|x|) here
- Non-deterministic transition function
 - Branching factor based on machine constants
 - Limited by # of states, tape alphabet, tape configuration
- Accepting state implies halting

Figure: Computation Tree

Luke Dalessandro, Rahul Krishna

Chapter 5 The Witness Reduction Technique

A 3 3 4 4

Adjusted NP machine model (informally)

Figure: Adjusted Tree

- Want a complete balanced binary tree
- Binary by restricting δ function branching factor to 2
 - Increases tree size but is independent from input
- Balanced and complete by extending all computation paths to q'(|x|)
 - Pre-compute q' and decrement as we compute

★ ∃ →

- Detect accept/reject and continue with dummy states if needed
- Restrict alphabet to {0,1} w.l.o.g. (we've done this before)

NP UP PP ⊕P #P

Review of NP

Definition

A language L is in NP if there exists a polynomial-time computable predicate R and a polynomial q such that for all x,

$$L = \left\{ x \mid (\exists y : |y| \le q(|x|)) \left[R(x, y) \right] \right\}$$

→ 3 → < 3</p>

NP UP PP ⊕P #P

NP computation

Figure: Example NP Computation Trees

 Languages in NP are characterized by NP machines that have at least one accepting path for x ∈ L, and have no accepting paths for x ∉ L.

NP UP PP ⊕P #P

Review of UP

Definition

A language L is in UP if there is a polynomial-time predicate P and a polynomial q such that for all x,

$$\left\|\left\{y\middle||y|\leq q(|x|)\wedge P(x,y)\right\}\right\|=\left\{\begin{array}{ll}0 & \text{if } x\notin L\\1 & \text{if } x\in L\end{array}\right.$$

同 ト イ ヨ ト イ ヨ ト

-

NP UP PP ⊕P #P

UP computation

Figure: Example UP Computation Trees

 Languages in UP are characterized by NP machines that have exactly one accepting path for x ∈ L and no accepting paths for xd ∉ L.

0P PP ⊕P #P

Probabilistic-Polynomial, PP

Definition

A language L is in PP if there exists a polynomial q and a polynomial-time predicate R such that for all x,

$$x \in L \Leftrightarrow \left\|\left\{y\Big||y| = q(|x|) \land R(x,y)\right\}\right\| \ge 2^{q(|x|)-1}$$

Image: Image:

NP UP ₽P ⊕P #P

PP computation

Figure: Example PP Computation Trees

 Languages in PP are characterized by NP machines that accept along at least half of their computation paths for x ∈ L, and reject on at least half of their paths for x ∉ L.

NP UP PP ⊕**P** #P

Definition

A language L is in $\oplus P$ if there is a polynomial time predicate P and a polynomial q such that for all x,

$$x \in L \Leftrightarrow \left\|\left\{y\middle||y| \le q(|x|) \land P(x,y)\right\}\right\| \not\equiv 0 \pmod{2}$$

- Languages in the class ⊕P are characterized by NP machines that have an odd number of accepting paths for x ∈ L.
- We will talk more about $\oplus P$ on Wednesday.

同 ト イ ヨ ト イ ヨ ト

UP PP ⊕P #P

Definition

A function f is in #P if there is a polynomial time predicate P and a polynomial q such that for all x,

$$\left\|\left\{y\big||y|\leq q(|x|)\wedge P(x,y)\right\}\right\|=f(x)$$

Image: A Image: A

-

NP UP PP ⊕P **#P**

- Note that #P is a class of functions rather than a class of languages
- Each #P function is defined by a NP machine
- Each NP machine defines a #P function

-

NP UP PP ⊕P **#P**

Example

Let L be a UP language. Consider the NPTM N that accepts L, and that for each $x \in L$ has exactly one accepting path, and 0 accepting paths for $x \notin L$. This N defines the #P function f such that

 $f(x) = \begin{cases} 0 & \text{if } x \notin L \\ 1 & \text{if } x \in L \end{cases}$

同 ト イ ヨ ト イ ヨ ト

UP PP ⊕P **#P**

Class relationships

	NP	UP	PP
$x \in L$	≥ 1	1	$\geq \frac{2^{q(x)}}{2}$
<i>x</i> ∉ <i>L</i>	0	0	$< \frac{2^{q(x)}}{2}$

Table: Number of accepting paths for NP machines characterized by each class

3

A 10

- * E > * E >

Part II

Chapter 5

<ロ> <同> <同> < 回> < 回>

2

Mapping strings to natural numbers

- When considering closure properties, #P functions, and NPTMs, it is convenient to use strings and natural numbers interchangeably.
- There exists a natural bijection between strings and natural numbers.
 - The lexicographically first string in Σ^\star is mapped to 0
 - $\bullet\,$ The lexicographically second string in Σ^{\star} is mapped to 1
 - etc
- We'll use this bijection implicitly whenever necessary in the following discussion.

- 4 回 ト 4 ヨト 4 ヨト

Closure properties

Definition

Unless otherwise stated, an operation is a mapping from $\mathbb{N}\times\mathbb{N}$ to $\mathbb{N}.$

Definition

Let σ be an operation and let \mathcal{F} be a class of functions from \mathbb{N} to \mathbb{N} . We say that \mathcal{F} is closed under (the operation) σ if

$$(orall f_1 \in \mathcal{F})(orall f_2 \in \mathcal{F})[h_{f_1,f_2} \in \mathcal{F}]$$

where $h_{f_1, f_2}(n) = \sigma(f_1(n), f_2(n))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Closure property example for #P

Theorem

#P is closed under addition

Figure: NP machines witnessing f and g

A 10

★ Ξ →

Closure example continued

Figure: NP machine witnessing f + g

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Non-obvious properties

- What if it is not obvious how to prove or disprove a closure property?
- Is #P closed under proper subtraction?
 - Proper subtraction $m \ominus n = max(m n, 0)$
 - TM construction doesn't work
 - Maybe proof by contradiction?
- Assume the class is closed under the property and look for consequences

伺 ト イ ヨ ト イ ヨ

The Witness Reduction Technique

- The Witness Reduction Technique exactly follows this second proposal
- Use an assumed #P closure property that reduces the number of witnesses of its associated machine to show complexity class collapse.

4 3 6 4 3

The witness reduction algorithm

- Take a set in a large complexity class (e.g. PP), take the machine for the set, and examine the #P function that the machine defines
- Ose an assumed witness-reducing closure to create a new #P function
- Examine a machine for this new #P function, preferably one that defines the language in a smaller class (e.g. UP)

・ 同 ト ・ ヨ ト ・ ヨ ト

The witness reduction algorithm continued

Theorem

The following statements are equivalent:

- #P is closed under proper subtraction.
- *#P* is closed under every polynomial-time computable operation.
- $\bigcirc UP = PP$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

 $2 \Rightarrow 1$

Assume #P is closed under every polynomial-time computable operation

Show #P is closed under proper subtraction

Proof

This implication is trivial as proper subtraction is a polynomial-time computable operation.

- 4 同 ト 4 ヨ ト 4 ヨ ト

> Assume #P is closed under proper subtraction Show UP=PP (equivalently UP \subseteq PP and PP \subseteq UP)

Outline

- O Show UP⊆PP directly
- ^② Show PP⊆coNP via witness reduction
- Show coNP⊆UP via witness reduction

(日) (同) (三) (三)

-

- This condition holds independent of the assumption.
- Let L be a UP language. Let N be the NPTM that accepts L.
- From the definition of UP
 - ∃ polynomial q such that q (|x|) is the depth of N's computation tree
 - For *x* ∈L the number of accepting paths of *N*(*x*) is 1
 - For $x \notin L$ the number of accepting paths of N(x) is 0

$UP\subseteq PP$ continued

- Let N' be a NPTM with the same q as N, and that accept on all paths except one
- Consider NPTM N_{PP} whose first step on input x is to non-deterministically choose to simulate N or N'
 - N_{PP} has $2^{q(|x|)+1}$ total computation paths
 - Solution For x ∈ L, N contributes 1 accepting path and N' contributes 2^{q(|x|)} − 1 accepting paths for a total of 2^{q(|x|)} accepting paths
 - **③** For $x \notin L$, there are only *N*''s $2^{q(|x|)} 1$ accepting paths
- N_{PP} demonstrates that L \in PP since
 - **1** For $x \in L$ exactly half of the paths of N_{PP} accept
 - 2 For $x \notin L$ strictly less than half accept

イロト イポト イラト イラト

> Assume #P is closed under proper subtraction Show UP=PP (equivalently UP \subseteq PP and PP \subseteq UP)

Outline

- Show UP⊆PP directly
- **2** Show $PP\subseteq coNP$ via witness reduction
- Show coNP⊆UP via witness reduction

(日) (同) (三) (三)

-

• Let L be a PP language. From the definition of PP we have a polynomial q and a polynomial-time predicate R such that

$$x \in L \Leftrightarrow \left\|\left\{y\big||y| = q(|x|) \land R(x,y)\right\}\right\| \ge 2^{q(|x|)-1}$$

- Let q'(x) = q(n) + 1 and for $b \in \{0, 1\}$, R'(x, yb) = R(x, y)and require that for all $n q(n) \ge 1$
- Consider the NPTM that on input x guesses each y such that |y| = q(|x|) and tests R(x, y).

PP⊆coNP continued

- Consider the #P function f defined by this NPTM
 - $x \in L \Rightarrow f(x) \ge 2^{q(|x|)-1}$
 - $x \notin L \Rightarrow f(x) < 2^{q(|x|)-1}$
- Consider the #P function $g(x) = 2^{q(|x|)-1} 1$
- Under the assumption that #P is closed under proper subtraction, we have #P function *h* such that

•
$$h(x) = f(x) \ominus g(x)$$

Substitution yields

•
$$h(x) \ge 1$$
 if $x \in L$

•
$$h(x) = 0$$
 if $x \notin L$

- 4 同 6 4 日 6 4 日 6

PP⊆coNP continued

- There exists a NPTM N(x) for which h(x) computes the number of accepting paths.
- Based on the values of h(x), N is an NP machine, thus L=L(N) and PP⊆NP
- Since PP=coPP, we have that PP⊆coNP

- 4 同 ト 4 ヨ ト 4 ヨ ト

Assume #P is closed under proper subtraction Show UP=PP (equivalently UP \subseteq PP and PP \subseteq UP)

Outline

- **1** Show UP \subseteq PP directly
- ② Show PP⊆coNP via witness reduction

(日) (同) (三) (三)

-

- Let L be an arbitrary coNP language.
- There exists a NPTM N that accepts $\overline{\mathrm{L}}$
- N defines #P function f such that

•
$$x \in L \Rightarrow f(x) = 0$$

- $x \notin L \Rightarrow f(x) \ge 1$
- Consider the constant #P function g(x) = 1

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

$coNP \subseteq UP$ continued

- Since #P is closed under \ominus there exists a #P function h where
 - $h(x) = g(x) \ominus f(x)$
- Substitution yields
 - h(x) = 1 if $x \in L$
 - h(x) = 0 if $x \notin L$
- By the same reasoning as before, h(x) has an associated UP machine, thus our arbitrary coNP language is also in UP

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

$1 \Rightarrow 3$ complete

1⇒3

We have shown that UP \subseteq PP and that PP \subseteq coNP \subseteq UP, thus we have shown that If #P is closed under proper subtraction then UP=PP.

Assume UP=PP Show #P is closed under every polynomial-time computable operation

Proof Strategy

Given that f and g are arbitrary #P functions and that op is an arbitrary polynomial-time operation, and given the assumption that UP=PP, we must show that h(x) = op(f(x), g(x)) is also a #P function.

Closure Properties Witness Reduction Theorem 5.6 Theorem 5.7 Theorem 5.9 Conclusions	
-2	

- Our first goal is to actually compute the values for f(x) and g(x) for arbitrary input x
- We use the following two sets for this computation

•
$$B_f = \{ \langle x, n \rangle | f(x) \ge n \} \in \mathsf{PP}$$

3⇒

•
$$B_g = \{\langle x, n \rangle | g(x) \ge n\} \in \mathsf{PP}$$

١

• However we need the precise values for f(x) and g(x) which we can get using the set

$$V = \{ \langle x, n_1, n_2 \rangle | \quad \langle x, n_1 \rangle \in B_f \land \langle x, n_1 + 1 \rangle \notin B_f \land \\ \langle x, n_2 \rangle \in B_g \land \langle x, n_2 + 1 \rangle \notin B_g \}$$

$3 \Rightarrow 2$ continued

- V decides n₁ = f(x) ∧ n₂ = g(x) by testing adjacent ns to find the transition points in B_f and B_g
- Let \oplus indicate disjoint union

$$V \leq_{4-tt}^{p} (B_f \oplus B_g)$$
 and $B_f \oplus B_g \in PP$

- Theorem 9.17 shows us that PP is closed under \leq_{btt}^{p} and disjoint union so we conclude that $V \in PP$
- From our assumption that UP=PP we conclude that $V \in UP$

$3 \Rightarrow 2$ continued

- With V in UP, and able to test if f(x) = n₁ and g(x) = n₂, we examine the following NPTM, N that will show h(x) = op(f(x), g(x)) and h(x) ∈ #P
- f and g are #P functions so there is some polynomial q such that max{f(x), g(x)} ≤ 2^{q(|x|)}
- N, on input x
 - **1** Nondeterministically choose an integer *i*, $0 \le i \le 2^{q(|x|)}$
 - 2 Nondeterministically choose an integer j, $0 \le j \le 2^{q(|x|)}$
 - Guesses a computation path of V on input ⟨x, i, j⟩. If this path accepts, nondeterministically guess an integer k, 1 ≤ k ≤ op(i, j) and accept.

・ロト ・同ト ・ヨト ・ヨト

$3\Rightarrow2$ continued

$3 \Rightarrow 2$ continued

- For all $i \neq f(x)$ and $j \neq g(x)$, $V(\langle x, i, j \rangle)$ rejects (recall $V \in UP$)
- For the correct i and j, N(x) accepts along precisely op(i, j) paths
- The #P function defined by this machine is
 h(x) = op(f(x), g(x)) thus #P is closed under our arbitrary
 op

- 4 同 6 4 日 6 4 日 6

Theorem 5.7

Theorem

The following statements are equivalent:

$$UP = NP = coNP = PH = \oplus P = PP = PP \cup PP^{PP} \cup PP^{PPP} \cup \dots$$

- To prove this, we need other results.
- We prove each of these results one by one.
- We use UP = PP as the initial assumption.
- We use results for each stage as assumptions for the next stage.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Proposition

 $UP \subseteq NP$

Proof.

Let $L \in UP$. Let N be the NPTM deciding L.

- **1** $x \in L \implies$ exactly one accepting path in N
- **2** $x \notin L \implies$ no accepting paths in N

Clearly, $L \in NP$.

(日) (同) (三) (三)

$NP \subseteq PP$

Proposition

 $NP \subseteq PP$.

Construction

- Let $L \in NP$ and let NPTM N decide L.
- **2** Construct NPTM N' that has two subtrees at its root
- **③** Left subtree is exactly the same as N.
- Right subtree is of the same depth as N and has exactly one rejecting path.

• $x \in L \implies$ no. of accepting paths in $N' \ge \frac{1}{2}(\# paths_{N'})$

• $x \notin L \implies$ no. of accepting paths in $N' < \frac{1}{2}(\#paths_{N'})$

イロン イボン イヨン イヨン

$NP \subseteq PP$ (Example)

Figure: Computation Tree of NPTM *N*

Figure: Computation Tree of NPTM N'

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

$NP \subseteq PP$ (Example)

Figure: Computation Tree of NPTM *N*

Figure: Computation Tree of NPTM N'

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

UP = NP = PP

Proposition

If UP = PP, then UP = NP = PP

Figure: Known relationship between UP , NP , PP

Known Facts & Assumptions

• UP
$$\subseteq$$
 NP \subseteq PP

• UP = PP

Clearly, given the assumptions, $\label{eq:upper} UP = NP = PP$

イロト イポト イヨト イヨト

Status

$UP=PP=NP=coNP=PH=\oplus P=PP\cup PP^{PP}\cup PP^{PP}\cup \dots$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

PP is closed under complementation

Proposition

PP is closed under complementation

Image: A = 1

Construction

Construction: Outline

- Let $L \in PP$ and let NPTM N decide L.
- Construct NPTM N' that is equivalent to N and has the rightmost path as a rejecting path
- Construct NPTM N" by adding another level to N' by adding 2 child nodes to each of the leaf nodes.
- For the leaf node of the rightmost path, one child is accepting and the other is rejecting
- So For accepting leaf nodes, both children are rejecting.
- For rejecting leaf nodes (other than the rightmost leaf node), both children are accepting

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Construction: Details

We can construct NPTM N' that is equivalent to N and has the rightmost path as a rejecting path by

- **O** Construct NPTM N' that has two subtrees at its root
- 2 Left subtree is exactly the same as N.
- Exactly half the paths of right subtree are accepting and the remaining half are rejecting.
- $x \in L \implies$ no. of accepting paths in $N' \ge \frac{1}{2}(\#paths_{N'})$
- $x \notin L \implies$ no. of accepting paths in $N' < \frac{1}{2}(\# paths_{N'})$

- 4 回 ト 4 ヨト 4 ヨト

Example: Construction of N'

Figure: NPTM N

Figure: NPTM N'

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: Construction of N''

э

P

A B > A B >

Let h-1 represent the depth of the computation tree of N. Let y represent the number of accepting paths in N'We see that the number of accepting and rejecting paths in N'' is:

• Number rejecting:
$$2y + 1$$

② Number accepting:
$$2^{h+1} - 2y - 1$$

A 3 3 4 4

Correctness(contd)

• Case 1:
$$x \in L \implies y \ge 2^{h-1}$$

In this case, the number of accepting paths in $N'' \le 2^h - 1$.
 $2^h - 1 < 2^h$.

Hence, $\overline{L} \in \mathrm{PP}$.

2

P

→ 3 → < 3</p>

UP = NP = PP = coNP

Proposition

If NP = PP, then NP = coNP

Known Facts & Assumptions

- NP = PP
- PP is closed under complementation

(日) (同) (三) (三)

Proof

Proof.

 $(\forall L), L \in PP \Longrightarrow \overline{L} \in PP$ Since we have assumed that NP = PP, we have, $\overline{L} \in PP \Longrightarrow \overline{L} \in NP \Longrightarrow L \in coNP$ Therefore, $(\forall L), L \in PP \implies L \in coNP$.

Since, $PP\subseteq coNP$ and (since $NP\subseteq PP$) $coNP\subseteq coPP=PP$, we have NP=PP=coNP

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Status

$UP=PP=NP=coNP=PH=\oplus P=PP\cup PP^{PP}\cup PP^{PP}\cup \dots$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

If
$$NP = coNP$$
, then $PH = NP$.

Definition

$$\mathbf{PH} = \bigcup_{i} \Sigma_{i}^{p} = \mathbf{P} \cup \mathbf{NP} \cup \mathbf{NP}^{\mathbf{NP}} \cup \mathbf{NP}^{\mathbf{NP}^{\mathbf{NP}}} \cup \dots$$

We first show that if $\mathrm{NP}=\mathrm{coNP}$, then $\mathrm{NP}^{\mathrm{NP}}=\mathrm{NP}.$

<ロ> <同> <同> < 回> < 回>

PH = NP (contd.)

Let $A \in NP$. We can build an NPTM N'_A having the power of an oracle making use of NPTMs N_A that decides A, and $N_{\overline{A}}$ that decides \overline{A} as follows:

Figure: NPTM N'_A

Exactly one of N_A and $N_{\overline{A}}$ and must accept. The decision can be made in non-deterministic polynomial time.

PH = NP (contd.)

- Building on this, we can show that $NP^{NP\cap coNP} = NP$
- \bullet And so, if $\mathrm{NP}=\mathrm{coNP}$, we have $\mathrm{NP}^{\mathrm{NP}}=\mathrm{NP}^{\mathrm{NP}\cap\mathrm{coNP}}=\mathrm{NP}$
- \bullet We can inductively reduce a stack of $\rm NPs$ of arbitrary height to $\rm NP$.

For example, $NP^{NP^{NP}} = NP^{NP^{NP}} = NP^{NP} = NP$ Therefore, if NP = coNP, PH = NP.

- 4 回 ト 4 ヨト 4 ヨト

Status

$UP=PP=NP=coNP=PH=\oplus P=PP\cup PP^{PP}\cup PP^{PP}\cup \dots$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

If
$$PH = UP$$
, $P^{UP} = UP$

Proof.

Since $P^{NP} \subseteq PH$ and $UP \subseteq NP$, we have $P^{UP} \subseteq PH$. So, $PH = UP \implies P^{UP} \subseteq PH = UP$ Clearly, $UP \subseteq P^{UP}$. Thus under our hypothesis, $P^{UP} = UP$.

Here, we need to make use of Lemma 4.14 from the Hemaspaandra-Ogihara text. We state it below without proof.

Lemma $PP^{\oplus P} \subseteq P^{PP}$

(日) (同) (三) (三)

$$\mathbf{UP} = \oplus \mathbf{P} = \mathbf{PP} = \mathbf{PP}^{\oplus \mathbf{F}}$$

Proposition

If
$$UP = PP$$
 and $P^{UP} = UP$, then $UP = \oplus P = PP = PP^{\oplus P}$

Figure: Known relationship between UP , PP , $PP^{\oplus P}$

Proof.

$$\begin{split} P^{PP} &= P^{UP} = UP \ . \\ \text{From Lemma 4.14, } PP^{\oplus P} \subseteq P^{PP} = UP \ . \\ \text{Clearly, } UP \subseteq \oplus P \subseteq PP^{\oplus P} . \\ \text{Therefore, } UP = \oplus P = PP^{\oplus P} = PP. \end{split}$$

(日)

Status

$UP=PP=NP=coNP=PH=\oplus P=PP\cup PP^{PP}\cup PP^{PP}\cup \dots$

3

(日) (同) (三) (三)

 $PP \cup PP^{PP} \cup PP^{PP^{PP}} \cup \ldots = PP$

Assumptions	
$\bullet \oplus \mathbf{P} = \mathbf{P}\mathbf{P}$	
• $PP^{\oplus P} = PP$	

From the above assumptions we can write, $PP^{PP}=PP^{\oplus P}=PP$

We can inductively reduce a stack of PPs of arbitrary height to PP .

For example, $PP^{PP^{PP}} = PP^{PP^{PP}} = PP^{PP} = PP$

Therefore, $PP \cup PP^{PP} \cup PP^{PP^{PP}} \cup \ldots = PP$

・ 同 ト ・ ヨ ト ・ ヨ ト

Luke Dalessandro, Rahul Krishna Chapter 5 The Witness Reduction Technique

(日) (同) (三) (三)

3

Theorem 5.7 Proved

$UP=PP=NP=coNP=PH=\oplus P=PP\cup PP^{PP}\cup PP^{PP}\cup \dots$

Closure Properties Witness Reduction Theorem 5.6 **Theorem 5.7** Theorem 5.9 Conclusions
Integer Division

Definition

Let \mathcal{F} be a class of functions from \mathbb{N} to \mathbb{N} . We say that \mathcal{F} is closed under integer division (\oslash) if

$(\forall f_1 \in \mathcal{F})(\forall f_2 \in \mathcal{F} : (\forall n)[f_2(n) > 0])[f_1 \oslash f 2 \in \mathcal{F}],$

where the 0 above is the integer zero (i.e., the integer represented by the empty string).

| 4 同 1 4 三 1 4 三 1

Theorem

The following statements are equivalent:

- #P is closed under integer division.
- *#P* is closed under every polynomial-time computable operation.
- IP = PP.

We will not prove $3 \Rightarrow 2$ since it was already proved in Theorem 5.6.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Assume #P is closed under every polynomial-time computable operation

Show #P is closed under Integer Division

Proof

This implication is trivial as integer division is a polynomial-time computable operation.

$1 \Rightarrow 3$

Assume #P is closed under integer division Show UP =PP

We know that $UP\subseteq PP$ without any assumption. Thus, we only prove $PP\subseteq UP$ given our assumption.

Let $L \in \operatorname{PP}$. There exists NPTM N and integer $k \geq 1$ such that,

- (∀x), N(x) has exactly 2^{|x|^k} computation paths, each containing exactly |x|^k choices
- 2 $x \in L \iff N(x)$ has at least $2^{|x|^k-1}$ accepting paths
- **(** $\forall x$), N(x) has at least one rejecting path

イロト イポト イラト イラト

Proof for $1 \Rightarrow 3$

- Let f be the #P function for NPTM N which decides language L ∈ PP.
- Define the #P function g as, $g(x) = 2^{|x|^k 1}$.

By our assumption, $h(x) = f(x) \oslash g(x)$ must be a #P function.

• if
$$x \in L$$
, $h(x) = \left\lfloor \frac{2^{|x|^k - 1} \le f(x) < 2^{|x|^k}}{2^{|x|^k - 1}} \right\rfloor = 1$
• if $x \notin L$, $h(x) = \left\lfloor \frac{0 \le f(x) < 2^{|x|^k - 1}}{2^{|x|^k - 1}} \right\rfloor = 0$

The NPTM corresponding to h is a UP machine for L. Hence $L \in UP$.

Intermediate Closure Properties

- If #P is closed under proper subtraction and integer division, then #P is also closed under all polynomial-time computable operations and UP = PP.
- Are there any operations that #P is not know to be closed under, and does not have the property if #P is closed under these operations if and only if #P is closed under all polynomial-time computable operations.
- Analogy with sets that are in NP but are not known to be either NP-complete or in P.
- Examples of intermediate closure properties are taking minimums, maximums, proper decrement and integer division by 2.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- We've shown that the following statements are equivalent:
 - **1** #P is closed under proper subtraction
 - 2 #P is closed under integer division.
 - #P is closed under every polynomial-time computable operation.
- \bullet We discussed the consequences of $\mathrm{UP}=\mathrm{PP}$

I ≡ ▶ < </p>