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NP Computation
Complexity Soup
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Background Material
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NP Computation
Complexity Soup

NP Machines

Our previous NP machine model (informally)

Accepting
ComputationsRejecting

Computations

Accepting
Path

Computation
Tree Boundary

q (|x|)

Figure: Computation Tree

Polynomially bounded runtime

q (|x |) here

Non-deterministic transition function

Branching factor based on machine
constants
Limited by # of states, tape
alphabet, tape configuration

Accepting state implies halting
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NP Computation
Complexity Soup

NP Machines

Adjusted NP machine model (informally)

q′ (|x|)

Figure: Adjusted Tree

Want a complete balanced binary tree

Binary by restricting δ function
branching factor to 2

Increases tree size but is independent
from input

Balanced and complete by extending
all computation paths to q′(|x |)

Pre-compute q′ and decrement as we
compute
Detect accept/reject and continue
with dummy states if needed

Restrict alphabet to {0, 1} w.l.o.g.
(we’ve done this before)
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

Review of NP

Definition

A language L is in NP if there exists a polynomial-time computable
predicate R and a polynomial q such that for all x ,

L =
{
x
∣∣ (∃y : |y | ≤ q(|x |)) [R(x , y)]

}
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

NP computation

x /∈ L x ∈ L

Figure: Example NP Computation Trees

Languages in NP are characterized by NP machines that have
at least one accepting path for x ∈ L, and have no accepting
paths for x /∈ L.
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

Review of UP

Definition

A language L is in UP if there is a polynomial-time predicate P
and a polynomial q such that for all x ,

∥∥{
y
∣∣|y | ≤ q(|x |) ∧ P(x , y)

}∥∥ =

{
0 if x /∈ L
1 if x ∈ L
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

UP computation

x /∈ L x ∈ L

Figure: Example UP Computation Trees

Languages in UP are characterized by NP machines that have
exactly one accepting path for x ∈ L and no accepting paths
for xd /∈ L.
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

Probabilistic-Polynomial, PP

Definition

A language L is in PP if there exists a polynomial q and a
polynomial-time predicate R such that for all x ,

x ∈ L ⇔
∥∥{

y
∣∣|y | = q(|x |) ∧ R(x , y)

}∥∥ ≥ 2q(|x |)−1
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

PP computation

x /∈ L x ∈ L

Figure: Example PP Computation Trees

Languages in PP are characterized by NP machines that
accept along at least half of their computation paths for
x ∈ L, and reject on at least half of their paths for x /∈ L.
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

Parity-P, ⊕P

Definition

A language L is in ⊕P if there is a polynomial time predicate P
and a polynomial q such that for all x ,

x ∈ L ⇔
∥∥{

y
∣∣|y | ≤ q(|x |) ∧ P(x , y)

}∥∥ 6≡ 0 (mod 2)

Languages in the class ⊕P are characterized by NP machines
that have an odd number of accepting paths for x ∈ L.

We will talk more about ⊕P on Wednesday.
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

Sharp-P, #P

Definition

A function f is in #P if there is a polynomial time predicate P and
a polynomial q such that for all x ,∥∥{

y
∣∣|y | ≤ q(|x |) ∧ P(x , y)

}∥∥ = f (x)
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

#P continued

Note that #P is a class of functions rather than a class of
languages

Each #P function is defined by a NP machine

Each NP machine defines a #P function
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

#P continued

Example

Let L be a UP language. Consider the NPTM N that accepts L,
and that for each x ∈ L has exactly one accepting path, and 0
accepting paths for x /∈ L. This N defines the #P function f such
that

f (x) =

{
0 if x /∈ L
1 if x ∈ L
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NP Computation
Complexity Soup

NP
UP
PP
⊕P
#P

Class relationships

NP UP PP

x ∈ L ≥ 1 1 ≥ 2q(|x|)

2

x /∈ L 0 0 < 2q(|x|)

2

Table: Number of accepting paths for NP machines characterized by
each class
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Part II

Chapter 5
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Mapping strings to natural numbers

When considering closure properties, #P functions, and
NPTMs, it is convenient to use strings and natural numbers
interchangeably.

There exists a natural bijection between strings and natural
numbers.

The lexicographically first string in Σ? is mapped to 0
The lexicographically second string in Σ? is mapped to 1
etc

We’ll use this bijection implicitly whenever necessary in the
following discussion.
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Closure properties

Definition

Unless otherwise stated, an operation is a mapping from
N× N to N.

Definition

Let σ be an operation and let F be a class of functions from N to
N. We say that F is closed under (the operation) σ if

(∀f1 ∈ F)(∀f2 ∈ F)[hf1,f2 ∈ F ]

where hf1,f2(n) = σ(f1(n), f2(n)).
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Closure property example for #P

Theorem

#P is closed under addition

Nf (x) Ng(x)

f(x) = j g(x) = k

Figure: NP machines witnessing f and g
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Closure example continued

Nf+g(x)

h(x) = f(x) + g(x) = j + k

Figure: NP machine witnessing f + g
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Non-obvious properties

What if it is not obvious how to prove or disprove a closure
property?

Is #P closed under proper subtraction?

Proper subtraction m 	 n = max(m − n, 0)
TM construction doesn’t work
Maybe proof by contradiction?

Assume the class is closed under the property and look for
consequences
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The Witness Reduction Technique

The Witness Reduction Technique exactly follows this second
proposal

Use an assumed #P closure property that reduces the number
of witnesses of its associated machine to show complexity
class collapse.

Luke Dalessandro, Rahul Krishna Chapter 5 The Witness Reduction Technique



Closure Properties
Witness Reduction

Theorem 5.6
Theorem 5.7
Theorem 5.9
Conclusions

The witness reduction algorithm

1 Take a set in a large complexity class (e.g. PP), take the
machine for the set, and examine the #P function that the
machine defines

2 Use an assumed witness-reducing closure to create a new #P
function

3 Examine a machine for this new #P function, preferably one
that defines the language in a smaller class (e.g. UP)
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The witness reduction algorithm continued

Witness Reduction Via
Assumed Closure

L ∈ PP

NL

#P #P

NL′

L′ ∈ UP

L = L′
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Theorem 5.6

Theorem

The following statements are equivalent:

1 #P is closed under proper subtraction.

2 #P is closed under every polynomial-time computable
operation.

3 UP = PP
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2 ⇒ 1

Assume #P is closed under every polynomial-time
computable operation

Show #P is closed under proper subtraction

Proof

This implication is trivial as proper subtraction is a
polynomial-time computable operation.
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1 ⇒ 3

Assume #P is closed under proper subtraction

Show UP=PP (equivalently UP⊆PP and PP⊆UP)

Outline

1 Show UP⊆PP directly

2 Show PP⊆coNP via witness reduction

3 Show coNP⊆UP via witness reduction
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UP⊆PP

This condition holds independent of the assumption.

Let L be a UP language. Let N be the NPTM that accepts L.

From the definition of UP

∃ polynomial q such that q (|x |) is the depth of N’s
computation tree
For x ∈L the number of accepting paths of N(x) is 1
For x /∈L the number of accepting paths of N(x) is 0
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UP⊆PP continued

Let N ′ be a NPTM with the same q as N, and that accept on
all paths except one

Consider NPTM NPP whose first step on input x is to
non-deterministically choose to simulate N or N ′

1 NPP has 2q(|x|)+1 total computation paths
2 For x ∈ L, N contributes 1 accepting path and N ′ contributes

2q(|x|) − 1 accepting paths for a total of 2q(|x|) accepting paths
3 For x /∈ L, there are only N ′’s 2q(|x|) − 1 accepting paths

NPP demonstrates that L∈PP since
1 For x ∈L exactly half of the paths of NPP accept
2 For x /∈L strictly less than half accept
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1 ⇒ 3

Assume #P is closed under proper subtraction

Show UP=PP (equivalently UP⊆PP and PP⊆UP)

Outline

1 Show UP⊆PP directly

2 Show PP⊆coNP via witness reduction

3 Show coNP⊆UP via witness reduction
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PP⊆coNP

Let L be a PP language. From the definition of PP we have a
polynomial q and a polynomial-time predicate R such that

x ∈ L ⇔
∥∥{

y
∣∣|y | = q(|x |) ∧ R(x , y)

}∥∥ ≥ 2q(|x |)−1

Let q′(x) = q(n) + 1 and for b ∈ {0, 1}, R ′(x , yb) = R(x , y)
and require that for all n q(n) ≥ 1

Consider the NPTM that on input x guesses each y such that
|y | = q(|x |) and tests R(x , y).
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PP⊆coNP continued

Consider the #P function f defined by this NPTM

x ∈L ⇒ f (x) ≥ 2q(|x|)−1

x /∈L ⇒ f (x) < 2q(|x|)−1

Consider the #P function g(x) = 2q(|x |)−1 − 1

Under the assumption that #P is closed under proper
subtraction, we have #P function h such that

h(x) = f (x)	 g(x)

Substitution yields

h(x) ≥ 1 if x ∈L
h(x) = 0 if x /∈L
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PP⊆coNP continued

There exists a NPTM N(x) for which h(x) computes the
number of accepting paths.

Based on the values of h(x), N is an NP machine, thus
L=L(N) and PP⊆NP

Since PP=coPP, we have that PP⊆coNP
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1 ⇒ 3

Assume #P is closed under proper subtraction

Show UP=PP (equivalently UP⊆PP and PP⊆UP)

Outline

1 Show UP⊆PP directly

2 Show PP⊆coNP via witness reduction

3 Show coNP⊆UP via witness reduction
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coNP⊆UP

Let L be an arbitrary coNP language.

There exists a NPTM N that accepts L
N defines #P function f such that

x ∈L ⇒ f (x) = 0
x /∈L ⇒ f (x) ≥ 1

Consider the constant #P function g(x) = 1
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coNP⊆UP continued

Since #P is closed under 	 there exists a #P function h
where

h(x) = g(x)	 f (x)

Substitution yields

h(x) = 1 if x ∈L
h(x) = 0 if x /∈L

By the same reasoning as before, h(x) has an associated UP
machine, thus our arbitrary coNP language is also in UP
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1⇒3 complete

1⇒3

We have shown that UP⊆PP and that PP⊆coNP⊆UP, thus we
have shown that If #P is closed under proper subtraction then
UP=PP.
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3⇒2

Assume UP=PP

Show #P is closed under every polynomial-time
computable operation

Proof Strategy

Given that f and g are arbitrary #P functions and that op is an
arbitrary polynomial-time operation, and given the assumption that
UP=PP, we must show that h(x) = op(f (x), g(x)) is also a #P
function.
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3⇒2

Our first goal is to actually compute the values for f (x) and
g(x) for arbitrary input x

We use the following two sets for this computation

Bf = {〈x , n〉|f (x) ≥ n} ∈PP
Bg = {〈x , n〉|g(x) ≥ n} ∈PP

However we need the precise values for f (x) and g(x) which
we can get using the set

V = {〈x , n1, n2〉| 〈x , n1〉 ∈ Bf ∧ 〈x , n1 + 1〉 /∈ Bf ∧
〈x , n2〉 ∈ Bg ∧ 〈x , n2 + 1〉 /∈ Bg}
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3⇒2 continued

V decides n1 = f (x) ∧ n2 = g(x) by testing adjacent ns to
find the transition points in Bf and Bg

Let ⊕ indicate disjoint union

V ≤p
4-tt (Bf ⊕ Bg ) and Bf ⊕ Bg ∈ PP

Theorem 9.17 shows us that PP is closed under ≤p
btt and

disjoint union so we conclude that V ∈ PP

From our assumption that UP=PP we conclude that V ∈UP
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3⇒2 continued

With V in UP, and able to test if f (x) = n1 and g(x) = n2,
we examine the following NPTM, N that will show
h(x) = op(f (x), g(x)) and h(x) ∈#P

f and g are #P functions so there is some polynomial q such
that max{f (x), g(x)} ≤ 2q(|x |)

N, on input x
1 Nondeterministically choose an integer i , 0 ≤ i ≤ 2q(|x|)

2 Nondeterministically choose an integer j , 0 ≤ j ≤ 2q(|x|)

3 Guesses a computation path of V on input 〈x , i , j〉. If this path
accepts, nondeterministically guess an integer k,
1 ≤ k ≤ op(i , j) and accept.
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3⇒2 continued

V (〈x, i, j〉) when i = f(x) and j = g(x)

1 ≤ k ≤ op(i, j)
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3⇒2 continued

For all i 6= f (x) and j 6= g(x), V (〈x , i , j〉) rejects (recall
V ∈UP)

For the correct i and j , N(x) accepts along precisely op(i , j)
paths

The #P function defined by this machine is
h(x) = op(f (x), g(x)) thus #P is closed under our arbitrary
op
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Theorem 5.7

Theorem

The following statements are equivalent:

1 UP = PP .

2 UP = NP = coNP = PH = ⊕P = PP = PP
∪ PPPP ∪ PPPPPP ∪ . . .

To prove this, we need other results.

We prove each of these results one by one.

We use UP = PP as the initial assumption.

We use results for each stage as assumptions for the next
stage.
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UP ⊆ NP

Proposition

UP ⊆ NP

Proof.

Let L ∈ UP . Let N be the NPTM deciding L.

1 x ∈ L =⇒ exactly one accepting path in N

2 x /∈ L =⇒ no accepting paths in N

Clearly, L ∈ NP .
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NP ⊆ PP

Proposition

NP ⊆ PP .

Construction

1 Let L ∈ NP and let NPTM N decide L.

2 Construct NPTM N ′ that has two subtrees at its root

3 Left subtree is exactly the same as N.

4 Right subtree is of the same depth as N and has exactly one
rejecting path.

5 x ∈ L =⇒ no. of accepting paths in N ′ ≥ 1
2(#pathsN′)

6 x /∈ L =⇒ no. of accepting paths in N ′ < 1
2(#pathsN′)
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NP ⊆ PP (Example)

x ∈ L

Figure: Computation Tree of
NPTM N

x ∈ L

Figure: Computation Tree of NPTM N ′
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NP ⊆ PP (Example)

x /∈ L

Figure: Computation Tree of
NPTM N

x /∈ L

Figure: Computation Tree of NPTM N ′
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UP = NP = PP

Proposition

If UP = PP , then UP = NP = PP

PP

NP

UP

Figure: Known relationship
between UP , NP , PP

Known Facts & Assumptions

UP ⊆ NP ⊆ PP .

UP = PP

Clearly, given the assumptions,
UP = NP = PP
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Status

UP=PP=NP=coNP=PH=⊕P=PP ∪ PPPP ∪ PPPPPP ∪ . . .
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PP is closed under complementation

Proposition

PP is closed under complementation
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Construction

Construction: Outline

1 Let L ∈ PP and let NPTM N decide L.

2 Construct NPTM N ′ that is equivalent to N and has the
rightmost path as a rejecting path

3 Construct NPTM N ′′ by adding another level to N ′ by adding
2 child nodes to each of the leaf nodes.

4 For the leaf node of the rightmost path, one child is accepting
and the other is rejecting

5 For accepting leaf nodes, both children are rejecting.

6 For rejecting leaf nodes (other than the rightmost leaf node),
both children are accepting
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Construction: Details

We can construct NPTM N ′ that is equivalent to N and has the
rightmost path as a rejecting path by

1 Construct NPTM N ′ that has two subtrees at its root

2 Left subtree is exactly the same as N.

3 Exactly half the paths of right subtree are accepting and the
remaining half are rejecting.

4 x ∈ L =⇒ no. of accepting paths in N ′ ≥ 1
2(#pathsN′)

5 x /∈ L =⇒ no. of accepting paths in N ′ < 1
2(#pathsN′)
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Example: Construction of N ′

h− 1

Figure: NPTM N

h

Figure: NPTM N ′
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Example: Construction of N ′′

h + 1

Figure: NPTM N ′′
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Correctness

Let h − 1 represent the depth of the computation tree of N.
Let y represent the number of accepting paths in N ′

We see that the number of accepting and rejecting paths in N ′′ is:

1 Number rejecting: 2y + 1

2 Number accepting: 2h+1 − 2y − 1
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Correctness(contd)

1 Case 1: x ∈ L =⇒ y ≥ 2h−1

In this case, the number of accepting paths in N ′′ ≤ 2h − 1.
2h − 1 < 2h.

2 Case 2: x /∈ L =⇒ y < 2h−1

In this case, the number of accepting paths in N ′′ ≥ 2h + 1.
Clearly, 2h + 1 > 2h.

Hence, L ∈ PP .
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UP = NP = PP = coNP

Proposition

If NP = PP , then NP = coNP

Known Facts & Assumptions

NP = PP
PP is closed under complementation
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Proof

Proof.

(∀L), L ∈ PP => L ∈ PP
Since we have assumed that NP = PP , we have,
L ∈ PP => L ∈ NP => L ∈ coNP
Therefore, (∀L), L ∈ PP =⇒ L ∈ coNP .

Since, PP ⊆ coNP and (since NP ⊆ PP ) coNP ⊆ coPP = PP ,
we have
NP = PP = coNP
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Status

UP=PP=NP=coNP=PH=⊕P=PP ∪ PPPP ∪ PPPPPP ∪ . . .
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PH = NP

Theorem

If NP = coNP , then PH = NP .

Definition

PH =
⋃
i

Σp
i = P ∪NP ∪NPNP ∪NPNPNP

∪ . . .

We first show that if NP = coNP , then NPNP = NP.
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PH = NP (contd.)

Let A ∈ NP . We can build an NPTM N ′
A having the power of an

oracle making use of NPTMs NA that decides A, and NA that
decides A as follows:

NANA

Figure: NPTM N ′
A

Exactly one of NA and NA and must accept. The decision can be
made in non-deterministic polynomial time.
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PH = NP (contd.)

Building on this, we can show that NPNP∩coNP = NP
And so, if NP = coNP , we have NPNP = NPNP∩coNP = NP
We can inductively reduce a stack of NPs of arbitrary height
to NP .

For example,

NPNPNPNP

= NPNPNP
= NPNP = NP Therefore, if NP =coNP ,

PH = NP .
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Status

UP=PP=NP=coNP=PH=⊕P=PP ∪ PPPP ∪ PPPPPP ∪ . . .

Luke Dalessandro, Rahul Krishna Chapter 5 The Witness Reduction Technique



Closure Properties
Witness Reduction

Theorem 5.6
Theorem 5.7
Theorem 5.9
Conclusions

PUP = UP

Proposition

If PH = UP , PUP = UP

Proof.

Since PNP ⊆ PH and UP ⊆ NP, we have PUP ⊆ PH.
So, PH = UP =⇒ PUP ⊆ PH = UP
Clearly, UP ⊆ PUP.
Thus under our hypothesis, PUP = UP.
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PP⊕P ⊆ PPP

Here, we need to make use of Lemma 4.14 from the
Hemaspaandra-Ogihara text. We state it below without proof.

Lemma

PP⊕P ⊆ PPP
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UP = ⊕P = PP = PP⊕P

Proposition

If UP = PP and PUP = UP, then UP = ⊕P = PP = PP⊕P

⊕P

PP⊕P

UP

Figure: Known relationship
between UP , PP , PP⊕P

Proof.

PPP = PUP = UP .
From Lemma 4.14, PP⊕P ⊆ PPP = UP .
Clearly, UP ⊆ ⊕P ⊆ PP⊕P.
Therefore, UP = ⊕P = PP⊕P = PP.
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Status

UP=PP=NP=coNP=PH=⊕P=PP ∪ PPPP ∪ PPPPPP ∪ . . .
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PP ∪ PPPP ∪ PPPPPP

∪ . . . = PP

Assumptions

⊕P = PP
PP⊕P = PP

From the above assumptions we can write,
PPPP = PP⊕P = PP

We can inductively reduce a stack of PPs of arbitrary height to
PP .

For example, PPPPPPPP

= PPPPPP
= PPPP = PP

Therefore, PP ∪ PPPP ∪ PPPPPP ∪ . . . = PP
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Theorem 5.7 Proved

UP=PP=NP=coNP=PH=⊕P=PP ∪ PPPP ∪ PPPPPP ∪ . . .
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Integer Division

Definition

Let F be a class of functions from N to N. We say that F is
closed under integer division (�) if

(∀f1 ∈ F)(∀f2 ∈ F : (∀n)[f2(n) > 0])[f1 � f 2 ∈ F ],

where the 0 above is the integer zero (i.e., the integer represented
by the empty string).
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Theorem 5.9

Theorem

The following statements are equivalent:

1 #P is closed under integer division.

2 #P is closed under every polynomial-time computable
operation.

3 UP = PP.

We will not prove 3 ⇒ 2 since it was already proved in Theorem
5.6.
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2 ⇒ 1

Assume #P is closed under every polynomial-time
computable operation

Show #P is closed under Integer Division

Proof

This implication is trivial as integer division is a polynomial-time
computable operation.
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1 ⇒ 3

Assume #P is closed under integer division

Show UP =PP

We know that UP ⊆ PP without any assumption. Thus, we only
prove PP ⊆ UP given our assumption.

Let L ∈ PP . There exists NPTM N and integer k ≥ 1 such that,

1 (∀x),N(x) has exactly 2|x |
k

computation paths, each
containing exactly |x |k choices

2 x ∈ L ⇐⇒ N(x) has at least 2|x |
k−1 accepting paths

3 (∀x),N(x) has at least one rejecting path
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Proof for 1 ⇒ 3

Let f be the #P function for NPTM N which decides
language L ∈ PP.

Define the #P function g as, g(x) = 2|x |
k−1.

By our assumption, h(x) = f (x)� g(x) must be a #P function.

if x ∈ L, h(x) =

⌊
2|x|

k−1≤f (x)<2|x|
k

2|x|k−1

⌋
= 1

if x /∈ L, h(x) =

⌊
0≤f (x)<2|x|

k−1

2|x|k−1

⌋
= 0

The NPTM corresponding to h is a UP machine for L.
Hence L ∈ UP.
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Intermediate Closure Properties

If #P is closed under proper subtraction and integer division,
then #P is also closed under all polynomial-time computable
operations and UP = PP .

Are there any operations that #P is not know to be closed
under, and does not have the property if #P is closed under
these operations if and only if #P is closed under all
polynomial-time computable operations.

Analogy with sets that are in NP but are not known to be
either NP-complete or in P.

Examples of intermediate closure properties are taking
minimums, maximums, proper decrement and integer division
by 2.
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Conclusions

We’ve shown that the following statements are equivalent:
1 #P is closed under proper subtraction
2 #P is closed under integer division.
3 #P is closed under every polynomial-time computable

operation.
4 UP = PP.

We discussed the consequences of UP = PP
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